Please wait a minute...
Journal of Integrative Agriculture  2023, Vol. 22 Issue (11): 3244-3255    DOI: 10.1016/j.jia.2023.07.018
Special Focus: Germplasm and Molecular Breeding in Horticultural Crops Advanced Online Publication | Current Issue | Archive | Adv Search |
A high-quality genome of Actinidia eriantha provides new insight into ascorbic acid regulation
LIAO Guang-lian*, HUANG Chun-hui*, JIA Dong-feng, ZHONG Min, TAO Jun-jie, QU Xue-yan, XU Xiao-biao#
Institute of Kiwifruit, Jiangxi Agricultural University, Nanchang 330045, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

毛花猕猴桃是猕猴桃属中果实抗坏血酸(AsA)含量高的种之一,但其果实富含抗坏血酸的分子机制尚未被解析。为了深入探明毛花猕猴桃果实富含AsA的分子机制,本研究通过结合基因组学、代谢组学和转录组学构建了AsA代谢相关的调控网络,从而为后续研究奠定基础。在本研究中,我们组装了一个仅含有5个缺口的高质量毛花猕猴桃参考基因组。该基因组由29条染色体组成,大小为615.95 Mb, contig N5020.35 Mb,其中24条染色体直接来自端粒到端粒。基因组组装评价指标LAI值和QV值分别为21.34%39.90%,表明组装的基因组已经达到了金标准参考基因组水平。随后,通过代谢组和转录组分析,分别发现61个代谢物和2,092个基因在果实生长发育过程中存在差异积累/表达。在所有的AsA代谢途径中,AsA降解和循环再生途径在整个果实生长发育过程中显著性高表达,表明该途径AsA调控中起着重要作用。此外,AsA含量与抗坏血酸过氧化物酶基因高度相关。本研究组装的高质量毛花猕猴桃基因组毛花猕猴桃遗传育种研究提供坚实的基础,构建的调控网络将为今后毛花猕猴桃的基因功能研究提供公共数据平台。



Abstract  

Actinidia eriantha is one of the species of kiwifruit with a particularly high ascorbic acid (AsA) content.  However, the molecular mechanism driving AsA richness in fruit remains unclear.  In order to reveal the molecular mechanism of AsA richness in Aeriantha, this study constructed a regulatory network related to AsA metabolism by combining genomics, metabolomics and transcriptomics.  We assembled a high-quality genome of Aeriantha ‘Ganlv 1’ with only five remaining gaps.  The assembly is comprised of 29 pseudochromosomes with a total size of 615.95 Mb, and contig N50 of 20.35 Mb. Among them, 24 of the pseudochromosomes were obtained directly from telomere-to-telomere.  The LTR assembly index score and consensus quality value were 21.34 and 39.90%, respectively.  Subsequently, 61 metabolites and 2 092 genes were found to be differentially accumulated/expressed during fruit development by metabolome and transcriptome assays, respectively.  AsA metabolism and the cyclic regeneration pathway were found to have high expression levels throughout fruit growth and development, suggesting its crucial role in the regulation of AsA.  Furthermore, the AsA contents are highly associated with ascorbate peroxidase genes.  The genome obtained in this study provides genomic resources for the genetic and breeding research of Aeriantha, and the constructed regulatory network can provide a public data platform for future research on kiwifruit.

Keywords:  Actinidia eriantha       scorbic acid        non-targeted metabolome        gapless genome        transcriptome  
Received: 10 January 2023   Accepted: 06 May 2023
Fund: This project was supported by the National Natural Science Foundation of China (32160692 and 31760559), and the Key Research and Development Plan from Jiangxi Science and Technology Department, China (20192ACB60002).
About author:  LIAO Guang-lian, E-mail: liaoguanglian@163.com; #Correspondence XU Xiao-biao, Tel/Fax: +86-791-83813586, E-mail: xbxu@jxau.edu.cn * These authors contributed equally to this study.

Cite this article: 

LIAO Guang-lian, HUANG Chun-hui, JIA Dong-feng, ZHONG Min, TAO Jun-jie, QU Xue-yan, XU Xiao-biao. 2023. A high-quality genome of Actinidia eriantha provides new insight into ascorbic acid regulation. Journal of Integrative Agriculture, 22(11): 3244-3255.

Benson G. 1999. Tandem repeats finder: A program to analyze DNA sequences. Nucleic Acids Research27, 573–580.

Bie T D, Cristianini N, Demuth J P, Hahn M W. 2006. CAFE: A computational tool for the study of gene family evolution. Bioinformatics22, 1269–1271.

Chan P P, Lowe T M. 2019. tRNAscan-SE: Searching for tRNA genes in genomic sequences. Methods of Molecular Biology1962, 1–14.

Chen C J, Chen H, Zhang Y, Thomas H R, Frank M H, He Y H, Xia R. 2020. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Molecular Plant13, 1194–1202.

Chen S F, Zhou Y Q, Chen Y R, Gu J. 2018. Fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics34, 884–890.

Cheng H, Jarvis E D, Fedrigo O, Koepfli K-P, Urban L, Gemmell N J, Li H. 2022. Haplotype-resolved assembly of diploid genomes without parental data. Nature Biotechnology40, 1332–1335.

Daccord N, Celton J, Linsmith G, Becker C, Choisne N, Schijlen E, Geest H, Bianco L, Micheletti D, Velasco R, Pierro E A, Gouzy J, Rees D, Guérif P, Muranty H, Durel C, Laurens F, Lespinasse Y, Gaillard S, Aubourg S, et al. High-quality de novo assembly of the apple genome and methylome dynamics of early fruit development. Nature Genetics49, 1099.

Du H L, Yu Y, Ma Y F, Gao Q, Cao Y H, Chen Z, Ma B, Qi M, Li Y, Zhao X F, Wang J, Liu K F, Qin P, Yang X, Zhu L H, Li S G, Liang C Z. 2017. Sequencing and de novo assembly of a near complete indica rice genome. Nature Communications8, 15324.

Dudchenko O, Batra S S, Omer A D, Nyquist S K, Hoeger M, Durand N C, Shamim M S, Machol I, Lander E S, Aiden A P, Aiden E L. 2017. De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science356, 92–95.

Guo R, Zhang Y H, Zhang H J, Landis J B, Zhang X, Wang H C, Yao X H. 2022. Molecular phylogeography and species distribution modelling evidence of ‘oceanic’ adaptation for Actinidia eriantha with a refugium along the oceanic-continental gradient in a biodiversity hotspot. BMC Plant Biology22, 89.

Huang S X, Ding J, Deng D J, Tang W, Sun H H, Liu D Y, Zhang L, Niu X L, Zhang X, Meng M, Yu J D, Liu J, Han Y, Shi W, Zhang D F, Cao S Q, Wei Z J, Cui Y L, Xia Y H, Zeng H P, Bao K, et al. 2013. Draft genome of the kiwifruit Actinidia chinensisNature Communications4, 2640.

Kim D, Langmead B, Salzberg S L. 2015. HISAT: A fast spliced aligner with low memory requirements. Nature Methods12, 357–360.

Lagesen K, Hallin P, Rødland E A, Staerfeldt H, Rognes T, Ussery D W. 2007. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Research35, 3100–3108.

Langmead B, Salzberg S L. 2012. Fast gapped-read alignment with Bowtie 2. Nature Methods9, 357–359.

Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics25, 1754–1760.

Li L, Stoeckert C J, Roos D S. 2003. OrthoMCL: Identification of ortholog groups for eukaryotic genomes. Genome Research13, 2178–2189.

Liao G L, Chen L, He Y Q, Li X S, Lv Z X, Yi S Y, Zhong M, Huang C H, Jia D F, Qu X Y, Xu X B. 2021a. Three metabolic pathways are responsible for the accumulation and maintenance of high AsA content in kiwifruit (Actinidia eriantha). BMC Genomics22, 13.

Liao G L, He Y Q, Li X S, Zhong M, Huang C H, Yi S Y, Liu Q, Xu X B. 2019. Effects of bagging on fruit flavor quality and related gene expression of AsA synthesis in Actinidia erianthaScientia Horticulturae256, 108511.

Liao G L, Li Y Q, Wang H L, Liu Q, Zhong M, Jia D F, Huang C H, Xu X B. 2022a. Genome-wide identifcation and expression profling analysis of sucrose synthase (SUS) and sucrose phosphate synthase (SPS) genes family in Actinidia chinensis and AerianthaBMC Plant Biology22, 215.

Liao G L, Liu Q, Xu X B, He Y Q, Li Y Q, Wang H L, Ye B, Huang C H, Zhong M, Jia D F. 2021b. Metabolome and transcriptome reveal novel formation mechanism of early mature trait in kiwifruit (Actinidia eriantha). Frontiers in Plant Science12, 760496.

Liao G L, Xu Q, Allan A C, Xu X B. 2023. L-Ascorbic acid metabolism and regulation in fruit crops. Plant Physiology192, 1684–1695.

Liao G L, Xu X B, Huang C H, Qu X Y, Jia D F. 2022b. A novel early maturing kiwifruit (Actinidia eriantha) cultivar. New Zealand Journal of Crop and Horticultural Science, doi: 10.1080/01140671.2022.2035778.

Liao G L, Xu X B, Huang C H, Zhong M, Jia D F. 2021c. Resource evaluation and novel germplasm mining of Actinidia erianthaScientia Horticulturae282, 110037.

Liu Q, Li Y Q, Liao G L, Xu X B, Jia D F, Zhong M, Wang H L, Ye B. 2022. Transcriptome and metabolome reveal AsA regulatory network between metabolites and genes after fruit shading by bagging in kiwifruit (Actinidia eriantha). Scientia Horticulturae302, 111184.

Liu X Y, Wu R M, Bulley S M, Zhong C H, Li D W. 2022a. Kiwifruit MYBS1-like and GBF3 transcription factors influence L-ascorbic acid biosynthesis by activating transcription of GDP-L-galactose phosphorylase 3New Phytologist234, 1782–1800.

Liu X Y, Xie X D, Cheng X, Wang W J, Lv H Y, Li D W, Zhong C H. 2022b. Synthesis patterns of vitamin C in Actinidia and identification of key genes. Plant Science Journal40, 657–668.

Lorgeril M D, Renaud S, Salen P, Monjaud I, Mamelle N, Martin J L, Guidollet J, Touboul P, Delaye J1994. Mediterranean alpha-linolenic acid-rich diet in secondary prevention of coronary heart disease. The Lancet343, 1454–1459.

Lukashin A V, Borodovsky M. 1998. GeneMark.hmm: New solutions for gene finding. Nucleic Acids Research26, 1107–1115.

Nguyen L T, Schmidt H A, Haeseler A, Minh B Q. 2015. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution32, 267–274.

Ou S, Chen J, Jiang N. 2018. Assessing genome assembly quality using the LTR Assembly Index (LAI). Nucleic Acids Research46, e126.

Parra G, Bradnam K, Korf I. 2007. CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes. Bioinformatics23, 1061–1067.

Pertea M, Pertea G M, Antonescu C M, Chang T, Mendell J T, Salzberg S L. 2015. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nature Biotechnology33, 290–295.

Pilkington S M, Crowhurst R, Hilario E, Nardozza S, Fraser L, Peng Y, Gunaseelan K, Simpson R, Tahir J, Deroles S C, Templeton K, Luo Z, Davy M, Cheng C, McNeilage M, Scaglione D, Liu Y, Zhang Q, Datson P, Silva M D, et al. 2018. A manually annotated Actinidia chinensis var. chinensis (kiwifruit) genome highlights the challenges associated with draft genomes and gene prediction in plants. BMC Genomics19, 257.

Ranallo-Benavidez T R, Jaron K S, Schatz M C. 2020. GenomeScope 2.0 and Smudgeplot for reference-free profiling of polyploid genomes. Nature Communications11, 1432.

Rhie A, Walenz B P, Koren S, Phillippy A M. 2020. Merqury: Reference-free quality, completeness, and phasing assessment for genome assemblies. Genome Biology21, 245.

Simão F A, Waterhouse R M, Ioannidis P, Kriventseva E V, Zdobnov E M. 2015. BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics31, 3210–3212.

Stanke M, Tzvetkova A, Morgenstern B. 2006. AUGUSTUS at EGASP: using EST, protein and genomic alignments for improved gene prediction in the human genome. Genome Biology7(Suppl. 1), S1–S11.

Tang W, Sun X P, Yue J Y, Tang X F, Jiao C, Yang Y, Niu X L, Miao M, Zhang D F, Huang S X, Shi W, Li M Z, Fang C B, Fei Z J, Liu Y S. 2019. Chromosome-scale genome assembly of kiwifruit Actinidia eriantha with single-molecule sequencing and chromatin interaction mapping. GigaScience8, giz027.

Wang B Q, Wang J X, Chen G X, Xiao J W, Song W. 2017. Research on linolenic acid resources from Actinidia plants in China based on literature analysis. Subtropical Plant Science46, 175–180.

Wang L, He F, Huang Y, He J X, Yang S Z, Zeng J, Deng C L, Jiang X L, Fang Y W, Wen S H, Xu R W, Yu H W, Yang X M, Zhong G Y, Chen C W, Yan X, Zhou C F, Zhang H Y, Xie Z Z, Larkin R M, et al. 2018. Genome of wild mandarin and domestication history of mandarin. Molecular Plant11, 1024–1037.

Wang Y P, Tang H B, Debarry J D, Tan X, Li J P, Wang X Y, Lee T, Jin H Z, Marler B, Guo H, Kissinger J C, Paterson A H. 2012. MCScanX: A toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Research40, e49.

Wang Y Z, Dong M H, Wu Y, Zhang F, Ren W M, Lin Y Z, Chen Q Y, Zhang S J, Yue J Y, Liu Y S. 2023. Telomere-to-telomere and haplotype-resolved genome of the kiwifruit Actinidia erianthaMolecular Horticulture3, 4.

Wei C L, Yang H, Wang S B, Zhao J, Liu C, Gao L P, Xia E H, Lu Y, Tai Y L, She G B, Sun J, Cao H S, Tong W, Gao Q, Li Y Y, Deng W, Jiang X L, Wang W Z, Chen Q, Zhang S H, et al. 2018. Draft genome sequence of Camellia sinensis var. sinensis provides insights into the evolution of the tea genome and tea quality. Proceedings of the National Academy of Sciences of the United States of America115, e4151–e4158.

Wu H L, Ma T, Kang M H, Ai F D, Zhang J L, Dong G Y, Liu J Q. 2019. A high-quality Actinidia chinensis (kiwifruit) genome. Horticulture Research6, 117.

Wu Y J, Xie M, Zhang Q C, Jiang G H, Zhang H Q, Long Q J, Han W J, Chen J W, Shong G H. 2009. Characteristics of ‘White’: A new easy-peel cultivar of Actinidia erianthaNew Zealand Journal of Crop and Horticultural Science37, 369–373.

Xia E H, Tong W, Hou Y, An Y L, Chen L B, Wu Q, Liu Y L, Yu J, Li F D, Li R P, Li P H, Zhao H J, Ge R H, Huang J, Mallano A I, Zhang Y R, Liu S R, Deng W W, Song C K, Zhang Z L, et al. 2020. The reference genome of tea plant and resequencing of 81 diverse accessions provide insights into its genome evolution and adaptation. Molecular Plant13, 1013–1026.

Xu X B, Huang C H, Qu X Y, Chen M, Zhong M, Lang B B, Chen C J, Xie M, Zhang W B. 2015. A new easy peeling Actinidia eriantha cultivar ‘Ganmi 6’. Acta Horticulturae Sinica42, 2539–2540.

Xu X B, Liao G L, Huang C H, Zhong M, Jia D F, Qu X Y, Liu Q, He Y Q, Li Y Q. 2020. Diferences of sucrose accumulation concentration and related genes expression between two sucrose accumulation types of Actinidia erianthaScientifc Reports10, 20474.

Yang Z. 2007. PAML 4: Phylogenetic analysis by maximum likelihood. Molecular Biology and Evolution24, 1586–1591.

Yao X H, Wang S B, Wang Z P, Li D W, Jiang Q, Zhang Q, Gao L, Zhong C H, Huang H W, Liu Y F. 2022. The genome sequencing and comparative analysis of a wild kiwifruit Actinidia erianthaMolecular Horticulture2, 13.

Zhang X, Guo R, Shen R N, Landis J B, Jiang Q, Liu F, Wang H C, Yao X H. 2023. The genomic and epigenetic footprint of local adaptation to variable climates in kiwifruit. Horticulture Research10, uhad03.

[1] ZHAO Wen-juan, YUAN Xiao-ya, XIANG Hai, MA Zheng, CUI Huan-xian, LI Hua, ZHAO Gui-ping. Transcriptome-based analysis of key genes and pathways affecting the linoleic acid content in chickens[J]. >Journal of Integrative Agriculture, 2023, 22(12): 3744-3754.
[2] ZHENG Qi, HU Rong-cui, ZHU Cui-yun, JING Jing, LOU Meng-yu, ZHANG Si-huan, LI Shuang, CAO Hong-guo, ZHANG Xiao-rong, LING Ying-hui. Identification of transition factors in myotube formation from proteome and transcriptome analyses[J]. >Journal of Integrative Agriculture, 2023, 22(10): 3135-3147.
[3] WANG Xiao-dong, CAI Ying, PANG Cheng-ke, ZHAO Xiao-zhen, SHI Rui, LIU Hong-fang, CHEN Feng, ZHANG Wei, FU San-xiong, HU Mao-long, HUA Wei, ZHENG Ming, ZHANG Jie-fu. BnaSD.C3 is a novel major quantitative trait locus affecting semi-dwarf architecture in Brassica napus L.[J]. >Journal of Integrative Agriculture, 2023, 22(10): 2981-2992.
[4] LÜ Jing, Satyabrata NANDA, CHEN Shi-min, MEI Yang, HE Kang, QIU Bao-li, ZHANG You-jun, LI Fei, PAN Hui-peng.

A survey on the off-target effects of insecticidal double-stranded RNA targeting the Hvβ´COPI gene in the crop pest Henosepilachna vigintioctopunctata through RNA-seq [J]. >Journal of Integrative Agriculture, 2022, 21(9): 2665-2674.

[5] WANG Bo, HUANG Tian-yu, YAO Yuan, Frederic FRANCIS, YAN Chun-cai, WANG Gui-rong, WANG Bing. A conserved odorant receptor identified from antennal transcriptome of Megoura crassicauda that specifically responds to cis-jasmone[J]. >Journal of Integrative Agriculture, 2022, 21(7): 2042-2054.
[6] ZHOU Cheng-zhe, ZHU Chen, LI Xiao-zhen, CHEN Lan, XIE Si-yi, CHEN Guang-wu, ZHANG Huan, LAI Zhong-xiong, LIN Yu-ling, GUO Yu-qiong. Transcriptome and phytochemical analyses reveal roles of characteristic metabolites in the taste formation of white tea during withering process[J]. >Journal of Integrative Agriculture, 2022, 21(3): 862-877.
[7] SHI Hai-yan, CAO Li-wen, XU Yue, YANG Xiong, LIU Shui-lin, LIANG Zhong-shuo, LI Guo-ce, YANG Yu-peng, ZHANG Yu-xing, CHEN Liang. Transcriptional profiles underlying the effects of salicylic acid on fruit ripening and senescence in pear (Pyrus pyrifolia Nakai)[J]. >Journal of Integrative Agriculture, 2021, 20(9): 2424-2437.
[8] WANG Chao-nan, LUAN Fei-shi, LIU Hong-yu, Angela R. DAVIS, ZHANG Qi-an, DAI Zu-yun, LIU Shi. Mapping and predicting a candidate gene for flesh color in watermelon[J]. >Journal of Integrative Agriculture, 2021, 20(8): 2100-2111.
[9] WU Tong, FENG Shu-yan, YANG Qi-hang, Preetida J BHETARIYA, GONG Ke, CUI Chun-lin, SONG Jie, PING Xiao-rui, PEI Qiao-ying, YU Tong, SONG Xiao-ming. Integration of the metabolome and transcriptome reveals the metabolites and genes related to nutritional and medicinal value in Coriandrum sativum[J]. >Journal of Integrative Agriculture, 2021, 20(7): 1807-1818.
[10] ZHAO Juan, LIU Ting, LIU Wei-cheng, ZHANG Dian-peng, DONG Dan, WU Hui-ling, ZHANG Tao-tao, LIU De-wen. Transcriptomic insights into growth promotion effect of Trichoderma afroharzianum TM2-4 microbial agent on tomato plants[J]. >Journal of Integrative Agriculture, 2021, 20(5): 1266-1276.
[11] CHENG Jin-tao, CHEN Hai-wen, DING Xiao-chen, SHEN Tai, PENG Zhao-wen, KONG Qiu-sheng, HUANG Yuan, BIE Zhi-long. Transcriptome analysis of the influence of CPPU application for fruit setting on melon volatile content[J]. >Journal of Integrative Agriculture, 2021, 20(12): 3199-3208.
[12] FU Fang-fang, PENG Ying-shu, WANG Gui-bin, Yousry A. EL-KASSABY, CAO Fu-liang. Integrative analysis of the metabolome and transcriptome reveals seed germination mechanism in Punica granatum L.[J]. >Journal of Integrative Agriculture, 2021, 20(1): 132-146.
[13] LAN Hao, ZHANG Zhan-feng, WU Jun, CAO He-he, LIU Tong-xian. Performance and transcriptomic response of the English grain aphid, Sitobion avenae, feeding on resistant and susceptible wheat cultivars[J]. >Journal of Integrative Agriculture, 2021, 20(1): 178-190.
[14] LING Ying-hui, ZHENG Qi, JING Jing, SUI Meng-hua, ZHU Lu, LI Yun-sheng, ZHANG Yun-hai, LIU Ya, FANG Fu-gui, ZHANG Xiao-rong . Switches in transcriptome functions during seven skeletal muscle development stages from fetus to kid in Capra hircus[J]. >Journal of Integrative Agriculture, 2021, 20(1): 212-226.
[15] ZHANG Da-wei, LIU Li-li, ZHOU Ding-gang, LIU Xian-jun, LIU Zhong-song, YAN Ming-li.
Genome-wide identification and expression analysis of anthocyanin biosynthetic genes in Brassica juncea
[J]. >Journal of Integrative Agriculture, 2020, 19(5): 1250-1260.
No Suggested Reading articles found!