Please wait a minute...
Journal of Integrative Agriculture  2023, Vol. 22 Issue (10): 2981-2992    DOI: 10.1016/j.jia.2023.02.017
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
BnaSD.C3 is a novel major quantitative trait locus affecting semi-dwarf architecture in Brassica napus L.

WANG Xiao-dong1, 2*, CAI Ying2*, PANG Cheng-ke1, 2, ZHAO Xiao-zhen1, SHI Rui1, LIU Hong-fang2, CHEN Feng1, ZHANG Wei1, FU San-xiong1, HU Mao-long1, HUA Wei2, ZHENG Ming2#, ZHANG Jie-fu1#

1 Provincial Key Laboratory of Agrobiology/Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Affairs, Nanjing 210014, P.R.China
2 Oil Crops Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

株高是影响甘蓝型油菜产量、收获指数和抗倒伏性的关键株型特征,然而,油菜株高的遗传调控机制仍不清楚。本研究利用EMS诱变获得了一个半矮杆突变体df34遗传分析结果表明,df34半矮杆性状由一半显性基因控制。利用BSA-Seq方法将目的基因定位到C3染色体上命名为BnaSD.C3。随后,利用图位克隆的方法,将BnaSD.C3精细定位到“Darmor-bzh基因组的297.35 kb区间内。然而,在“Darmor-bzh基因组上的这一区间内,没有潜在的调控株高性状候选基因结合基因组重测序、转录组测序、植物激素分析、结构变异分析和基因功能注释等信息,在“ZS11”参考基因组上,发现BnaC03G0466900ZSBnaC03G0478900ZSBnaSD.C3的重要候选基因。研究为甘蓝型油菜矮化及株型育种提供了新的基因资源,为解析甘蓝型油菜株高的遗传调控机制提供了新的见解。



Abstract  

Plant height is a key plant architectural trait that affects the seed yield, harvest index and lodging resistance in Brassica napus L., although the genetic mechanisms affecting plant height remain unclear.  Here, a semi-dwarf mutant, df34, was obtained by ethyl methanesulphonate-induced mutagenesis.  Genetic analysis showed that the semi-dwarf phenotype is controlled by one semi-dominant gene, which was located on chromosome C03 using a bulked segregant analysis coupled with whole-genome sequencing, and this gene was named BnaSD.C3.  Then BnaSD.C3 was fine-mapped to a 297.35-kb segment of the “Darmor-bzh” genome, but there was no potential candidate gene for the semi-dwarf trait underlying this interval.  Furthermore, the interval was aligned to the Zhongshuang 11 reference genome.  Finally, combining structural variation analysis, transcriptome sequencing, phytohormone analyses and gene annotation information, BnaC03G0466900ZS and BnaC03G0478900ZS were determined to be the most likely candidate genes affecting the plant height of df34.  This study provides a novel major locus for breeding and new insights into the genetic architecture of plant height in Bnapus

Keywords:  Brassica napus L.        fine mapping        phytohormone analysis        plant height        transcriptome analysis  
Received: 09 October 2022   Accepted: 12 January 2023
Fund: 

The work was supported by the National Natural Science Foundation of China (32172065 and 32172095), the earmarked Fund for China Agriculture Research System (CARS-12), the Central Public-interest Scientific Institution Basal Research Fund, China (Y2022QC21) and the Jiangsu Collaborative Innovation Center for Modern Crop Production, China.  

About author:  WANG Xiao-dong, E-mail: xdwang120@163.com; CAI Ying, E-mail: caiying19960317@126.com; #Correspondence ZHANG Jie-fu, Tel: +86-25-84390657, E-mail: jiefu_z@163.com; ZHENG Ming, E-mail: zhengming@caas.cn * These authors contributed equally to this study.

Cite this article: 

WANG Xiao-dong, CAI Ying, PANG Cheng-ke, ZHAO Xiao-zhen, SHI Rui, LIU Hong-fang, CHEN Feng, ZHANG Wei, FU San-xiong, HU Mao-long, HUA Wei, ZHENG Ming, ZHANG Jie-fu. 2023. BnaSD.C3 is a novel major quantitative trait locus affecting semi-dwarf architecture in Brassica napus L.. Journal of Integrative Agriculture, 22(10): 2981-2992.

Barkan A, Small I. 2014. Pentatricopeptide repeat proteins in plants. Annual Review of Plant Biology65, 415–442.

Bolger A M, Lohse M, Usadel B. 2014. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics30, 2114–2120.

Canino G, Bocian E, Barbezier N, Echeverría M, Forner J, Binder S, Marchfelder A. 2009. Arabidopsis encodes four tRNase Z enzymes. Plant Physiology150, 1494–1502.

Cao X W, Liu B, Zhang Y M. 2013. SEA: A software package of segregation analysis of quantitative traits in plants. Journal of Nanjing Agricultural University36, 1–6. (in Chinese)

Chalhoub B, Denoeud F, Liu S Y, Parkin I A P, Tang H B, Wang X Y, Chiquet J, Belcram H, Tong C B, Samans B, Correa M, Silva C D, Just J, Falentin C, Koh C S, Clainche I L, Bernard M, Bento P, Noel B, Labadie K, et al. 2014. Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science345, 950–953.

Fan S H, Zhang L, Tang M, Cai Y, Liu J L, Liu H F, Liu J, Terzaghi W, Wang H Z, Hua W, Zheng M. 2021. CRISPR/Cas9-targeted mutagenesis of the BnaA03.BP gene confers semi-dwarf and compact architecture to rapeseed (Brassica napus L.). Plant Biotechnology Journal19, 2383–2385.

Foisset N, Delourme R, Barret P, Renard M. 1995. Molecular tagging of the dwarf BREIZH (Bzh) gene in Brassica napusTheoretical and Applied Genetics91, 756–761.

Fu L, Yan D, Gao L F, Liu P, Zhao G Y, Jia J Z, Ren Z L. 2022. TaIAA15 genes regulate plant architecture in wheat. Journal of Integrative Agriculture21, 1243–1252.

Fu T D, Zhou Y M. 2013. Progress and future development of hybrid rapeseed in China. Engineering Sciences11, 13–18.

Haïli N, Arnal N, Quadrado M, Amiar S, Tcherkez G, Dahan J, Briozzo P, des Francs-Small C C, Vrielynck N, Mireau H. 2013. The pentatricopeptide repeat MTSF1 protein stabilizes the nad4 mRNA in Arabidopsis mitochondria. Nucleic Acids Research41, 6650–6663.

He Y J, Wu D M, Wei D Y, Fu Y, Cui Y X, Dong H L, Tan C D, Qian W. 2017. GWAS, QTL mapping and gene expression analyses in Brassica napus reveal genetic control of branching morphogenesis. Scientific Reports7, 1–9.

Huang J, Kim C M, Xuan Y H, Liu J, Kim T H, Kim B K, Han C D. 2013. Formin homology 1 (OsFH1) regulates root-hair elongation in rice (Oryza sativa). Planta237, 1227–1239.

Jiang L, Liu X, Xiong G S, Liu H H, Chen F L, Wang L, Meng X B, Liu G F, Yu H, Yuan Y D, Yi W, Zhao L H, Ma H L, He Y Z, Wu Z S, Melcher K, Qian Q, Xu H E, Wang Y H, Li J Y. 2013. DWARF 53 acts as a repressor of strigolactone signalling in rice. Nature504, 401–405.

Kim D, Paggi J M, Park C, Bennett C, Salzberg S L. 2019. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nature Biotechnology37, 907–915.

Koprivova A, des Francs-Small C C, Calder G, Mugford S T, Tanz S, Lee B R, Zechmann B, Small I, Kopriva S. 2010. Identification of a pentatricopeptide repeat protein implicated in splicing of intron 1 of mitochondrial nad7 transcripts. Journal of Biological Chemistry285, 32192–32199.

Korasick D A, Westfall C S, Lee S G, Nanao M H, Dumas R, Hagen G, Guilfoyle T J, Jez J M, Strader L C. 2014. Molecular basis for AUXIN RESPONSE FACTOR protein interaction and the control of auxin response repression. Proceedings of the National Academy of Sciences of the United States of America111, 5427–5432.

Lee K, Han J H, Park Y, des Francs-Small C C, Small I, Kang H. 2017. The mitochondrial pentatricopeptide repeat protein PPR19 is involved in the stabilization of NADH dehydrogenase 1 transcripts and is crucial for mitochondrial function and Arabidopsis thaliana development. New Phytologist215, 202–216.

Lee K, Kang H. 2020. Roles of organellar RNA-binding proteins in plant growth, development, and abiotic stress responses. International Journal of Molecular Sciences21, 4548.

Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics25, 1754–1760.

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R. 2009. The sequence alignment/map format and SAMtools. Bioinformatics25, 2078–2079.

Li H T, Li J J, Song J R, Zhao B, Guo C C, Wang B, Zhang Q H, Wang J, King G J, Liu K D. 2019. An auxin signaling gene BnaA3.IAA7 contributes to improved plant architecture and yield heterosis in rapeseed. New Phytologist222, 837–851.

Li X, Xiang F J, Zhang W, Yan J D, Li X M, Zhong M, Yang P, Chen C Y, Liu X M, Mao D H, Zhao X Y. 2021. Characterization and fine mapping of a new dwarf mutant in Brassica napusBMC Plant Biology21, 117.

Liu C, Wang J L, Huang T D, Wang F, Yuan F, Cheng X M, Zhang Y, Shi S W, Wu J S, Liu K D. 2010. A missense mutation in the VHYNP motif of a DELLA protein causes a semi-dwarf mutant phenotype in Brassica napusTheoretical and Applied Genetics121, 249–258.

Liu S Y, Raman H, Xiang Y, Zhao C J, Huang J Y, Zhang Y Y. 2022. De novo design of future rapeseed crops: challenges and opportunities. The Crop Journal10, 587–596.

Liu Z, Dong F M, Wang X, Wang T, Su R, Hong D F, Yang G S. 2017. A pentatricopeptide repeat protein restores nap cytoplasmic male sterility in Brassica napusJournal of Experimental Botany68, 4115–4123.

Liu Z, Yang Z H, Wang X, Li K, An H, Liu J, Yang G S, Fu T D, Yi B, Hong D F. 2016. A mitochondria-targeted PPR protein restores pol cytoplasmic male sterility by reducing orf224 transcript levels in oilseed rape. Molecular Plant9, 1082–1084.

Love M I, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology15, 550.

Luo X, Ma C Z, Yue Y, Hu K N, Li Y Y, Duan Z Q, Wu M, Tu J X, Shen J X, Yi B, Fu T D. 2015. Unravelling the complex trait of harvest index in rapeseed (Brassica napus L.) with association mapping. BMC Genomics16, 1–10.

Lyu J Y, Guo Y, Du C L, Yu H B, Guo L J, Liu L, Zhao H X, Wang X F, Hu S W. 2022. BnERF114.A1, a rapeseed gene encoding APETALA2/ETHYLENE RESPONSE FACTOR, regulates plant architecture through auxin accumulation in the apex in ArabidopsisInternational Journal of Molecular Sciences23, 2210.

Peng J, Richards D E, Hartley N M, Murphy G P, Devos K M, Flintham J E, Beales J, Fish L J, Worland A J, Pelica F, Sudhakar D, Christou P, Snape J W, Gale M D, Harberd N P. 1999. ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature400, 256–261.

Rausell A, Kanhonou R, Yenush L, Serrano R, Ros R. 2003. The translation initiation factor eIF1A is an important determinant in the tolerance to NaCl stress in yeast and plants. The Plant Journal34, 257–267.

Sasaki A, Ashikari M, Ueguchi-Tanaka M, Itoh H, Nishimura A, Swapan D, Ishiyama K, Saito T, Kobayashi M, Khush G S, Kitano H, Matsuoka M. 2002. A mutant gibberellin-synthesis gene in rice. Nature416, 701–702.

Shen Y S, Yang Y, Xu E S, Ge X H, Xiang Y, Li Z Y. 2018. Novel and major QTL for branch angle detected by using DH population from an exotic introgression in rapeseed (Brassica napus L.). Theoretical and Applied Genetics131, 67–78.

Song J M, Guan Z L, Hu J L, Guo C C, Yang Z Q, Wang S, Liu D X, Wang B, Lu S P, Zhou R, Xie W Z, Cheng Y F, Zhang Y T, Liu K D, Yang Q Y, Chen L L, Guo L. 2020. Eight high-quality genomes reveal pan-genome architecture and ecotype differentiation of Brassica napusNature Plants6, 34–45.

Sriboon S, Li H T, Guo C C, Senkhamwong T, Dai C, Liu K D. 2020. Knock-out of TERMINAL FLOWER 1 genes altered flowering time and plant architecture in Brassica napusBMC Genetics21, 52.

Stevens R, Grelon M, Vezon D, Oh J, Meyer P, Perennes C, Domenichini S, Bergounioux C. 2004. A CDC45 homolog in Arabidopsis is essential for meiosis, as shown by RNA interference-induced gene silencing. The Plant Cell16, 99–113.

Sun F M, Fan G Y, Hu Q, Zhou Y M, Guan M, Tong C B, Li J N, Du D Z, Qi C K, Jiang L C, Liu W Q, Huang A M, Chen W B, Yu J Y, Mei D S, Meng J L, Zeng P, Shi J Q, Liu K D, Wang X, et al. 2017. The high-quality genome of Brassica napus cultivar ‘ZS11’ reveals the introgression history in semi-winter morphotype. The Plant Journal92, 452–468.

Takagi H, Abe A, Yoshida K, Kosugi S, Natsume S, Mitsuoka C, Uemura A, Utsushi H, Tamiru M, Takuno S, Innan H, Cano L M, Kamoun S, Terauchi R. 2013. QTL-seq: Rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. The Plant Journal74, 174–183.

Tanaka N, Uraguchi S, Kajikawa M, Saito A, Ohmori Y, Fujiwara T. 2018. A rice PHD-finger protein OsTITANIA, is a growth regulator that functions through elevating expression of transporter genes for multiple metals. The Plant Journal96, 997–1006.

Wang H, Cheng H T, Wang W X, Liu J, Hao M Y, Mei D S, Zhou R J, Fu L, Hu Q. 2016. Identification of BnaYUCCA6 as a candidate gene for branch angle in Brassica napus by QTL-seq. Scientific Reports6, 1–10.

Wang K, Li M, Hakonarson H. 2010. ANNOVAR: Functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Research38, e164.

Wang X D, Chen L, Wang A N, Wang H, Tian J H, Zhao X P, Chao H B, Zhao Y J, Zhao W G, Xiang J, Gan J P, Li M T. 2016. Quantitative trait loci analysis and genome-wide comparison for silique related traits in Brassica napusBMC Plant Biology16, 71.

Wang X D, Wang H, Long Y, Liu L Z, Zhao Y J, Tian J H, Zhao W G, Li B J, Chen L, Chao H B, Li M T. 2015. Dynamic and comparative QTL analysis for plant height in different developmental stages of Brassica napus L. Theoretical and Applied Genetics128, 1175–1192.

Wang X D, Zheng M, Liu H F, Zhang L, Chen F, Zhang W, Fan S H, Peng M M, Hu M L, Wang H Z, Zhang J F, Hua W. 2020. Fine-mapping and transcriptome analysis of a candidate gene controlling plant height in Brassica napus L. Biotechnology for Biofuels13, 42.

Wang Y H, Li J Y. 2008. Molecular basis of plant architecture. Annual Review of Plant Biology59, 253–279.

Xie C, Mao X Z, Huang J J, Ding Y, Wu J M, Dong S, Kong L, Gao G, Li C Y, Wei L P. 2011. KOBAS 2.0: A web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Research39, W316–W322.

Xie X Z, Wu N H. 2002. Introns in higher plant genes. Chinese Science Bulletin47, 1409–1415.

Yang M, He J B, Wan S B, Li W Y, Chen W J, Wang Y M, Jiang X M, Cheng P F, Chu P, Shen W, Guan R Z. 2021. Fine mapping of the BnaC04.BIL1 gene controlling plant height in Brassica napus L. BMC Plant Biology21, 359.

Ye S H, Yan L, Ma X W, Chen Y P, Wu L M, Ma T T, Zhao L, Yi B, Ma C Z, Tu J X, Shen J X, Fu T D, Wen J. 2022. Combined BSA-Seq based mapping and RNA-Seq profiling reveal candidate genes associated with plant architecture in Brassica napusInternational Journal of Molecular Sciences23, 2472.

Yokoyama Y, Kobayashi S, Kidou S. 2019. PHD type zinc finger protein PFP represses flowering by modulating FLC expression in Arabidopsis thalianaPlant Growth Regulation88, 49–59.

Young M D, Wakefield M J, Smyth G K, Oshlack A. 2010. Gene ontology analysis for RNA-seq: Accounting for selection bias. Genome Biology11, R14.

Zhang B, Zhao N, Liu Y Y, Jia L, Fu Y, He X X, Liu K F, Xu Z J, Bao B L. 2019. Novel molecular markers for high-throughput sex characterization of cynoglossus semilaevis. Aquaculture513, 734331.

Zhao B, Li H T, Li J J, Wang B, Dai C, Wang J, Liu K D. 2017. Brassica napus DS-3, encoding a DELLA protein, negatively regulates stem elongation through gibberellin signaling pathway. Theoretical and Applied Genetics130, 727–741.

Zhao B, Wang B, Li Z H, Guo T, Zhao J W, Guan Z L, Liu K D. 2019. Identification and characterization of a new dwarf locus DS-4 encoding an Aux/IAA7 protein in Brassica napusTheoretical and Applied Genetics132, 1435–1449.

Zheng M, Terzaghi W, Wang H Z, Hua W. 2022. Integrated strategies for increasing rapeseed yield. Trends in Plant Science27, 742–745.

Zheng M, Zhang L, Tang M, Liu J L, Liu H F, Yang H L, Fan S H, Terzaghi W, Wang H Z, Hua W. 2020. Knockout of two BnaMAX1 homologs by CRISPR/Cas9-targeted mutagenesis improves plant architecture and increases yield in rapeseed (Brassica napus L.). Plant Biotechnology Journal18, 644–654.

Zhou J X, Su X M, Zheng S Y, Wu C J, Su Y N, Jiang Z, Li L, Chen S, He X J. 2022. The Arabidopsis NuA4 histone acetyltransferase complex is required for chlorophyll biosynthesis and photosynthesis. Journal of Integrative Plant Biology64, 901–914.

[1] LÜ Jing, Satyabrata NANDA, CHEN Shi-min, MEI Yang, HE Kang, QIU Bao-li, ZHANG You-jun, LI Fei, PAN Hui-peng.

A survey on the off-target effects of insecticidal double-stranded RNA targeting the Hvβ´COPI gene in the crop pest Henosepilachna vigintioctopunctata through RNA-seq [J]. >Journal of Integrative Agriculture, 2022, 21(9): 2665-2674.

[2] ZHOU Cheng-zhe, ZHU Chen, LI Xiao-zhen, CHEN Lan, XIE Si-yi, CHEN Guang-wu, ZHANG Huan, LAI Zhong-xiong, LIN Yu-ling, GUO Yu-qiong. Transcriptome and phytochemical analyses reveal roles of characteristic metabolites in the taste formation of white tea during withering process[J]. >Journal of Integrative Agriculture, 2022, 21(3): 862-877.
[3] CHENG Jin-tao, CHEN Hai-wen, DING Xiao-chen, SHEN Tai, PENG Zhao-wen, KONG Qiu-sheng, HUANG Yuan, BIE Zhi-long. Transcriptome analysis of the influence of CPPU application for fruit setting on melon volatile content[J]. >Journal of Integrative Agriculture, 2021, 20(12): 3199-3208.
[4] Aejaz Ahmad DAR, Susheel SHARMA, Reetika MAHAJAN, Muntazir MUSHTAQ, Ankila SALATHIA, Shahid AHAMAD, Jag Paul SHARMA. Overview of purple blotch disease and understanding its management through chemical, biological and genetic approaches[J]. >Journal of Integrative Agriculture, 2020, 19(12): 3013-3024.
[5] LIU Xuan, LIANG Wei, LI Yu-xing, LI Ming-jun, MA Bai-quan, LIU Chang-hai, MA Feng-wang, LI Cui-ying. Transcriptome analysis reveals the effects of alkali stress on root system architecture and endogenous hormones in apple rootstocks[J]. >Journal of Integrative Agriculture, 2019, 18(10): 2264-2271.
No Suggested Reading articles found!