Abebew D,
Sayedain F S, Bode E, Bode H B. 2022. Uncovering nematicidal natural products
from Xenorhabdus bacteria. Journal of Agricultural and Food Chemistry, 70, 498–506.
Adesanya A
W, Lavine M D, Moural T W, Lavine L C, Fang Z, Walsh D B. 2021. Mechanisms and
management of acaricide resistance for Tetranychus urticae in
agroecosystems. Journal of Pest Science, 94,
639–663.
Barber A,
Campbell C, Crane H, Lilley R, Tregidga E. 2003. Biocontrol of two-spotted
spider mite Tetranychus urticae on dwarf hops by the phytoseiid
mites Phytoseiulus persimilis and Neoseiulus californicus. Biocontrol Science and Technology, 13,
275–284.
Benjamini
Y, Hochberg Y. 1997. Multiple hypotheses testing with weights. Scandinavian Journal of Statistics, 24, 407–418.
Bode E,
Brachmann A O, Kegler C, Simsek R, Dauth C, Zhou Q Q, Kaiser M, Klemmt P, Bode
H B. 2015. Simple “on-demand” production of bioactive natural products. Chembiochem, 16, 1115–1124.
Bode E,
Heinrich A K, Hirschmann M, Abebew D, Shi Y N, Vo T D, Wesche F, Shi Y M, Grün
P, Simonyi S, Keller N, Engel Y, Wenski S, Bennet R, Beyer S, Bischoff I, Buaya
A, Brandt S, Cakmak I, Cimen H, et al. 2019. Promoter activation in
Δhfq mutants as an efficient tool for specialized metabolite production
enabling direct bioactivity testing. Angewandte Chemie International Edition, 58, 18957–18963.
Bode H B.
2009. Entomopathogenic bacteria as a source of secondary metabolites. Current Opinion in Chemical Biology, 13, 224–230.
Bussaman
P, Sa-Uth C, Rattanasena P, Chandrapatya A. 2012. Acaricidal activities of
whole cell suspension, cell-free supernatant, and crude cell extract of Xenorhabdus stokiae against mushroom mite (Luciaphorus sp.). Journal of Zhejiang University Science (B: Biomedicine &
Biotechnology), 13, 261–266.
Bussaman
P, Sermswan R W, Grewal P S. 2006. Toxicity of the entomopathogenic bacteria Photorhabdus and Xenorhabdus to the mushroom mite (Luciaphorus sp.; Acari:
Pygmephoridae). Biocontrol Science and Technology, 16,
245–256.
Cevizci D,
Ulug D, Cimen H, Touray M, Hazir S, Cakmak I. 2020. Mode of entry of secondary
metabolites of the bacteria Xenorhabdus szentirmaii and X. nematophila into Tetranychus urticae, and their toxicity
to the predatory mites Phytoseiulus persimilis and Neoseiulus californicus. Journal of Invertebrate Pathology, 174, 107418.
Dermauw W,
Leeuwen T W, Feyereisen R. 2020. Diversity and evolution of the P450 family in
arthropods. Insect Biochemistry and Molecular Biology, 127, 103490.
Dong Y J,
Li X H, Duan J Q, Qin Y C, Yang X F, Ren J, Li G Y. 2020. Improving the yield
of Xenocoumacin 1 enabled by in situ product removal. ACS Omega, 5,
20391–20398.
Eroglu C,
Cimen H, Ulug D, Karagoz M, Hazir S, Cakmak I. 2019. Acaricidal effect of
cell-free supernatants from Xenorhabdus and Photorhabdus bacteria
against Tetranychus urticae (Acari: Tetranychidae). Journal of Invertebrate Pathology, 160, 61–66.
Fonseca M
M, Pallini A, Marques P H, Lima E, Janssen A. 2020. Compatibility of two
predator species for biological control of the two-spotted spider mite. Experimental and Applied Acarology, 80, 409–422.
Fraulo A
B, Liburd O E. 2007. Biological control of two spotted spider mite, Tetranychus urticae, with predatory mite, Neoseiulus californicus, in
strawberries. Experimental and Applied Acarology, 43,
109–119.
Grbić M,
Van Leeuwen T, Clark R M, Rombauts S, Rouzé P, Grbić V, Osborne E J, Dermauw W,
Ngoc P C T, Ortego F, Hernández-Crespo P, Diaz I, Martinez M, Navajas M, Sucena
É, Magalhães S, Nagy L, Pace R M, Djuranović S, Smagghe G, et al. 2011. The genome of Tetranychus urticae reveals herbivorous pest
adaptations. Nature, 479, 487–492.
Guittard
E, Blais C, Maria A, Parvy J P, Pasricha S, Lumb C, Lafont R, Daborn P J,
Villemant C D. 2011. CYP18A1, a key enzyme of Drosophila steroid hormone
inactivation, is essential for metamorphosis. Developmental Biology, 349, 35–45.
Gulsen S
H, Tileklioglu E, Bode E, Cimen H, Ertabaklar H, Ulug D, Ertug S, Wenski S L,
Touray M, Hazir C, Bilecenoglu D K, Yildiz I, Bode H B, Hazir S. 2022.
Antiprotozoal activity of different Xenorhabdus and Photorhabdus bacterial secondary metabolites and identification of bioactive compounds using
the easyPACId approach. Scientific Reports, 12, 10779.
Huang W R,
Yang X F, Yang H W, Liu Z, Yuan J J. 2006. Identification and activity of
antibacterial substance from Xenorhabdus nematophila var. pekingensis. Natural Product Research and Development, 18,
25–28. (in Chinese)
Huang W R,
Zhu C X, Yang X F, Yang H W. 2005. Isolation and structural identification of
main component CB6–1 produced by Xenorhabdus nematophilus var. pekingensis. Chinese Journal of Antibiotics, 30, 513–515.
(in Chinese)
Iga M,
Kataoka H. 2012. Recent studies on insect hormone metabolic pathways mediated
by cytochrome P450 enzymes. Biological and Pharmaceutical Bulletin, 35, 838–843.
Incedayi
G, Cimen H, Ulug D, Touray M, Bode E, Bode H B, Yaylagul E O, Hazir S, Cakmak
I. 2021. Relative potency of a novel acaricidal compound from Xenorhabdus,
a bacterial genus mutualistically associated with entomopathogenic nematodes. Scientific Reports, 11, 2045–2322.
Kim D,
Langmead B, Salzberg S. 2015. HISAT: A fast spliced aligner with low memory
requirements. Nature Methods, 12, 357–360.
Kurlovs A
H, De Beer B, Ji M, Vandenhole M, Meyer T D, Feyereisen R, Clark R M, Leeuwen T
V. 2022. Trans-driven variation in expression is common among detoxification
genes in the extreme generalist herbivore Tetranychus urticae. PLoS
Genetics, 18, e1010333.
Van
Leeuwen T, Dermauw W. 2016. The molecular evolution of xenobiotic metabolism
and resistance in chelicerate mites. Annual Review of Entomology, 61, 475–498.
Van
Leeuwen T, Pottelberge S V, Nauen R, Tirry L. 2010. Organophosphate
insecticides and acaricides antagonise bifenazate toxicity through esterase
inhibition in Tetranychus urticae. Pest Management Science, 63, 1172–1177.
Liu N, Li
M, Gong Y H, Liu F, Li T. 2015. Cytochrome P450s - Their expression,
regulation, and role in insecticide resistance. Pesticide Biochemistry and Physiology, 120, 77–81.
Love M I,
Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for
RNA-seq data with DESeq2. Genome Biology, 15, 550.
Masui S,
Katayama H, Tsuchiya M. 2018. Occurrence of Panonychus citri (Acari: Tetranychidae) and natural enemies in citrus fields under conventional
pesticide application in Shizuoka Prefecture. Japanese Journal of Applied Entomology and Zoology, 62, 47–53.
(in Japanese)
Migeon A,
Nouguier E, Dorkeld F. 2010. Spider Mites Web: A comprehensive database for the
Tetranychidae. In: Trends in Acarology. Springer, Berlin.
pp. 557–560.
Namsena P,
Bussaman P, Rattanasena P. 2016. Bioformulation of Xenorhabdus stockiae PB09 for controlling mushroom mite, Luciaphorus perniciosus rack. Bioresources and Bioprocessing, 3, 1–7.
Nermut J,
Zemek R, Mráček Z, Palevsky E, Půža V. 2019. Entomopathogenic nematodes as
natural enemies for control of Rhizoglyphus robini (Acari:
Acaridae)? Biological Control, 128, 102–110.
Ozkan H D,
Cimen H, Ulug D, Wenski S, Ozer S Y, Telli M, Aydin N, Bode H B, Hazir S. 2019.
Nematode-associated bacteria: Production of antimicrobial agent as a
presumptive nominee for curing endodontic infections caused by Enterococcus faecalis. Frontiers in Microbiology, 10,
2672.
Pertea M,
Pertea G M, Antonescu C M, Chang T C, Mendell J T, Salzberg S L. 2015.
StringTie enables improved reconstruction of a transcriptome from RNA-seq
reads. Nature Biotechnology, 33, 290–295.
R Core
Team. 2022. R: A language and environment for statistical computing. R
Foundation for Statistical Computing, Vienna, Austria.
Reimer D,
Luxenburger E, Brachmann A O, Bode H B. 2009. A new type of pyrrolidine
biosynthesis is involved in the late steps of xenocoumacin production in Xenorhabdus nematophila. Chembiochem, 10, 1997–2001.
Reimer D,
Pos K M, Thines M, Grün P, Bode H B. 2011. A natural prodrug activation
mechanism in nonribosomal peptide synthesis. Nature Chemical Biology, 7,
888–890.
Rewitz K
F, Rybczynski R, Warren J T, Gilbert L I. 2006. The halloween genes code for
cytochrome p450 enzymes mediating synthesis of the insect moulting hormone. Biochemical Society Transactions, 34, 1256–1260.
Rott A S,
Ponsonby D J. 2000. The effects of temperature, relative humidity and host
plant on the behaviour of Stethorus punctillum as a predator of
the two-spotted spider mite, Tetranychus urticae. BioControl, 45, 155–164.
Silva D E,
do Nascimento J M, da Silva R T L, Juchem C F, Ruffatto K, da Silva G L, Johann
L, Corrêa L L C, Ferla N J. 2019. Impact of vineyard agrochemicals against Panonychus ulmi (Acari: Tetranychidae) and its natural enemy, Neoseiulus californicus (Acari: Phytoseiidae) in Brazil. Crop Protection, 123,
5–11.
Song Z W,
Nguyen D T, Li D S, Clercq P D. 2019. Continuous rearing of the predatory mite Neoseiulus californicus on an artificial diet. BioControl, 64,
125–137.
Tobias N
J, Heinrich A K, Eresmann H, Wright P R, Neubacher N, Backofen R, Bode H B.
2017. Photorhabdus-nematode symbiosis is dependent on hfq-mediated
regulation of secondary metabolites. Environmental Microbiology, 19,
119–129.
Tobias N
J, Shi Y M, Bode H B. 2018. Refining the natural product repertoire in
entomopathogenic bacteria. Trends in Microbiology, 26,
833–840.
Urbaneja
A, Pascual-Ruiz S, Pina T, Abad-Moyano R, Vanaclocha P, Montón H, Dembilio O,
Castañera P, Jacas J A. 2008. Efficacy of five selected acaricides against Tetranychus urticae (Acari: Tetranychidae) and their side effects on relevant
natural enemies occurring in citrus orchards. Pest Management Science, 64, 834–842.
Wang R L,
Jiang C X, Liu L, Shen Z H, Yang J T, Wang Y L, Hu J Y, Wang M T, Hu J Y, Lu X L,
Li Q. 2021. Prediction of the potential distribution of the predatory mite Neoseiulus californicus McGregor in China using MaxEnt. Global Ecology and Conservation, 29, e01733.
Wang Z,
Cang T, Wu S. 2018. Screening for suitable chemical acaricides against
two-spotted spider mites, Tetranychus urticae, on greenhouse
strawberries in China. Ecotoxicology and Environmental Safety, 163, 63–68.
Wu L X, Li
L B, Xu Y J, Li Q, Liu F, Zhao H X. 2023. Identification and characterization
of CYP307A1 as a molecular target for controlling the small hive beetle, Aethina tumida. Pest Management Science, 79, 37–44.
Xu D D,
Zhang Y, Zhang Y J, Wu Q J, Guo Z J, Xie W, Zhou X M, Wang S L. 2020. Transcriptome
profiling and functional analysis suggest that the constitutive overexpression
of four cytochrome P450s confers resistance to abamectin in Tetranychus urticae from China. Pest Management Science, 77, 1204–1213.
Xu X N,
Wang B M, Wang E D, Zhang Z Q. 2013. Comments on the identity of Neoseiulus californicus sense lato (Acari: Phytoseiidae) with a redescription of
this species from southern China. Systematic and Applied Acarology, 18, 329–344.
Yan J Y,
Zhang B, Li G T, Xu X N. 2021. Bacterial communities in predatory mites are
associated with species and diet types. BioControl, 66, 803–811.
Yang X F,
Qiu D W, Yang H W, Liu, Z, Zeng H M, Yuan J J. 2011. Antifungal activity of
xenocoumacin 1 from Xenorhabdus nematophilus var. pekingensis against Phytophthora infestans. World Journal of Microbiology and Biotechnology, 27, 523–528.
Yang Z M,
Yu N, Wang S J, Korai S K, Liu Z W. 2021. Characterization of ecdysteroid
biosynthesis in the pond wolf spider, Pardosa pseudoannulata. Insect Molecular Biology, 30, 71–80.
Zhang S J,
Liu Q, Han Y F, Han J H, Yan Z Q, Wang Y H, Zhang X. 2019. Nematophin, an
antimicrobial dipeptide compound from Xenorhabdus nematophila YL001 as a potent biopesticide for Rhizoctonia solani control. Frontiers in Microbiology, 10, 1765.
Zheng Y,
Clercq P D, Song Z W, Li D S, Zhang B X. 2016. Functional response of two Neoseiulus species preying on Tetranychus urticae Koch. Systematic and Applied Acarology, 22, 1059–1068.
Zhou T T,
Yan X F, Qiu D W, Zeng H M. 2017. Inhibitory effects of xenocoumacin 1 on the
different stages of Phytophthora capsica and its control effect
on Phytophthora blight of pepper. BioControl, 62, 151–160.
|