Please wait a minute...
Journal of Integrative Agriculture  2023, Vol. 22 Issue (12): 3744-3754    DOI: 10.1016/j.jia.2023.02.019
Animal Science · Veterinary Medicine Advanced Online Publication | Current Issue | Archive | Adv Search |
Transcriptome-based analysis of key genes and pathways affecting the linoleic acid content in chickens
ZHAO Wen-juan1, 2, YUAN Xiao-ya2, XIANG Hai1, MA Zheng1, CUI Huan-xian2, LI Hua1#, ZHAO Gui-ping1, 2#

1 Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Foshan University, Foshan 528000, P.R.China

2 Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R.China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

亚油酸是一种必需的多不饱和脂肪酸,不能由人类或动物自身合成,只能从外部获得。亚油酸的含量对肉的质量和风味有影响,并间接影响消费者的偏好。然而,影响亚油酸在生物体内沉积的分子机制并不清楚。因为对于亚油酸沉积的分子机制尚不明晰,为了研究影响亚油酸含量的主要效应基因,本研究旨在通过转录组测序(RNA-Seq)和加权基因共表达网络分析(WGCNA)来筛选慢型型黄羽鸡的关键基因。我们为了筛选与慢型黄羽肉鸡中亚油酸含量相关的候选基因,126天上市日龄时宰杀了399只天农麻鸡,测量了胸肌中的脂肪酸含量,并收集胸肌组织进行转录组测序。通过将转录组测序结果与WGCNA的表型相结合,来筛选候选基因。并对在相关度最高的模块中显著相关的基因进行了KEGG富集分析。在对399个胸肌组织进行基于RNA-Seq的质量控制后,共获得13,310个基因。使用这些基因进行了WGCNA,共得到26个模块,其中8个与亚油酸含量高度相关的模块。根据|GS|>0.2和|MM|>0.8的标准进行筛选,得到四个关键基因,即MDH2ATP5BRPL7APDGFRA。KEGG富集后结果显示,目标模块内的基因主要富集在代谢途径中。本研究通过大样本量的转录组分析,发现代谢途径在天农麻鸡亚油酸含量的调控中起着重要作用,并筛选出MDH2ATP5BRPL7APDGFRA作为影响亚油酸含量的重要候选基因。本研究结果为选择分子标记和全面了解影响肌肉中亚油酸含量的分子机制提供了理论依据,为慢速型黄羽肉鸡的育种提供了重要参考。



Abstract  

Linoleic acid is an essential polyunsaturated fatty acid that cannot be synthesized by humans or animals themselves and can only be obtained externally.  The amount of linoleic acid present has an impact on the quality and flavour of meat and indirectly affects consumer preference.  However, the molecular mechanisms influencing the deposition of linoleic acid in organisms are not clear.  As the molecular mechanisms of linoleic acid deposition are not well understood, to investigate the main effector genes affecting the linoleic acid content, this study aimed to screen for hub genes in slow-type yellow-feathered chickens by transcriptome sequencing (RNA-Seq) and weighted gene coexpression network analysis (WGCNA).  We screened for candidate genes associated with the linoleic acid content in slow-type yellow-feathered broilers.  A total of 399 Tiannong partridge chickens were slaughtered at 126 days of age, fatty acid levels were measured in pectoral muscle, and pectoral muscle tissue was collected for transcriptome sequencing.  Transcriptome sequencing results were combined with phenotypes for WGCNA to screen for candidate genes.  KEGG enrichment analysis was also performed on the genes that were significantly enriched in the modules with the highest correlation.  A total of 13 310 genes were identified after quality control of transcriptomic data from 399 pectoral muscle tissues.  WGCNA was performed, and a total of 26 modules were obtained, eight of which were highly correlated with the linoleic acid content.  Four key genes, namely, MDH2, ATP5B, RPL7A and PDGFRA, were screened according to the criteria |GS|>0.2 and |MM|>0.8.  The functional enrichment results showed that the genes within the target modules were mainly enriched in metabolic pathways.  In this study, a large-sample-size transcriptome analysis revealed that metabolic pathways play an important role in the regulation of the linoleic acid content in Tiannong partridge chickens, and MDH2, ATP5B, RPL7A and PDGFRA were screened as important candidate genes affecting the linoleic acid content.  The results of this study provide a theoretical basis for selecting molecular markers and comprehensively understanding the molecular mechanism affecting the linoleic acid content in muscle, providing an important reference for the breeding of slow-type yellow-feathered broiler chickens.

Keywords:  chicken        linoleic acid        transcriptome sequencing        weighted gene coexpression network analysis (WGCNA)        metabolic pathways  
Received: 27 September 2022   Accepted: 29 December 2022
Fund: This study was supported by the China Agriculture Research System of MOF and MARA (CARS-41), the Key-Area Research and Development Program of Guangdong Province, China (2020B020222002), the Foshan University High-level Talent Program, China (CGZ07243), the Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, China (2019B030301010), the Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, China (2019KSYS011), and the Foshan Institute of Science and Technology Postgraduate Free Exploration Fund, China (2021ZYTS36).
About author:  ZHAO Wen-juan, E-mail: zhaowj0508@163.com; #Correspondence ZHAO Gui-ping, E-mail: zhaoguiping@caas.cn; LI Hua, E-mail: okhuali@aliyun.com

Cite this article: 

ZHAO Wen-juan, YUAN Xiao-ya, XIANG Hai, MA Zheng, CUI Huan-xian, LI Hua, ZHAO Gui-ping. 2023. Transcriptome-based analysis of key genes and pathways affecting the linoleic acid content in chickens. Journal of Integrative Agriculture, 22(12): 3744-3754.

Alagawany M, Elnesr S S, Farag M R, Abd El-Hack M E, Khafaga A F, Taha A E, Tiwari R, Yatoo M I, Bhatt P, Khurana S K, Dhama K. 2019. Omega-3 and omega-6 fatty acids in poultry nutrition: Effect on production performance and health. Animals (Basel), 9, doi: 10.3390/ani9080573.

Bennett M J, Sheng F, Saada A. 2020. Chapter 4-Biochemical assays of TCA cycle and β-oxidation metabolites. Methods in Cell Biology155, 83–120.

Calder P C. 2015. Functional roles of fatty acids and their effects on human health. Journal of Parenteral and Enteral Nutrition39, 18–39.

Cartoni M A, Mattioli S, Twining C, Dal Bosco A, Donoghue A M, Arsi K, Angelucci E, Chiattelli D, Castellini C. 2022. Poultry meat and eggs as an alternative source of n-3 long-chain polyunsaturated fatty acids for human nutrition. Nutrients14, doi: 10.3390/nu14091969.

Chiu H H, Kuo C H. 2020. Gas chromatography-mass spectrometry-based analytical strategies for fatty acid analysis in biological samples. Journal of Food and Drug Analysis28, 60–73.

Choque B, Catheline D, Rioux V, Legrand P. 2014. Linoleic acid: Between doubts and certainties. Biochimie96, 14–21.

Fan W, Liu W, Liu H, Meng Q, Xu Y, Guo Y, Wang B, Zhou Z, Hou S. 2020. Dynamic accumulation of fatty acids in duck (Anas platyrhynchos) breast muscle and its correlations with gene expression. BMC Genomics21, doi: 10.1186/s12864-020-6482-7.

Fernández-Ramos D, Lopitz-Otsoa F, Delacruz-Villar L, Bilbao J, Pagano M, Mosca L, Bizkarguenaga M, Serrano-Macia M, Azkargorta M, Iruarrizaga-Lejarreta M, Sot J, Tsvirkun D, van Liempd S M, Goni F M, Alonso C, Martínez-Chantar M L, Elortza F, Hayardeny L, Lu S C, Mato J M. 2020. Arachidyl amido cholanoic acid improves liver glucose and lipid homeostasis in nonalcoholic steatohepatitis via AMPK and mTOR regulation. World Journal of Gastroenterology26, 5101–5117.

Funakoshi S, Fernandes I, Mastikhina O, Wilkinson D, Tran T, Dhahri W, Mazine A, Yang D, Burnett B, Lee J, Protze S, Bader G D, Nunes S S, Laflamme M, Keller G. 2021. Generation of mature compact ventricular cardiomyocytes from human pluripotent stem cells. Nature Communications12, doi: 10.1038/s41467-021-23329-z.

Gu J, Liang Q, Liu C, Li S. 2020. Genomic analyses reveal adaptation to hot arid and harsh environments in native chickens of China. Front Genet11, doi: 10.3389/fgene.2020.582355.

Guo X, Jiang X F, Chen K Y, Liang Q J, Zhang S X, Zheng J, Ma X M, Jiang H M, Wu H, Tong Q. 2022. The role of palmitoleic acid in regulating hepatic gluconeogenesis through SIRT3 in obese mice. Nutrients14, doi: 10.3390/nu14071482.

Guonan L. 2006. Status of breed selection and breeding of Qingyuan hemp chicken and the development trend of industrialization. China Poultry21, 38–39. (in Chinese)

Hamilton J S, Klett E L. 2021. Linoleic acid and the regulation of glucose homeostasis: A review of the evidence. Prostaglandins Leukot Essent Fatty Acids175, doi: 10.1016/j.plefa.2021.102366.

Innesa J K, Calder P C. 2018. Omega-6 fatty acids and inflammation. Prostaglandins Leukot Essent Fatty Acids132, 41–48.

Ji F, Sadreyev R I. 2018. RNA-seq: Basic bioinformatics analysis. Current Protocols in Molecular Biology124, doi: 10.1002/cpmb.68.

Jin Y, Cui H, Yuan X, Liu L, Liu X, Wang Y, Ding J, Xiang H, Zhang X, Liu J, Li H, Zhao G, Wen J. 2021. Identification of the main aroma compounds in Chinese local chicken high-quality meat. Food Chemistry359, doi: 10.1016/j.foodchem.2021.129930.

Kang H, Zhao D, Xiang H, Li J, Zhao G, Li H. 2021. Large-scale transcriptome sequencing in broiler chickens to identify candidate genes for breast muscle weight and intramuscular fat content. Genetics Selection Evolution53, doi: 10.1186/s12711-021-00656-9.

Kang J X, Leaf A. 1994. Effects of long-chain polyunsaturated fatty acids on the contraction of neonatal rat cardiac myocytes. Proceedings of the National Academy of Sciences of the United States of America91, 9886–9890.

Kitamura K, Erlangga J S, Tsukamoto S, Sakamoto Y, Mabashi-Asazuma H, Iida K. 2020. Daidzein promotes the expression of oxidative phosphorylation- and fatty acid oxidation-related genes via an estrogen-related receptor alpha pathway to decrease lipid accumulation in muscle cells. Journal of Nutritional Biochemistry77, 10.1016/j.jnutbio.2019.108315.

Langfelder PHorvath S. 2008. WGCNA: An R package for weighted correlation network analysis. BMC Bioinformatics9, doi: 10.1186/1471-2105-9-559.

Lázaro I, Cofán M, Amor A J, Ortega E, Freitas-Simoes T M, Llull L, Amaro S, Mestres G, Yugueros X, Harris W S, Riambau V, Sala-Vila A. 2021. Linoleic acid status in cell membranes inversely relates to the prevalence of symptomatic carotid artery disease. Stroke52, 703–706.

Letko Khait N, Malkah N, Kaneti G, Fried L, Cohen Anavy N, Bronshtein T, Machluf M. 2019. Radiolabeling of cell membrane-based nano-vesicles with (14)C-linoleic acid for robust and sensitive quantification of their biodistribution. Journal of Controlled Release293, 215–223.

Li B, Dewey C N. 2011. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics12, doi: 10.1186/1471-2105-12-323.

Liu R, Chen L, Wang Z, Zheng X, Hou Z, Zhao D, Long J, Liu J. 2021. Omega-3 polyunsaturated fatty acids prevent obesity by improving tricarboxylic acid cycle homeostasis. Journal of Nutritional Biochemistry88, doi: 10.1016/j.jnutbio.2020.108503.

Liu X J, Wang Y L, Liu L, Liu L, Zhao G P, Wen J, Jia Y X, Cui H X. 2022. Regulation of linoleic acid and volatile organic compound contents in meat of chickens possibly by PLCD1. Journal of Integrative Agriculture22, 222–234.

Lopaschuk G D, Ussher J R, Folmes C D, Jaswal J S, Stanley W C. 2010. Myocardial fatty acid metabolism in health and disease. Physiological Reviews90, 207–258.

Malila Y, Sanpinit P, Thongda W, Jandamook A, Srimarut Y, Phasuk Y, Kunhareang S. 2022. Influences of thermal stress during three weeks before market age on histology and expression of genes associated with adipose infiltration and inflammation in commercial broilers, native chickens, and crossbreeds. Frontiers in Physiology13, doi: 10.3389/fphys.2022.858735.

Martin S A, Brash A R, Murphy R C. 2016. The discovery and early structural studies of arachidonic acid. Journal of Lipid Research57, 1126–1132.

Ni Q, Gasperi F, Aprea E, Betta E, Bergamaschi M, Tagliapietra F, Schiavon S, Bittante G. 2020. The volatile organic compound profile of ripened cheese is influenced by crude protein shortage and conjugated linoleic acid supplementation in the cow’s diet. Journal of Dairy Science103, 1377–1390.

Schettini G P, Peripolli E, Alexandre P A, Dos Santos W B, Pereira A S C, de Albuquerque L G, Baldi F, Curi R A. 2022. Transcriptome profile reveals genetic and metabolic mechanisms related to essential fatty acid content of intramuscular longissimus thoracis in nellore cattle. Metabolites12, doi: 10.3390/metabo12050471.

Sergiel J P, Chardigny J M, Sébédio J L, Berdeaux O, Juaneda P, Loreau O, Pasquis B, Noel J P. 2001. Beta-oxidation of conjugated linoleic acid isomers and linoleic acid in rats. Lipids36, 1327–1329.

Shi S, Duan G, Li D, Wu J, Liu X, Hong B, Yi M, Zhang Z. 2018. Two-dimensional analysis provides molecular insight into flower scent of Lilium ‘Siberia’. Scientific Reports8, doi: 10.1038/s41598-018-23588-9.

Sun D, Zhu X, Qiao S, Fan S, Li D. 2004. Effects of conjugated linoleic acid levels and feeding intervals on performance, carcass traits and fatty acid composition of finishing barrows. Archives of Animal Nutrition58, 277–286.

Vogel L, Gnott M, Kröger-Koch C, Görs S, Weitzel J M, Kanitz E, Hoeflich A, Tuchscherer A, Tröscher A, Gross J J, Bruckmaier R M, Starke A, Bachmann L, Hammon H M. 2021. Glucose metabolism and the somatotropic axis in dairy cows after abomasal infusion of essential fatty acids together with conjugated linoleic acid during late gestation and early lactation. Journal of Dairy Science104, 3646–3664.

Wan B, LaNoue K F, Cheung J Y, Scaduto Jr R C. 1989. Regulation of citric acid cycle by calcium. The Journal of Biological Chemistry264, 13430–13439.

Wang G S, Jin L, Li Y, Tang Q Z, Hu S L, Xu H Y, Gill C A, Li M Z, Wang J W. 2019. Transcriptomic analysis between normal and high-intake feeding geese provides insight into adipose deposition and susceptibility to fatty liver in migratory birds. BMC Genomics20, doi: 10.1186/s12864-019-5765-3.

Wang S H, Wang W W, Zhang H J, Wang J, Chen Y, Wu S G, Qi G H. 2019. Conjugated linoleic acid regulates lipid metabolism through the expression of selected hepatic genes in laying hens. Poultry Science98, 4632–4639.

Wang T X, Yao W L, Li J, He Q Y, Shao Y F, Huang F R. 2018. Acetyl-CoA from inflammation-induced fatty acids oxidation promotes hepatic malate-aspartate shuttle activity and glycolysis. American Journal of Physiology-Endocrinology and Metabolism315, E496–E510.

Whelan J, Fritsche K. 2013. Linoleic acid. Advances in Nutrition4, 311–312.

Wood J D, Enser M, Fisher A V, Nute G R, Sheard P R, Richardson R I, Hughes S I, Whittington F M. 2008. Fat deposition, fatty acid composition and meat quality: A review. Meat Science78, 343–358.

Xi B, Luo J, Gao Y Q, Yang X L, Guo T F, Li W H, Du T Q. 2021. Transcriptome-metabolome analysis of fatty acid of Bamei pork and Gansu Black pork in China. Bioprocess and Biosystems Engineering44, 995–1002.

Xu Z, You W, Chen W, Zhou Y, Nong Q, Valencak T G, Wang Y, Shan T. 2021. Single-cell RNA sequencing and lipidomics reveal cell and lipid dynamics of fat infiltration in skeletal muscle. Journal of Cachexia Sarcopenia Muscle12, 109–129.

Yuan X, Cui H, Jin Y, Zhao W, Liu X, Wang Y, Ding J, Liu L, Wen J, Zhao G. 2022. Fatty acid metabolism-related genes are associated with flavor-presenting aldehydes in Chinese local chicken. Frontiers in Genetics13, doi: 10.3389/fgene.2022.902180.

Zappaterra M, Gioiosa S, Chillemi G, Zambonelli P, Davoli R. 2021. Dissecting the gene expression networks associated with variations in the major components of the fatty acid semimembranosus muscle profile in large white heavy pigs. Animals11, doi: 10.3390/ani11030628.

Zaunschirm M, Pignitter M, Kopic A, Keßler C, Hochkogler C, Kretschy N, Somoza M M, Somoza V. 2019. Exposure of human gastric cells to oxidized lipids stimulates pathways of amino acid biosynthesis on a genomic and metabolomic level. Molecules24, doi: 10.3390/molecules24224111.

Zhai C Y, Suman S P, Li S T, Nair M N, Beach C M, Edenburn B M, Boler D D, Dilger A C, Felix T L. 2022. Ractopamine-induced remodeling in the mitochondrial proteome of postmortem longissimus lumborum muscle from feedlot steers. Livestock Science260, doi: 10.1016/j.livsci.2022.104923.

Zhou S L, Li M Z, Li Q H, Guan J Q, Li X W. 2012. Differential expression analysis of porcine MDH1, MDH2 and ME1 genes in adipose tissues. Genetics and Molecular Research11, 1254–1259.

Zhu Y L, Zeng Q J, Li F, Fang H S, Zhou Z M, Jiang T, Yin C, Wei Q, Wang Y J, Ruan J M, Huang J Z. 2021. Dysregulated H3K27 acetylation is implicated in fatty liver hemorrhagic syndrome in chickens. Frontiers in Genetics11, doi: 10.3389/fgene.2020.574167.

[1] Lei Shi, Yanyan Sun, Yunlei Li, Hao Bai, Jingwei Yuan, Hui Ma, Yuanmei Wang, Panlin Wang, Aixin Ni, Linlin Jiang, Pingzhuang Ge, Shixiong Bian, Yunhe Zong, Jinmeng Zhao, Adamu M. Isa, Hailai H. Tesfay, Jilan Chen. Asymmetric expression of CA2 and CA13 linked to calcification in the bilateral mandibular condyles cause crossed beaks in chickens[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2379-2390.
[2] SUN Yu-hang, ZHAI Gui-ying, PANG Yong-jia, LI Rui, LI Yu-mao, CAO Zhi-ping, WANG Ning, LI Hui, WANG Yu-xiang. PPAR gamma2: The main isoform of PPARγ that positively regulates the expression of the chicken Plin1 gene[J]. >Journal of Integrative Agriculture, 2022, 21(8): 2357-2371.
No Suggested Reading articles found!