Please wait a minute...
Journal of Integrative Agriculture  2021, Vol. 20 Issue (12): 3199-3208    DOI: 10.1016/S2095-3119(21)63639-0
Horticulture Advanced Online Publication | Current Issue | Archive | Adv Search |
Transcriptome analysis of the influence of CPPU application for fruit setting on melon volatile content
CHENG Jin-tao, CHEN Hai-wen, DING Xiao-chen, SHEN Tai, PENG Zhao-wen, KONG Qiu-sheng, HUANG Yuan, BIE Zhi-long
College of Horticulture and Forestry, Huazhong Agricultural University/Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan 430070, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

在果实生产过程中,植物生长调节剂CPPU的使用,往往引起果实香味变淡。本研究采用气相色谱-质谱连用分析仪和转录组测序来分析CPPU处理和授粉处理的甜瓜果实,以期探明CPPU影响甜瓜果实香味物质积累的原因。结果表明CPPU处理的甜瓜果实中,两个重要的酯类物质,乙酸苯甲酯和乙酸苯乙酯的含量显著低于蜜蜂授粉果实中的含量。转录组测序结果表明蜜蜂授粉和CPPU处理果实中的差异表达基因主要集中在苯丙氨酸代谢途径中。这些基因在CPPU处理果实中的表达量显著低于蜜蜂授粉果实。进一步分析发现CPPU处理的果实中苯丙氨酸的含量显著高于授粉果实中的含量。综合结果表明,CPPU可以干扰甜瓜果实中苯丙氨酸的代谢,进而影响芳香酯类物质的合成。




Abstract  
In fruit production, the application of the plant growth regulator 1-(2-chloro-4-pyridyl)-3-phenylurea (CPPU) dulls the fruit aroma.  Gas chromatography–mass spectrometry and transcriptome analyses were performed on CPPU-treated and pollinated fruits to determine how CPPU affects the production of aroma in melon fruit.  The results showed that the contents of two important esters (benzyl acetate and phenethyl acetate) in the CPPU-treated fruits were significantly lower than those in the pollinated fruits.  Transcriptome sequencing data revealed that most differentially expressed genes were involved in “phenylalanine metabolism” pathway, and their expression was significantly decreased in the CPPU-treated fruits.  Further analysis showed that the phenylalanine content in the CPPU-treated fruits was significantly higher than that in the pollinated fruits.  In summary, CPPU application interferes with phenylalanine metabolism in melon fruits and affects the production of aromatic esters. 
 
Keywords:  aroma        volatiles        melon        CPPU        fruit set        transcriptome analysis        gas chromatography–mass spectrometry  
Received: 18 May 2020   Accepted:
Fund: This work was supported by the China Agriculture Research System of MOF and MARA (CARS-25), the Special Fund for Agro-scientific Research in the Public Interest, China (201203080), the Fundamental Research Funds for the Central Universities, China (2662018PY039) and the Hubei Provincial Natural Science Foundation of China (2019CFA017). 
Corresponding Authors:  Correspondence BIE Zhi-long, Tel: +86-27-87286908, Fax: +86-27-87282010, E-mail: biezl@mail.hzau.edu.cn   
About author:  CHENG Jin-tao, E-mail: chengjintao@mail.hzau.edu.cn;

Cite this article: 

CHENG Jin-tao, CHEN Hai-wen, DING Xiao-chen, SHEN Tai, PENG Zhao-wen, KONG Qiu-sheng, HUANG Yuan, BIE Zhi-long. 2021. Transcriptome analysis of the influence of CPPU application for fruit setting on melon volatile content. Journal of Integrative Agriculture, 20(12): 3199-3208.

Ainalidou A, Karamanoli K, Menkissoglu-Spiroudi U, Diamantidis G, Matsi T. 2015. CPPU treatment and pollination: Their combined effect on kiwifruit growth and quality. Scientia Horticulturae, 193, 147–154.
Amaro A L, Beaulieu J C, Grimm C C, Stein R E, Almeida D P F. 2012. Effect of oxygen on aroma volatiles and quality of fresh-cut cantaloupe and honeydew melons. Food Chemistry, 130, 49–57.
Aubert C, Bourger N. 2004. Investigation of volatiles in charentais cantaloupe melons (Cucumis melo var. cantalupensis). Characterization of aroma constituents in some cultivars. Journal of Agricultural and Food Chemistry, 52, 4522–4528.
Beaulieu J C, Grimm C C. 2001. Identification of volatile compounds in cantaloupe at various developmental stages using solid phase microextraction. Journal of Agricultural and Food Chemistry, 49, 1345–1352.
Buttery R G, Seifert R M, Ling L C, Soderstrom E L, Ogawa J M, Turnbaugh J G. 1982. Additional aroma components of honeydew melon. Journal of Agricultural and Food Chemistry, 30, 1208–1211.
Chaparro-Torres L A, Bueso M C, Fernández-Trujillo J P. 2016. Aroma volatiles obtained at harvest by HS-SPME/GC-MS and INDEX/MS-E-nose fingerprint discriminate climacteric behaviour in melon fruit. Journal of the Science of Food and Agriculture, 96, 2352–2365.
Chen L, Chen Q, Zhang Z, Wan X. 2009. A novel colorimetric determination of free amino acids content in tea infusions with 2,4-dinitrofluorobenzene. Journal of Food Composition and Analysis, 22, 137–141.
Chen J, Lü J, He Z, Zhang F, Zhang S, Zhang H. 2020. Investigations into the production of volatile compounds in Korla fragrant pears (Pyrus sinkiangensis Yu). Food Chemistry, 302, 125337.
Dudareva N, Klempien A, Muhlemann J K, Kaplan I. 2013. Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytologist, 198, 16–32.
Esteras C, Rambla J L, Sánchez G, López-Gresa M P, González-Mas M C, Fernández-Trujillo J P, Bellés J M, Granell A, Picó M B. 2018. Fruit flesh volatile and carotenoid profile analysis within the Cucumis melo L. species reveals unexploited variability for future genetic breeding. Journal of the Science of Food and Agriculture, 98, 3915–3925.
Gao W, Wu K, Chen L, Fan H, Zhao Z, Gao B, Wang H, Wei D. 2016. A novel esterase from a marine mud metagenomic library for biocatalytic synthesis of short-chain flavor esters. Microbial Cell Factories, 15, 41.
Garcia-Mas J, Benjak A, Sanseverino W, Bourgeois M, Mir G, Gonzalez V M, Henaff E, Camara F, Cozzuto L, Lowy E, Alioto T, Capella-Gutierrez S, Blanca J, Canizares J, Ziarsolo P, Gonzalez-Ibeas D, Rodriguez-Moreno L, Droege M, Du L, Alvarez-Tejado M, et al. 2012. The genome of melon (Cucumis melo L.). Proceedings of the National Academy of Sciences of the United States of America, 109, 11872–11877.
Gonda I, Bar E, Portnoy V, Lev S, Burger J, Schaffer A A, Tadmor Y, Gepstein S, Giovannoni J J, Katzir N, Lewinsohn E. 2010. Branched-chain and aromatic amino acid catabolism into aroma volatiles in Cucumis melo L. fruit. Journal of Experimental Botany, 61, 1111–1123.
Gonda I, Davidovich-Rikanati R, Bar E, Lev S, Jhirad P, Meshulam Y, Wissotsky G, Portnoy V, Burger J, Schaffer A A, Tadmor Y, Giovannoni J J, Fei Z, Fait A, Katzir N, Lewinsohn E. 2018. Differential metabolism of L–phenylalanine in the formation of aromatic volatiles in melon (Cucumis melo L.) fruit. Phytochemistry, 148, 122–131.
Gonda I, Lev S, Bar E, Sikron N, Portnoy V, Davidovich-Rikanati R, Burger J, Schaffer A A, Tadmor Y, Giovannonni J J, Huang M, Fei Z, Katzir N, Fait A, Lewinsohn E. 2013. Catabolism of l-methionine in the formation of sulfur and other volatiles in melon (Cucumis melo L.) fruit. The Plant Journal, 74, 458–472.
Hayata Y, Li X X, Osajima Y. 2002. Pollination and CPPU treatment increase endogenous IAA and decrease endogenous ABA in muskmelons during early development. Journal of the American Society for Horticultural Science, 127, 908–911.
Hayata Y, Niimi Y, Inoue K, Kondo S. 2000. CPPU and BA, with and without pollination, affect set, growth, and quality of muskmelon fruit. Hortscience, 35, 868–870.
Huang Y, Li W, Zhao L, Shen T, Sun J, Chen H, Kong Q, Nawaz M A, Bie Z. 2017. Melon fruit sugar and amino acid contents are affected by fruit setting method under protected cultivation. Scientia Horticulturae, 214, 288–294.
McGarvey D J, Croteau R. 1995. Terpenoid metabolism. The Plant Cell, 7, 1015–1026.
Jordán M J, Shaw P E, Goodner K L. 2001. Volatile components in aqueous essence and fresh fruit of Cucumis melo cv. Athena (Muskmelon) by GC-MS and GC-O. Journal of Agricultural and Food Chemistry, 49, 5929–5933.
Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda S, Tokimatsu T, Yamanishi Y. 2008. KEGG for linking genomes to life and the environment. Nucleic Acids Research, 36, D480–D484.
Kourkoutas D, Elmore J S, Mottram D S. 2006. Comparison of the volatile compositions and flavour properties of cantaloupe, Galia and honeydew muskmelons. Food Chemistry, 97, 95–102.
Kim J, Takami Y. Mizugami T, Beppu K, Fukuda T, Kataoka I. 2006. CPPU application on size and quality of hardy kiwifruit. Scientia Horticulturae, 110, 219–222
Liu C, Zhang H, Dai Z, Liu X, Liu Y, Deng X, Chen F, Xu J. 2012. Volatile chemical and carotenoid profiles in watermelons [Citrullus vulgaris (Thunb.) Schrad (Cucurbitaceae)] with different flesh colors. Food Science and Biotechnology, 21, 531–541.
Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔCT method. Methods (Orlando), 25, 402–408.
Luo F, Li Q, Yu L, Wang C, Qi H. 2020. High concentrations of CPPU promotes cucurbitacin B accumulation in melon (Cucumis melo var. makuwa Makino) fruit by inducing transcription factor CmBt. Plant Physiology and Biochemistry, 154, 770–781.
Mortazavi A, Williams B A, McCue K, Schaeffer L, Wold B. 2008. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nature Methods, 5, 621–628.
Obando-Ulloa J M, Moreno E, García-Mas J, Nicolai B, Lammertyn J, Monforte A J, Fernández-Trujillo J P. 2008. Climacteric or non-climacteric behavior in melon fruit. Postharvest Biology and Technology, 49, 27–37.
Pang X, Guo X, Qin Z, Yao Y, Hu X, Wu J. 2012. Identification of aroma-active compounds in Jiashi muskmelon juice by GC-O-MS and OAV calculation. Journal of Agricultural and Food Chemistry, 60, 4179–4185.
Qian C, Ren N, Wang J, Xu Q, Chen X, Qi X. 2018. Effects of exogenous application of CPPU, NAA and GA4+7 on parthenocarpy and fruit quality in cucumber (Cucumis sativus L.). Food Chemistry, 243, 410–413.
Qiu G, Zhuang Q, Li Y, li S, Chen C, Li Z, Zhao Y, Yang Y, Liu Z. 2020. Correlation between fruit weight and nutritional metabolism during development in CPPU-treated Actinidia chinensis ‘Hongyang’. PeerJ, 8, e9724.
SÁ A G A, de Meneses A C, de Araújo P H H, de Oliveira D. 2017. A review on enzymatic synthesis of aromatic esters used as flavor ingredients for food, cosmetics and pharmaceuticals industries. Trends in Food Science & Technology, 69, 95–105.
Schieberle P, Ofner S, Grosch W. 1990. Evaluation of potent odorants in cucumbers (Cucumis sativus) and muskmelons (Cucumis melo) by aroma extract dilution analysis. Journal of Food Science, 55, 193–195.
Schwab W, Davidovich-Rikanati R, Lewinsohn E. 2008. Biosynthesis of plant-derived flavor compounds. Plant Journal, 54, 712–732.
Shalit, M, Katzir N, Tadmor Y, Larkov O, Burger Y, Shalekhet F, Lastochkin E, Ravid U, Amar O, Edelstein M, Karchi Z, Lewinsohn E. 2001. Acetyl-CoA: Alcohol acetyltransferase activity and aroma formation in ripening melon fruits. Journal of Agricultural & Food Chemistry, 49, 794–799.
Shi J, Wu H, Xiong M, Chen Y, Chen J, Zhou B, Wang H, Liangliang L, Fu X, Bie Z, Huang Y. 2020. Comparative analysis of volatile compounds in thirty nine melon cultivars by headspace solid-phase microextraction and gas chromatography-mass spectrometry. Food Chemistry, 316, 126342.
Ugare B, Banerjee K, Ramteke S D, Pradhan S, Oulkar D P, Utture S C, Adsule P G. 2013. Dissipation kinetics of forchlorfenuron, 6-benzyl aminopurine, gibberellic acid and ethephon residues in table grapes (Vitis vinifera). Food Chemistry, 141, 4208–4214.
Vallone S, Sivertsen H, Anthon G E, Barrett D M, Mitcham E J, Ebeler S E, Zakharov F. 2013. An integrated approach for flavour quality evaluation in muskmelon (Cucumis melo L. reticulatus group) during ripening. Food Chemistry, 139, 171–183.
Vogt T. 2010. Phenylpropanoid biosynthesis. Molecular Plant, 3, 2–20.
Wang W, Rehman M K U, Feng J, Tao J. 2017. RNA-seq based transcriptomic analysis of CPPU treated grape berries and emission of volatile compounds. Journal of Plant Physiology, 218, 155–166.
Xu Y, Hou X, Feng J, Khalil-Ur-Rehman M, Tao J. 2019. Transcriptome sequencing analyses reveals mechanisms of eliminated russet by applying GA3 and CPPU on ‘Shine Muscat’ grape. Scientia Horticulturae, 250, 94–103.
Yadav G D, Dhoot S B. 2009. Immobilized lipase-catalysed synthesis of cinnamyl laurate in non-aqueous media. Journal of Molecular Catalysis (B: Enzymatic), 57, 34–39.
[1] ZHOU Li-jun, HUANG Run-huan, LIU Ting-han, LIU Wei-chao, CHEN Yun-yi, LU Pei-feng, LUO Le, PAN Hui-tang, YU Chao, ZHANG Qi-xiang. Volatile metabolome and transcriptome reveal fragrance release rhythm and molecular mechanisms of Rosa yangii[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2111-2125.
[2] Kanokwan KAEWMUNGKUN, Keasinee TONGMARK, Sriprapai CHAKHONKAEN, Numphet SANGARWUT, Thiwawan WASINANON, Natjaree PANYAWUT, Khanittha DITTHAB, Kannika SIKAEWTUNG, QI Yong-bin, Sukanya DAPHA, Atikorn PANYA, Natthaporn PHONSATTA, Amorntip MUANGPROM. Development of new aromatic rice lines with high eating and cooking qualities[J]. >Journal of Integrative Agriculture, 2023, 22(3): 679-690.
[3] LÜ Jing, Satyabrata NANDA, CHEN Shi-min, MEI Yang, HE Kang, QIU Bao-li, ZHANG You-jun, LI Fei, PAN Hui-peng.

A survey on the off-target effects of insecticidal double-stranded RNA targeting the Hvβ´COPI gene in the crop pest Henosepilachna vigintioctopunctata through RNA-seq [J]. >Journal of Integrative Agriculture, 2022, 21(9): 2665-2674.

[4] DUAN Yao-ke, SU Yan HAN Rong, SUN Hao, GONG Hai-jun. Nodulin 26-like intrinsic protein CsNIP2;2 is a silicon influx transporter in Cucumis sativus L.[J]. >Journal of Integrative Agriculture, 2022, 21(3): 685-696.
[5] ZHOU Cheng-zhe, ZHU Chen, LI Xiao-zhen, CHEN Lan, XIE Si-yi, CHEN Guang-wu, ZHANG Huan, LAI Zhong-xiong, LIN Yu-ling, GUO Yu-qiong. Transcriptome and phytochemical analyses reveal roles of characteristic metabolites in the taste formation of white tea during withering process[J]. >Journal of Integrative Agriculture, 2022, 21(3): 862-877.
[6] JI Xiao-hao, WANG Bao-liang, WANG Xiao-di, WANG Xiao-long, LIU Feng-zhi, WANG Hai-bo. Differences of aroma development and metabolic pathway gene expression between Kyoho and 87-1 grapes[J]. >Journal of Integrative Agriculture, 2021, 20(6): 1525-1539.
[7] Aejaz Ahmad DAR, Susheel SHARMA, Reetika MAHAJAN, Muntazir MUSHTAQ, Ankila SALATHIA, Shahid AHAMAD, Jag Paul SHARMA. Overview of purple blotch disease and understanding its management through chemical, biological and genetic approaches[J]. >Journal of Integrative Agriculture, 2020, 19(12): 3013-3024.
[8] LIU Xuan, LIANG Wei, LI Yu-xing, LI Ming-jun, MA Bai-quan, LIU Chang-hai, MA Feng-wang, LI Cui-ying. Transcriptome analysis reveals the effects of alkali stress on root system architecture and endogenous hormones in apple rootstocks[J]. >Journal of Integrative Agriculture, 2019, 18(10): 2264-2271.
[9] JI Xiao-hao, WANG Bao-liang, WANG Xiao-di, SHI Xiang-bin, LIU Pei-pei, LIU Feng-zhi, WANG Hai-bo. Effects of different color paper bags on aroma development of Kyoho grape berries[J]. >Journal of Integrative Agriculture, 2019, 18(1): 70-82.
[10] LU Yan-hui, LIU Kai, ZHENG Xu-song, LÜ Zhong-xian. Electrophysiological responses of the rice striped stem borer Chilo suppressalis to volatiles of the trap plant vetiver grass (Vetiveria zizanioides L.)[J]. >Journal of Integrative Agriculture, 2017, 16(11): 2525-2533.
[11] Alireza Tarang, Anahita Bakhshizadeh Gashti. The power of microsatellite markers and AFLPs in revealing the genetic diversity of Hashemi aromatic rice from Iran[J]. >Journal of Integrative Agriculture, 2016, 15(06): 1186-1197.
[12] BAI Xiao-hang, TENG Lu-hua, Lü De-qing , QI Hong-yan. Co-Treatment of EFF and 1-MCP for Enhancing the Shelf-Life and Aroma Volatile Compounds of Oriental Sweet Melons (Cucumis melo var. makuwa Makino)[J]. >Journal of Integrative Agriculture, 2014, 13(1): 217-227.
[13] DU Xue-zhu, WANG Yong, CHEN Long-jia, PENG Chuan-hua, MA Wei-hua, LEI Chao-liang. Effects of High-Quality Aromatic Rice Varieties on the Fitness of the Striped Stem Borer, Chilo suppressalis (Walker) in Central China[J]. >Journal of Integrative Agriculture, 2013, 12(7): 1208-1214.
No Suggested Reading articles found!