Please wait a minute...
Journal of Integrative Agriculture  2023, Vol. 22 Issue (10): 3135-3147    DOI: 10.1016/j.jia.2023.08.001
Animal Science · Veterinary Medicine Advanced Online Publication | Current Issue | Archive | Adv Search |
Identification of transition factors in myotube formation from proteome and transcriptome analyses

ZHENG Qi1, 3, HU Rong-cui1, 3, ZHU Cui-yun1, 3, JING Jing1, 3, LOU Meng-yu1, 3, ZHANG Si-huan1, 3, LI Shuang1, 3, CAO Hong-guo1, 3, ZHANG Xiao-rong1, 2, 3, LING Ying-hui1, 2, 3#

1 College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, P.R.China 
2 Key Laboratory of Embryo Development and Reproductive Regulation of Anhui Province, Fuyang Normal University, Fuyang 236041, P.R.China
3 Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, Anhui Agricultural University, Hefei 230036, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

肌纤维是骨骼肌的主要组成部分,由肌管成熟形成。在早期发育过程中,骨骼肌卫星细胞(SSCs)增殖为成肌细胞,随后成肌细胞经历分化和融合形成肌管。然而,从SSCs到肌管转化过渡机制仍不清晰。因此,本研究采用了RNA-seq和DIA技术对山羊肌卫星细胞、成肌细胞(分化2天)和肌管(分化10天)进行了转录组和蛋白组测序。首先,对两个组学分别进行了差异分析,转录组中共鉴定到5785个差异基因,蛋白组中共鉴定到2946个差异蛋白。蛋白质组分析发现SLMAP和STOM可能与肌管的形成有关。沉默SLMAP后,成肌标记基因MyoD的明显上调(P<0.01)和肌管标记基因MyoGMyosin7明显下调(P<0.01),但Desmin的表达水平没有变化;沉默STOM后,成肌标记基因MyoD的明显上调(P<0.01)和肌管标记基因MyoGMyosin7Desmin均明显下调(P<0.01)。在更严格的差异分析条件下(差异蛋白|log2(FC)|>1.2;差异基因|log2(FC)|>2))整合两个组学数据发现,在肌卫星细胞和成肌细胞比较组中,18个因子呈正相关,37个因子呈负相关;在成肌细胞和肌管比较组中,31个因子呈正相关,10个因子呈负相关。这些因子的GO分析表明,从肌卫星细胞到成肌细胞转变时,分化和迁移相关的因子SVIL、ENSCHIG00000026624(AQP1)、SERPINE1上调,同时伴随着细胞凋亡。在成肌细胞到肌管转变时,与细胞粘附和信号转导有关的候选因子在肌管中高度表达,CCN2、TGFB1、MYL2和MYL4被确定为成肌细胞和肌管比较组的关键候选因子。综上,本研究从转录组和蛋白组中筛选到了可能影响肌卫星细胞到成肌细胞,再到肌管转变的关键因子,对肌肉早期发育或损伤后再生过程中肌管形成提供新的解析。



Abstract  

Muscle fibers are the main component of skeletal muscle and undergo maturation through the formation of myotubes.  During early development, a population of skeletal muscle satellite cells (SSCs) proliferate into myoblasts.  The myoblasts then undergo further differentiation and fusion events, leading to the development of myotubes.  However, the mechanisms involved in the transition from SSCs to myotube formation remain unclear.  In this study, we characterized changes in the proteomic and transcriptomic expression profiles of SSCs, myoblasts (differentiation for 2 d) and myotubes (differentiation for 10 d).  Proteomic analysis identified SLMAP and STOM as potentially associated with myotube formation.  In addition, some different changes in MyoD, MyoG, Myosin7 and Desmin occurred after silencing SLMAP and STOM, suggesting that they may affect changes in the myogenic marker.  GO analysis indicated that the differentiation and migration factors SVIL, ENSCHIG00000026624 (AQP1) and SERPINE1 enhanced the transition from SSCs to myoblasts, accompanied by changes in the apoptotic balance.  In the myoblast vs. myotube group, candidates related to cell adhesion and signal transduction were highly expressed in the myotubes.  Additionally, CCN2, TGFB1, MYL2 and MYL4 were identified as hub-candidates in this group.  These data enhance our existing understanding of myotube formation during early development and repair.

Keywords:  proteome        transcriptome        skeletal muscle satellite cells        myoblast        myotube Introduction  
Received: 17 February 2023   Accepted: 29 June 2023
Fund: This work was supported by the National Natural Science Foundation of China (32172695), the Natural Science Foundation of Anhui Province, China (2108085Y11), the China Agriculture Research System (CARS-38), and the Open Project of Anhui Key Laboratory of Embryonic Development and Reproductive Regulation, Anhui Provincial Department of Science and Technology, China (FSKFKT019D).
About author:  #Correspondence LING Ying-hui, E-mail: lingyinghui@ahau.edu.cn

Cite this article: 

ZHENG Qi, HU Rong-cui, ZHU Cui-yun, JING Jing, LOU Meng-yu, ZHANG Si-huan, LI Shuang, CAO Hong-guo, ZHANG Xiao-rong, LING Ying-hui. 2023. Identification of transition factors in myotube formation from proteome and transcriptome analyses. Journal of Integrative Agriculture, 22(10): 3135-3147.

Aguiar D P, de Farias G C, de Sousa E B, de Mattos Coelho-Aguiar J, Lobo J C, Casado P L, Duarte M E L, Abreu J G R. 2014. New strategy to control cell migration and metastasis regulated by CCN2/CTGF. Cancer Cell International14, 61.

Almagro Armenteros J, Tsirigos K, Sønderby C, Petersen T, Winther O, Brunak S, von Heijne G, Nielsen H. 2019. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nature Biotechnology37, 420–423.

Armand A S, Pariset C, Laziz I, Launay T, Fiore F, Gaspera B D, Birnbaum D, Charbonnier F, Chanoine C. 2005. FGF6 regulates muscle differentiation through a calcineurin-dependent pathway in regenerating soleus of adult mice. Journal of Cellular Physiology204, 297–308.

Baechler B, Bloemberg D, Quadrilatero J. 2019. Mitophagy regulates mitochondrial network signaling, oxidative stress, and apoptosis during myoblast differentiation. Autophagy15, 1606–1619.

Boyer J G, Prasad V, Song T, Lee D, Fu X, Grimes K M, Sargent M A, Sadayappan S, Molkentin J D. 2019. ERK1/2 signaling induces skeletal muscle slow fiber-type switching and reduces muscular dystrophy disease severity. The Journal of Clinical Investigation Insight5, e127356.

Bryson-Richardson R, Currie P. 2008. The genetics of vertebrate myogenesis. Nature Reviews Genetics9, 632–646.

Buckingham M, Bajard L, Chang T, Daubas P, Hadchouel J, Meilhac S, Montarras D, Rocancourt D, Relaix F. 2003. The formation of skeletal muscle: From somite to limb. Journal of Anatomy202, 59–68.

Ceafalan L C, Dobre M, Milanesi E, Niculae A M, Manole E, Gherghiceanu M, Hinescu M E. 2020. Gene expression profile of adhesion and extracellular matrix molecules during early stages of skeletal muscle regeneration. Journal of Cellular and Molecular Medicine24, 10140–10150.

Chen E H, Olson E N. 2005. Unveiling the mechanisms of cell-cell fusion. Science308, 369–373.

Chen M, Li Y, Xiao L, Dai G, Lu P, Wang Y, Rui Y. 2020. AQP1 modulates tendon stem/progenitor cells senescence during tendon aging. Cell Death & Disease11, 193.

Ciecierska A, Motyl T, Sadkowski T. 2020. Transcriptomic profile of primary culture of skeletal muscle cells isolated from semitendinosus muscle of beef and dairy bulls. International Journal of Molecular Sciences21, 4794.

Comai G, Tajbakhsh S. 2014. Molecular and cellular regulation of skeletal myogenesis. Current Topics in Developmental Biology110, a008342.

Delaney K, Kasprzycka P, Ciemerych M, Zimowska M. 2017. The role of TGF-β1 during skeletal muscle regeneration. Cell Biology International41, 706–715.

Dessauge F, Schleder C, Perruchot M, Rouger K. 2021. 3D in vitro models of skeletal muscle: Myopshere, myobundle and bioprinted muscle construct. Veterinary Research52, 72.

Dumont N A, Bentzinger C F, Sincennes M C, Rudnicki M A. 2015. Satellite cells and skeletal muscle regeneration. Comprehensive Physiology5, 1027–1059.

Eigler T, Zarfati G, Amzallag E, Sinha S, Segev N, Zabary Y, Zaritsky A, Shakked A, Umansky K, Schejter E, Millay D, Tzahor E, Avinoam O. 2021. ERK1/2 inhibition promotes robust myotube growth via CaMKII activation resulting in myoblast-to-myotube fusion. Developmental Cell56, 3349–3363.

Fujimaki S, Seko D, Kitajima Y, Yoshioka K, Tsuchiya Y, Masuda S, Ono Y. 2018. Notch1 and Notch2 coordinately regulate stem cell function in the quiescent and activated states of muscle satellite cells. Stem Cells36, 278–285.

Girardi F, Le Grand F. 2018. Wnt signaling in skeletal muscle development and regeneration. Progress in Molecular BiologyTranslational Science153, 157–179.

Guzzo R M, Wigle J, Salih M, Moore E D, Tuana B S. 2004. Regulated expression and temporal induction of the tail-anchored sarcolemmal-membrane-associated protein is critical for myoblast fusion. The Biochemical Journal381, 599–608.

Lahmann I, Bröhl D, Zyrianova T, Isomura A, Czajkowski M T, Kapoor V, Griger J, Ruffault P, Mademtzoglou D, Zammit P S, Wunderlich T, Spuler S, Kühn R, Preibisch S, Wolf J, Kageyama R, Birchmeier C. 2019. Oscillations of MyoD and Hes1 proteins regulate the maintenance of activated muscle stem cells. Genes & Development33, 524–535.

Hernández-Hernández O, Ávila-Avilés R D, Hernández-Hernández J M. 2000. Chromatin landscape during skeletal muscle differentiation. Frontiers in Genetics11, 578712.

Hillege M, Shi A, Galli R, Wu G, Bertolino P, Hoogaars W, Jaspers R. 2022. Lack of Tgfbr1 and Acvr1b synergistically stimulates myofibre hypertrophy and accelerates muscle regeneration. eLife11, e77610.

Hong L, Lai H, Fang Y, Tao Y, Qiu Y. 2018. Silencing CTGF/CCN2 inactivates the MAPK signaling pathway to alleviate myocardial fibrosis and left ventricular hypertrophy in rats with dilated cardiomyopathy. Journal of Cellular Biochemistry119, 9519–9531.

Horton P, Park K J, Obayashi T, Fujita N, Harada H, Adams-Collier C J, Nakai K. 2007. WoLF PSORT: Protein localization predictor. Nucleic Acids Research35, W585–W587.

Kim J, Jin P, Duan R, Chen E. 2015. Mechanisms of myoblast fusion during muscle development. Current Opinion in Genetics & Development32, 162–170.

Kiwanuka E, Hackl F, Caterson E, Nowinski D, Junker J, Gerdin B, Eriksson E. 2013. CCN2 is transiently expressed by keratinocytes during re-epithelialization and regulates keratinocyte migration in vitro by the ras-MEK-ERK signaling pathway. The Journal of Surgical Research185, e109–e119.

Krogh A, Larsson B, von Heijne G, Sonnhammer E L. 2001. Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes. Journal of Molecular Biology305, 567–580.

Lee J H, Hsieh C F, Liu H W, Chen C Y, Wu S C, Chen T W, Hsu C S, Liao Y H, Yang C Y, Shyu J F, Fischer W B, Lin C H. 2017. Lipid raft-associated stomatin enhances cell fusion. FASEB Journal31, 47–59.

Lee K J, Ross R S, Rockman H A, Harris A N, O’Brien T X, van Bilsen M, Shubeita H E, Kandolf R, Brem G, Price J. 1992. Myosin light chain-2 luciferase transgenic mice reveal distinct regulatory programs for cardiac and skeletal muscle-specific expression of a single contractile protein gene. The Journal of Biological Chemistry267, 15875–15885.

Lee N H, Cho A, Park S R, Lee J W, Taek P S, Park C H, Choi Y H, Lim S, Baek M K, Kim D Y, Jin M, Lee H Y, Hong I S. 2018. SERPINB2 is a novel indicator of stem cell toxicity. Cell Death & Disease9, 724.

Lehka L, Rędowicz M J. 2020. Mechanisms regulating myoblast fusion: A multilevel interplay. Seminars in Cell & Developmental Biology104, 81–92.

Li L, Chen Y, Nie L, Ding X, Zhang X, Zhao W, Xu X, Kyei B, Dai D, Zhan S, Guo J, Zhong T, Wang L, Zhang H. 2019. MyoD-induced circular RNA CDR1as promotes myogenic differentiation of skeletal muscle satellite cells. Biochimica et Biophysica Acta (Gene Regulatory Mechanisms), 1862, 807–821.

Ling Y H, Sui M H, Zheng Q, Wang K Y, Wu H, Li W Y, Liu Y, Chu M X, Fang F G, Xu L N. 2018. miR-27b regulates myogenic proliferation and differentiation by targeting Pax3 in goat. Scientific Reports8, 3909.

Liu Y, Schneider M F. 2014. FGF2 activates TRPC and Ca2+ signaling leading to satellite cell activation. Frontiers in Physiology5, 38.

Machado L, Geara P, Camps J, Santos M D, Teixeira-Clerc F, Herck J, Varet H, Legendre R, Pawlotsky J, Sampaolesi M, Voet T, Maire P, Relaix F, Mourikis P. 2021. Tissue damage induces a conserved stress response that initiates quiescent muscle stem cell activation. Cell Stem Cell28, 1125–1135.

Melendez J, Sieiro D, Salgado D, Morin V, Dejardin M, Zhou C, Mullen A, Marcelle C. 2021. TGFβ signalling acts as a molecular brake of myoblast fusion. Nature Communications12, 749.

Neuhaus P, Oustanina S, Loch T, Krüger M, Bober E, Dono R, Zeller R, Braun T. 2003. Reduced mobility of fibroblast growth factor (FGF)-deficient myoblasts might contribute to dystrophic changes in the musculature of FGF2/FGF6/mdx triple-mutant mice. Molecular Biology of the Cell23, 6037–6048.

Oh S W, Pope R K, Smith K P, Crowley J L, Nebl T, Lawrence J B, Luna E J. 2003. Archvillin, a muscle-specific isoform of supervillin, is an early expressed component of the costameric membrane skeleton. Journal of Cell Science116, 2261–2275.

Ono Y, Tsuruma K, Takata M, Shimazawa M, Hara H. 2016. Glycoprotein nonmetastatic melanoma protein B extracellular fragment shows neuroprotective effects and activates the PI3K/Akt and MEK/ERK pathways via the Na+/K+-ATPase. Scientific Reports6, 23241.

Pertea M, Kim D, Pertea G M, Leek J T, Salzberg S L. 2016. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nature Protocols11, 1650–1667.

Petrany M J, Millay D P. 2019. Cell fusion: Merging membranes and making muscle. Trends in Cell Biology29, 964–973.

Qi J H, Anand-Apte B. 2015. Tissue inhibitor of metalloproteinase-3 (TIMP3) promotes endothelial apoptosis via a caspase-independent mechanism. Apoptosis20, 523–534.

Rathod N, Bak J, Primeau J, Fisher M, Espinoza-Fonseca L, Lemieux M, Young H. 2021. Nothing regular about the regulins: Distinct functional properties of serca transmembrane peptide regulatory subunits. International Journal of Molecular Sciences22, 8891.

Simionescu A, Pavlath G K. 2011. Molecular mechanisms of myoblast fusion across species. Advances in Experimental Medicine and Biology713, 113–135.

Smith T C, Fang Z, Luna E J. 2010. Novel interactors and a role for supervillin in early cytokinesis. Cytoskeleton (Hoboken), 67, 346–364.

Smolina N, Bruton J, Sjoberg G, Kostareva A, Sejersen T. 2014. Aggregate-prone desmin mutations impair mitochondrial calcium uptake in primary myotubes. Cell Calcium56, 269–275.

Stefansson S, Lawrence D A. 1996. The serpin PAI-1 inhibits cell migration by blocking integrin alpha V beta 3 binding to vitronectin. Nature383, 441–443.

Taxman D, Holley-Guthrie E, Huang M, Moore C, Bergstralh D, Allen I, Lei Y, Gris D, Ting J. 2011. The NLR adaptor ASC/PYCARD regulates DUSP10, mitogen-activated protein kinase (MAPK), and chemokine induction independent of the inflammasome. The Journal of Biological Chemistry286, 19605–19616.

Yablonka-Reuveni Z, Danoviz M E, Phelps M, Stuelsatz P. 2015. Myogenic-specific ablation of Fgfr1 impairs FGF2-mediated proliferation of satellite cells at the myofiber niche but does not abolish the capacity for muscle regeneration. Frontiers in Aging Neuroscience7, 85.

Yalcintan H, Ekiz B, Ozcan M. 2018. Comparison of meat quality characteristics and fatty acid composition of finished goat kids from indigenous and dairy breeds. Tropical Animal Health and Production50, 1261–1269.

Yoshida T, Delafontaine P. 2020. Mechanisms of IGF-1-mediated regulation of skeletal muscle hypertrophy and atrophy. Cells9, 1970.

Zhang Q, Lei L, Jing D. 2020. Knockdown of SERPINE1 reverses resistance of triple-negative breast cancer to paclitaxel via suppression of VEGFA. Oncology Reports44, 1875–1884.

Zofkie W, Southard S M, Braun T, Lepper C. 2021. Fibroblast growth factor 6 regulates sizing of the muscle stem cell pool. Stem Cell Reports16, 2913–2927.

[1] Liyao Su, Min Wu, Tian Zhang, Yan Zhong, Zongming (Max) Cheng.

Identification of key genes regulating the synthesis of quercetin derivatives in Rosa roxburghii through integrated transcriptomics and metabolomics [J]. >Journal of Integrative Agriculture, 2024, 23(3): 876-887.

[2] SONG Xiao-heng, TIAN Lei, WANG Shun-xi, ZHOU Jin-long, ZHANG Jun, CHEN Zan, WU Liu-ji, KU Li-xia, CHEN Yan-hui. Integrating transcriptomic and proteomic analyses of photoperiodsensitive in near isogenic maize line under long-day conditions[J]. >Journal of Integrative Agriculture, 2019, 18(6): 1211-1221.
[3] XU Bing-qin, GAO Xiao-li, GAO Jin-feng, LI Jing, YANG Pu, FENG Bai-li. Transcriptome profiling using RNA-seq to provide insights into foxtail millet seedling tolerance to short-term water deficit stress induced by PEG-6000[J]. >Journal of Integrative Agriculture, 2019, 18(11): 2457-2471.
No Suggested Reading articles found!