Please wait a minute...
Journal of Integrative Agriculture  2021, Vol. 20 Issue (8): 2100-2111    DOI: 10.1016/S2095-3119(20)63487-6
Special Issue: 园艺-分子生物合辑Horticulture — Genetics · Breeding
Horticulture Advanced Online Publication | Current Issue | Archive | Adv Search |
Mapping and predicting a candidate gene for flesh color in watermelon
WANG Chao-nan1, LUAN Fei-shi1, LIU Hong-yu1, Angela R. DAVIS2, ZHANG Qi-an3, DAI Zu-yun4, LIU Shi
1 Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/Horticulture and Landscape Architecture College, Northeast Agricultural University, Harbin 150030, P.R.China
2 South Central Agricultural Research Laboratory, Agricultural Research Service, U.S. Department of Agriculture, Washington, D.C. 94710, USA
3 Horticulture Institute, Anhui Academy of Agricultural Science, Hefei 230031, P.R.China
4 Anhui Jianghuai Horticulture Technology Co., Ltd., Hefei 230031, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

西瓜果肉颜色是由一系列类胡萝卜素类物质决定的一种重要性状。本文通过浅黄色果肉西瓜COS和白色果肉西PI 186490作为亲本配制F2代分离群体进行BSA-seq分析。BSA-seq结果分析发现在西瓜的6号染色体2.45 Mb区间内存在一个与果肉颜色性状形成的相关区段,该区域初步定位在382 kb范围内。然后利用1260株F2代精细定位群体进行精细定位,将定位区间缩短至66.8 kb。该区间内共包含9个候选基因,其中仅有Cla007528(叶绿素酶基因)在双亲中发生差异表达,并存在非同义突变位点。同时基于RNA-seq数据和qRT-PCR验证我们对类胡萝卜素代谢中的关键基因表达模式进行分析发现,叶黄素循环中的三个基因(ClCHYBClNCED-1ClNCED-7)在双亲果实不同成熟阶段发生差异表达。随着类胡萝卜的不断积累,ClPSY1ClPDSClZDSClCHXEClCRTISOClLCYB也表现出显著差异的表达模式。




Abstract  
The color of watermelon flesh is an important trait determined by a series of carotenoids.  Herein, we used Cream of Saskatchewan (pale yellow flesh) and PI 186490 (white flesh) as parental materials for an F2 segregation and initial mapping using the bulked segregant analysis sequencing (BSA-seq) strategy.  The BSA results revealed a flesh color-related QTL  that spans approximately 2.45 Mb on chromosome 6.  This region was preliminarily positioned in a 382-kb segment, and then narrowed down into a 66.8-kb segment with 1 260 F2 individuals.  A total of nine candidate genes were in the fine mapping interval, but only Cla007528 (encoding chlorophyllase) had non-synonymous mutations and was significantly expressed between the parental materials throughout flesh development.  We also checked the expression patterns of the carotenoid metabolic pathway genes based on RNA-seq data and qRT-PCR validation.  Three genes in the xanthophyll cycle (ClCHYB, ClNCED-1 and ClNCED-7) exhibited differential expression patterns between the two parental lines at different flesh color formation stages.  ClPSY1, ClPDS, ClZDS, ClCHXE, ClCRTISO and ClLCYB also exhibited clearly different expression patterns accompanied by carotenoid accumulation.
Keywords:  watermelon        fine mapping        flesh color        QTL        transcriptome  
Received: 08 May 2020   Accepted:
Fund: This work was supported by the National Natural Science Foundation of China (31601775), the Project of China Postdoctoral Science Foundation (2017M611345), the earmarked fund for China Agriculture Research System of MOF and MARA (CARS-25), and the Natural Science Foundation of Heilongjiang Province, China (C2017034).
Corresponding Authors:  Correspondence LIU Shi, E-mail: shiliu@neau.edu.cn   
About author:  WANG Chao-nan, E-mail: 411803424@qq.com;

Cite this article: 

WANG Chao-nan, LUAN Fei-shi, LIU Hong-yu, Angela R. DAVIS, ZHANG Qi-an, DAI Zu-yun, LIU Shi. 2021. Mapping and predicting a candidate gene for flesh color in watermelon. Journal of Integrative Agriculture, 20(8): 2100-2111.

Anders S, Huber W. 2010. Differential expression analysis for sequence count data. Nature Precedings, https://doi.org/10.1038/npre.2010.4282.1
Bai L, Kim E H, Della Penna D, Brutnell T P. 2009. Novel lycopene epsilon cyclase activities in maize revealed through perturbation of carotenoid biosynthesis. The Plant Journal, 59, 588–599.
Bang H, Davis A R, Kim S, Leskovar D I, King S R. 2010. Flesh color inheritance and gene interactions among canary yellow, pale yellow, and red watermelon. Journal of the American Society for Horticultural Science, 135, 362–368.
Bartley G E, Scolnik P A. 1995. Plant carotenoids: Pigments for photoprotection, visual attraction and human health. The Plant Cell, 7, 1027.
Beyer P, Al-Babili S, Ye X, Lucca P, Schaub P, Welsch R, Potrykus I. 2002. Golden rice: Introducing the β-carotene biosynthesis pathway into rice endosperm by genetic engineering to defeat vitamin A deficiency. The Journal of Nutrition, 132, 506S–510S.
Bolger A M, Lohse M, Usadel B. 2014. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics, 30, 2114–2120.
Cazzonelli C I, Pogson B J. 2010. Source to sink: Regulation of carotenoid biosynthesis in plants. Trends in Plant Science, 15, 266–274.
Cuttriss A J, Chubb A C, Alawady A, Grimm B, Pogson B J. 2007. Regulation of lutein biosynthesis and prolamellar body formation in Arabidopsis. Functional Plant Biology, 34, 663–672.
Enfissi E M A, Nogueira M, Bramley P M, Fraser P D. 2016. The regulation of carotenoid formation in tomato fruit. Plant Journal for Cell & Molecular Biology, 89, 774–788.
Fang X, Liu S, Gao P, Liu H, Wang X, Luan F, Zhang Q, Dai Z. 2020. Expression of ClPAP and ClPSY1 in watermelon correlates with chromoplast differentiation, carotenoid accumulation, and flesh color formation. Scientia Horticulturae, 270, 109437.
Guo S, Zhang J, Sun H, Salse J, Lucas W J, Zhang H, Zheng Y, Mao L, Ren Y, Wang Z, Min J, Guo X, Murat F, Ham B, Zhang Z, Gao S, Huang M, Xu Y, Zhong S, Bombarely A, et al. 2013. The draft genome of watermelon (Citrullus lanatus) and re-sequencing of 20 diverse accessions. Nature Genetics, 45, 51–58.
Gupta S, Gupta S M, Sane A P, Kumar N. 2012. Chlorophyllase in Piper betle L. has a role in chlorophyll homeostasis and senescence dependent chlorophyll breakdown. Molecular Biology Reports, 39, 7133–7142.
Hashizume T, Shimamoto I, Hirai M. 2003. Construction of a linkage map and QTL analysis of horticultural traits for watermelon [Citrullus lanatus (THUNB.) MATSUM & NAKAI] using RAPD, RFLP and ISSR markers. Theoretical and Applied Genetics, 106, 779–785.
Henderson W R, Scott G H, Wehner T C. 1998. Interaction of flesh color genes in watermelon. Journal of Heredity, 89, 50–53.
Heng L, Bob H, Alec W, Tim F, Jue R, Nils H, Gabor M, Goncalo A, Richard D. 2009. The sequence alignment/map format and SAMtools. Bioinformatics, 25, 2078–2079.
Herrin D L, Battey J F, Greer K, Schmidt G W. 1992. Regulation of chlorophyll apoprotein expression and accumulation. Requirements for carotenoids and chlorophyll. Journal of Biological Chemistry, 267, 8260–8269.
Jin B, Lee J, Kweon S, Cho Y, Choi Y, Lee S J, Park Y. 2019. Analysis of flesh color-related carotenoids and development of a CRTISO, gene-based DNA marker for prolycopene accumulation in watermelon. Horticulture, Environment, and Biotechnology, 60, 399–410.
Kang B, Zhao W E, Hou Y, Tian P. 2010. Expression of carotenogenic genes during the development and ripening of watermelon fruit. Scientia Horticulture, 124, 368–375.
Langmead B, Trapnell C, Pop M, Salzberg S L. 2009. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biology, 10, R25.
Li N, Shang J, Wang J, Zhou D, Li N, Ma S. 2020. Discovery of the genomic region and candidate genes of the scarlet red flesh color (Yscr) locus in watermelon (Citrullus lanatus L.). Frontiers in Plant Science, 11, 116.
Liu C, Zhang H, Dai Z, Liu X, Liu Y, Deng X, Chen F, Xu J. 2012. Volatile chemical and carotenoid profiles in watermelons [Citrullus vulgaris (Thunb.) Schrad (Cucurbitaceae)] with different flesh colors. Food Science and Biotechnology, 21, 531–541.
Liu S, Gao P, Wang X, Davis A R, Baloch A M, Luan F. 2015. Mapping of quantitative trait loci for lycopene content and fruit traits in Citrullus lanatus. Euphytica, 202, 411–426.
Meier S, Tzfadia O, Vallabhaneni R, Gehring C, Wurtzel E T. 2011. A transcriptional analysis of carotenoid, chlorophyll and plastidial isoprenoid biosynthesis genes during development and osmotic stress responses in Arabidopsis thaliana. BMC Systems Biology, 5, 77.
Meng L, Li H, Zhang L, Wang J. 2015. QTL IciMapping: Integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. The Crop Journal, 3, 269–283.
Porter D. 1937. Inheritance of certain fruit and seed characters in watermelons. Hilgardia, 10, 489–509.
Rene K, Thomas B B. 2016. Duplex real?time PCR for the determination of wasabi (Eutrema wasabi) contents in horseradish (Armoracia rusticana) products applying the ΔΔct?method. European Food Research and Technology, 242, 1111–1115.
Römer S, Fraser P D, Kiano J W, Shipton C A, Misawa N, Schuch W, Bramley P M. 2000. Elevation of the provitamin A content of transgenic tomato plants. Nature Biotechnology, 18, 666–669.
Sandra B, Lea V, Ayala M, Galil T, Zohar F, Amnon L, William P W, Yaakov T, Amit G. 2017. Genetic mapping of a major codominant QTL associated with β-carotene accumulation in watermelon. Molecular Breeding, 37, 146.
Schmittgen T D, Livak K J. 2008. Analyzing real-time PCR data by the comparative CT method. Nature Protocols, 3, 1101–1108.
Silva J, Schefflfler B, Sanabria Y, De G C, Galam D, Farmer A, Woodward J, May G, Oard J. 2012. Identifification of candidate genes in rice for resistance to sheath blight disease by whole genome sequencing. Theoretical and Applied Genetics, 124, 63–74.
Su L, Diretto G, Purgatto E, Danoun S, Zouine M, Li Z, Roustan J P, Bouzayen M, Giuliano G, Chervin C. 2015. Carotenoid accumulation during tomato fruit ripening is modulated by the auxin-ethylene balance. BMC Plant Biology, 15, 114.
Tadmor Y, King S, Levi A, Davis A, Meri A, Wasserman B, Hirschberg J, Lewinsohn E. 2005. Comparative fruit colouration in watermelon and tomato. Food Research International, 38, 837–841.
Thornber J P, Peter G F, Nechustai R. 1987. Biochemical composition and structure of photosynthetic pigment-proteins from higher plants. Physiologia Plantarum, 71, 236–240.
Trapnell C, Pachter L, Salzberg S L. 2009. TopHat: Discovering splice junctions with RNA-Seq. Bioinformatics, 25, 1105–1111.
Tripathy B C, Pattanayak G K. 2012. Chlorophyll biosynthesis in higher plants. In: Julian J E, Baishnab C T, Thomas D S, eds., Photosynthesis. Springer, Dordrecht. pp. 63–94.
Von W D, Gough S, Kannangara C G. 1995. Chlorophyll biosynthesis. The Plant Cell, 7, 1039–1057.
Voorrips R E. 2002. MapChart: Software for the graphical presentation of linkage maps and QTLs. Journal of Heredity, 93, 77–78.
Wang C, Qiao A, Fang X, Sun L, Gao P, Angela R D, Liu S, Luan F. 2019. Fine mapping of lycopene content and flesh color related gene and development of molecular marker- assisted selection for flesh. Frontiers in Plant Science, 10, 1240.
Wang N, Liu S, Gao P, Luan F, Davis A R. 2016. Developmental changes in gene expression drive accumulation of lycopene and beta-carotene in watermelon. Journal of the American Society for Horticultural Science, 141, 1–10.
Wehner T C. 2007. Gene list for watermelon, 2007. Cucurbit Genetics Cooperative Report, 30, 96–120.
Yoo K S, Bang H, Lee E J, Crosby K, Patil B S. 2012. Variation of carotenoid, sugar, and ascorbic acid concentrations in watermelon genotypes and genetic analysis. Horticulture, Environment, and Biotechnology, 53, 552–560.
Yuan H, Zhang J, Nageswaran D, Li L. 2015. Carotenoid metabolism and regulation in horticultural crops. Horticulture Research, 2, 15036.
Zhang J, Guo S, Ren Y, Zhang H, Gong G, Zhou M, Wang G, Zong M, He H, Liu F, Xu X. 2017. High-level expression of a novel chromoplast phosphate transporter ClPHT4;2 is required for flesh color development in watermelon. New Phytologist, 213, 1208–1221.
Zhang J, Sun H, Guo S, Ren Y, Li M, Wang J, Zhang H, Gong G, Xu Y. 2020. Decreased protein abundance of lycopene β-cyclase contributes to red flesh in domesticated watermelon. Plant Physiology, 183, 1171–1183.
Zhong S, Joung J G, Zheng Y, Chen Y R, Liu B, Shao Y, Xiang J, Fei Z, Giovannoni J J. 2011. High-throughput Illumina strand-specific RNA sequencing library preparation. Cold Spring Harbor Protocols, 8,  940–949.
Zhu H, Chris D D, Eric P B, Ann M C, Rui X, Yuan R. 2011. Transcriptomics of shading-induced and NAA induced abscission in apple (Malus domestica) reveals a shared pathway involving reduced photosynthesis, alterations in carbohydrate transport and signaling and hormone crosstalk. BMC Plant Biology, 11, 138.
[1] GAO Ri-xin, HU Ming-jian, ZHAO Hai-ming, LAI Jin-sheng, SONG Wei-bin.

Genetic dissection of ear-related traits using immortalized F2 population in maize [J]. >Journal of Integrative Agriculture, 2022, 21(9): 2492-2507.

[2] LÜ Jing, Satyabrata NANDA, CHEN Shi-min, MEI Yang, HE Kang, QIU Bao-li, ZHANG You-jun, LI Fei, PAN Hui-peng.

A survey on the off-target effects of insecticidal double-stranded RNA targeting the Hvβ´COPI gene in the crop pest Henosepilachna vigintioctopunctata through RNA-seq [J]. >Journal of Integrative Agriculture, 2022, 21(9): 2665-2674.

[3] CHAO Kai-xiang, WU Cai-juan, LI Juan, WANG Wen-li, WANG Bao-tong, LI Qiang. Genetic analysis of adult plant, quantitative resistance to stripe rust in wheat landrace Wudubaijian in multi-environment trials[J]. >Journal of Integrative Agriculture, 2022, 21(8): 2305-2318.
[4] WANG Bo, HUANG Tian-yu, YAO Yuan, Frederic FRANCIS, YAN Chun-cai, WANG Gui-rong, WANG Bing. A conserved odorant receptor identified from antennal transcriptome of Megoura crassicauda that specifically responds to cis-jasmone[J]. >Journal of Integrative Agriculture, 2022, 21(7): 2042-2054.
[5] LIU Chen, TIAN Yu, LIU Zhang-xiong, GU Yong-zhe, ZHANG Bo, LI Ying-hui, NA Jie, QIU Li-juan. Identification and characterization of long-InDels through whole genome resequencing to facilitate fine-mapping of a QTL for plant height in soybean (Glycine max L. Merr.)[J]. >Journal of Integrative Agriculture, 2022, 21(7): 1903-1912.
[6] JIANG Xue-qian, ZHANG Fan, WANG Zhen, LONG Rui-cai, LI Ming-na, HE Fei, YANG Xi-jiang, YANG Chang-fu, JIANG Xu, YANG Qing-chuan, WANG Quan-zhen, KANG Jun-mei. Detection of quantitative trait loci (QTL) associated with spring regrowth in alfalfa (Medicago sativa L.)[J]. >Journal of Integrative Agriculture, 2022, 21(3): 812-818.
[7] ZHOU Cheng-zhe, ZHU Chen, LI Xiao-zhen, CHEN Lan, XIE Si-yi, CHEN Guang-wu, ZHANG Huan, LAI Zhong-xiong, LIN Yu-ling, GUO Yu-qiong. Transcriptome and phytochemical analyses reveal roles of characteristic metabolites in the taste formation of white tea during withering process[J]. >Journal of Integrative Agriculture, 2022, 21(3): 862-877.
[8] ZHU Ying-chun, YUAN Gao-peng, JIA Sheng-feng, AN Guo-lin, LI Wei-hua, SUN De-xi, LIU Jun-pu. Transcriptomic profiling of watermelon (Citrullus lanatus) provides insights into male flowers development[J]. >Journal of Integrative Agriculture, 2022, 21(2): 407-421.
[9] JIA Jia, WANG Huan, CAI Zhan-dong, WEI Ru-qian, HUANG Jing-hua, XIA Qiu-ju, XIAO Xiao-hui, MA Qi-bin, NIAN Hai, CHENG Yan-bo. Identification and validation of stable and novel quantitative trait loci for pod shattering in soybean [Glycine max (L.) Merr.][J]. >Journal of Integrative Agriculture, 2022, 21(11): 3169-3184.
[10] SHI Mei-qi, LIAO Xi-liang, YE Qian, ZHANG Wei, LI Ya-kai, Javaid Akhter BHAT, KAN Gui-zhen, YU De-yue. Linkage and association mapping of wild soybean (Glycine soja) seeds germinating under salt stress[J]. >Journal of Integrative Agriculture, 2022, 21(10): 2833-2847.
[11] SHI Hai-yan, CAO Li-wen, XU Yue, YANG Xiong, LIU Shui-lin, LIANG Zhong-shuo, LI Guo-ce, YANG Yu-peng, ZHANG Yu-xing, CHEN Liang. Transcriptional profiles underlying the effects of salicylic acid on fruit ripening and senescence in pear (Pyrus pyrifolia Nakai)[J]. >Journal of Integrative Agriculture, 2021, 20(9): 2424-2437.
[12] WANG Li-xia, WANG Jie, LUO Gao-ling, YUAN Xing-xing, GONG Dan, HU Liang-liang, WANG Su-hua, CHEN Hong-lin, CHEN Xin, CHENG Xu-zhen. Construction of a high-density adzuki bean genetic map and evaluation of its utility based on a QTL analysis of seed size[J]. >Journal of Integrative Agriculture, 2021, 20(7): 1753-1761.
[13] WU Tong, FENG Shu-yan, YANG Qi-hang, Preetida J BHETARIYA, GONG Ke, CUI Chun-lin, SONG Jie, PING Xiao-rui, PEI Qiao-ying, YU Tong, SONG Xiao-ming. Integration of the metabolome and transcriptome reveals the metabolites and genes related to nutritional and medicinal value in Coriandrum sativum[J]. >Journal of Integrative Agriculture, 2021, 20(7): 1807-1818.
[14] YANG Meng-jiao, WANG Cai-rong, Muhammad Adeel HASSAN, WU Yu-ying, XIA Xian-chun, SHI Shu-bing, XIAO Yong-gui, HE Zhong-hu. QTL mapping of seedling biomass and root traits under different nitrogen conditions in bread wheat (Triticum aestivum L.)[J]. >Journal of Integrative Agriculture, 2021, 20(5): 1180-1192.
[15] ZHAO Juan, LIU Ting, LIU Wei-cheng, ZHANG Dian-peng, DONG Dan, WU Hui-ling, ZHANG Tao-tao, LIU De-wen. Transcriptomic insights into growth promotion effect of Trichoderma afroharzianum TM2-4 microbial agent on tomato plants[J]. >Journal of Integrative Agriculture, 2021, 20(5): 1266-1276.
No Suggested Reading articles found!