Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (2): 453-466    DOI: 10.1016/j.jia.2023.10.039
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
A genome-wide association study and transcriptome analysis reveal the genetic basis for the Southern corn rust resistance in maize
Yang Wang1, 2*, Chunhua Mu3*, Xiangdong Li4, Canxing Duan2, Jianjun Wang5, Xin Lu2, Wangshu Li2, Zhennan Xu2, Shufeng Sun1, 2, Ao Zhang1, Zhiqiang Zhou2, Shenghui Wen5, Zhuanfang Hao2, Jienan Han2, Jianzhou Qu1, Wanli Du1#, Fenghai Li#, Jianfeng Weng2#

1 College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China

2 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China

3 Institute of Maize Research, Shandong Academy of Agricultural Sciences, Jinan 250100, China

4 College of Plant Protection, Shandong Agricultural University, Tai’an 250100, China

5 Institute of Maize, Shanxi Agricultural University, Xinzhou 034000, China

 Highlights 
Southern corn rust (SCR) resistance loci and candidate genes: A genome-wide association study conducted on 487 diverse inbred maize lines identified 91 loci significantly associated with SCR, including 13 loci that showed significance across at least three environments and overlapped with 74 candidate genes.
ZmHCT9 associated with SCR resistance: The study identified the candidate gene ZmHCT9, which was upregulated in susceptible inbred lines.  Silencing this gene enhanced resistance to Puccinia polysora, suggesting that ZmHCT9 may act as a negative regulator of resistance to Southern corn rust.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

玉米南方锈病(Southern Corn Rust, SCR)是由多堆柄锈菌(Puccinia polysora Underw)引起的气传性真菌病害,在世界范围玉米产区普遍发生,严重影响玉米的产量和品质而发掘优异抗性位点候选基因,开展抗病遗传解析,将为解析抗玉米南方锈病抗病育种提供理论参考。本研究以487温带玉米自交系为材料,利用15,232,270个高质量SNPs结合2021年南宁、2021年三亚和2022年济南三个环境下的玉米南方锈病抗性表型进行全基因组关联分析(Genome wide association study, GWAS),共检测到91QTLs,其中13QTLs同时在个环境被检测,共涉及94个候选基因B73_RefGen_v4。进一步结合转录组测序RNA sequencing, RNA-seq)分析候选基因,共鉴定到4个候选基因影响玉米南方锈病抗性,其中ZmHCT9编码羟基肉桂酰转移酶,在感病自交系8112中显著上调表达,进一步基于候选基因功能注释,单倍型分析P. polysora表达量及病毒诱导的基因沉默发现ZmHCT9负调控玉米南方锈病抗性。



Abstract  
Southern corn rust (SCR) is an airborne fungal disease caused by Puccinia polysora Underw. (Ppolysora) that adversely impacts maize quality and yields worldwide.  Screening for new elite SCR-resistant maize loci or genes has the potential to enhance overall resistance to this pathogen.  Using phenotypic SCR resistance-related data collected over two years and three geographical environments, a genome-wide association study was carried out in this work, which eventually identified 91 loci that were substantially correlated with SCR susceptibility.  These included 13 loci that were significant in at least three environments and overlapped with 74 candidate genes (B73_RefGen_v4).  Comparative transcriptomic analyses were then performed to identify the genes related to SCR infection, with 2,586 and 797 differentially expressed genes (DEGs) ultimately being identified in the resistant Qi319 and susceptible 8112 inbred lines following Ppolysora infection, respectively, including 306 genes common to both lines.  Subsequent integrative multi-omics investigations identified four potential candidate SCR response-related genes.  One of these genes is ZmHCT9, which encodes the protein hydroxycinnamoyl transferase 9.  This gene was up-regulated in susceptible inbred lines and linked to greater Ppolysora resistance as confirmed through cucumber mosaic virus (CMV)-based virus induced-gene silencing (VIGS) system-mediated gene silencing.  These data provide important insights into the genetic basis of the maize SCR response.  They will be useful for for future research on potential genes related to SCR resistance in maize.


Keywords:  maize        southern corn rust        genome-wide association study        transcriptome  
Received: 20 June 2023   Accepted: 28 September 2023
Fund: 
The work was supported by the National Key R&D Program of China (2022YFD1201802), the Shandong Key R&D Program, China (2022CXGC010607), the Science and Technology Innovation Project of Chinese Academy of Agricultural Sciences (CAAS-ZDRW202109), the Sub-project of the Major Project of Science and Technology in Shanxi Province, China (202201140601025-1-02), and the  Agricultural Science and Technology Innovation Project of Chinese Academy of Agricultural Sciences (CAAS-ASTIP-2017-ICS).  We thank Prof. Yule Li (Tsinghua University) and Tao Zhou (China Agricultural University) for providing the VIGS vectors.
About author:  #Correspondence Wanli Du, E-mail: dwl2014@syau.edu.cn; Fenghai Li, E-mail: lifenghai@126.com; Jianfeng Weng, E-mail: wengjianfeng@caas.cn * These authors contributed equally to this study.

Cite this article: 

Yang Wang, Chunhua Mu, Xiangdong Li, Canxing Duan, Jianjun Wang, Xin Lu, Wangshu Li, Zhennan Xu, Shufeng Sun, Ao Zhang, Zhiqiang Zhou, Shenghui Wen, Zhuanfang Hao, Jienan Han, Jianzhou Qu, Wanli Du, Fenghai Li, Jianfeng Weng. 2025. A genome-wide association study and transcriptome analysis reveal the genetic basis for the Southern corn rust resistance in maize. Journal of Integrative Agriculture, 24(2): 453-466.

Brewbaker J L, Kim S K, So Y S, Logroño M L, Moon H G, Ming R, Lu X, Josue A D. 2011. General resistance in maize to southern rust (Puccinia polysora Underw.). Crop Science, 51, 1393–1409.

Camacho L R D S, Coan M M D, Scapim C A, Barth Pinto R J, Tessmann D J, Contreras-Soto R I. 2019. A genome-wide association study for partial resistance to southern corn rust in tropical maize. Plant Breeding138, 770–780.

Cao H X, Yang Z S, Song S, Xue M, Liang G Y, Li N. 2022. Transcriptome analysis reveals genes potentially related to maize resistance to Rhizoctonia solaniPlant Physiology and Biochemistry193, 78–89.

Cao W L, Zhang H M, Zhou Y, Zhao J H, Lu S B, Wang X Q, Chen X J, Yuan L M, Guan H Y, Wang G D, Shen W X, De Vleesschauwer D, Li Z Q, Shi X P, Gu J F, Guo M, Feng Z M, Chen Z X, Zhang Y F, Pan X B, et al. 2022. Suppressing chlorophyll degradation by silencing OsNYC3 improves rice resistance to Rhizoctonia solani, the causal agent of sheath blight. Plant Biotechnology Journal, 20, 335–349.

Carena M J, Hallauer A R, Filho J B M. 2010. Quantitative Genetics in Maize Breeding. Springer Publishing, New York, USA.

Chakraborty A, Mahajan S, Jaiswal S K, Sharma V K. 2021. Genome sequencing of turmeric provides evolutionary insights into its medicinal properties. Communications Biology4, 1193.

Chen C, Chen H, Zhang Y, Thomas H R, Frank M H, He Y, Xia R. 2020. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Molecular Plant13, 1194–1202.

Chen C X, Wang Z L, Yang D E, Ye C J, Zhao Y B, Jin D M, Weng M L, Wang B. 2004. Molecular tagging and genetic mapping of the disease resistance gene RppQ to southern corn rust. Theoretical and Applied Genetics108, 945–950.

Chen G S, Zhang B, Ding J Q, Wang H Z, Deng C, Wang J L, Yang Q H, Pi Q Y, Zhang R Y, Zhai H Y, Dong J F, Huang J S, Hou J B, Wu J H, Que J M, Zhang F, Li W Q, Min H X, Tabor G, Li B L, et al. 2022. Cloning southern corn rust resistant gene RppK and its cognate gene AvrRppK from Puccinia polysoraNature Communications13, 4392.

Deng C, Leonard A, Cahill J, Lv M, Li Y, Thatcher S, Li X, Zhao X, Du W, Li Z, Li H, Llaca V, Fengler K, Marshall L, Harris C, Tabor G, Li Z, Tian Z, Yang Q, Chen Y, et al. 2022. The RppC-AvrRppC NLR-effector interaction mediates the resistance to southern corn rust in maize. Molecular Plant, 15, 904–912.

Deng C, Lv M, Li X Y, Zhao X D, Li H M, Li Z M, Tian Z Q, Leonard A, Jaqueth J, Li B L, Hao J J, Ding J Q. 2020. Identification and fine mapping of qSCR4.01, a novel major QTL for resistance to Puccinia polysora in maize. Plant Disease104, 1944–1948.

Dolezal W, Tiwari K, Kemerait R, Kichler J, Sapp P, Pataky J. 2009. An unusual occurrence of southern rust, caused by Rpp9-virulent Puccinia polysora, on corn in Southwestern Georgia. Plant Disease93, 676.

Gallego-Giraldo L, Escamilla-Trevino L, Jackson L A, Dixon R A. 2011a. Salicylic acid mediates the reduced growth of lignin down-regulated plants. Proceedings of the National Academy of Sciences of the United States of America108, 20814–20819.

Gallego-Giraldo L, Jikumaru Y, Kamiya Y, Tang Y, Dixon R A. 2011b. Selective lignin downregulation leads to constitutive defense response expression in alfalfa (Medicago sativa L.). New Phytologist190, 627–639.

Gao L, Kelliher T, Nguyen L, Walbot V. 2013. Ustilago maydis reprograms cell proliferation in maize anthers. The Plant Journal75, 903–914.

He W Z, Zhu Y H, Leng Y F, Yang L, Zhang B, Yang J P, Zhang X, Lan H, Tang H T, Chen J, Gao S B, Tan J, Kang J W, Deng L C, Li Y, He Y Y, Rong T Z, Cao M J. 2021. Transcriptomic analysis reveals candidate genes responding maize Gray leaf spot caused by Cercospora zeinaPlants10, 2257.

Jones J D G, Dangl J L. 2006. The plant immune system. Nature444, 323–329.

Kang H M, Sul J H, Service S K, Zaitlen N A, Kong S Y, Freimer N B, Sabatti C, Eskin E. 2010. Variance component model to account for sample structure in genome-wide association studies. Nature Genetics42, 348–354.

Kibe M, Nair S K, Das B, Bright J M, Makumbi D, Kinyua J, Suresh L M, Beyene Y, Olsen M S, Prasanna B M, Gowda M. 2020. Genetic dissection of resistance to Gray leaf spot by combining genome-wide association, linkage mapping, and genomic prediction in tropical maize germplasm. Frontiers in Plant Science11, 572027.

Kim D, Langmead B, Salzberg S L. 2015. HISAT: A fast spliced aligner with low memory requirements. Nature Methods12, 357–360.

Lanubile A, Ferrarini A, Maschietto V, Delledonne M, Marocco A, Bellin D. 2014. Functional genomic analysis of constitutive and inducible defense responses to Fusarium verticillioides infection in maize genotypes with contrasting ear rot resistance. BMC Genomics15, 710.

Li H G, Zhang D F, Xie K, Wang Y, Liao Q S, Hong Y G, Liu Y L. 2021. Efficient and high-throughput pseudo-recombinant-chimeric Cucumber mosaic virus-based VIGS in maize. Plant Physiology187, 2865–2876.

Li M, Yeung J M Y, Cherny S S, Sham P C. 2012. Evaluating the effective numbers of independent tests and significant P-value thresholds in commercial genotyping arrays and public imputation reference datasets. Human Genetics131, 747–756.

Li N, Lin B, Wang H, Li X M, Yang F F, Ding X H, Yan J B, Chu Z H. 2019. Natural variation in ZmFBL41 confers banded leaf and sheath blight resistance in maize. Nature Genetics51, 1540–1548.

Liu Y, Liu W W, Li L, Francis F, Wang X F. 2023. Transcriptome analysis reveals different response of resistant and susceptible rice varieties to rice stripe virus infection. Journal of Integrative Agriculture, 22, 1750–1762.

Liu Y W, Gong X D, Zhou Q H, Liu Y J, Liu Z P, Han J M, Dong J G, Gu S Q. 2021. Comparative proteomic analysis reveals insights into the dynamic responses of maize (Zea mays L.) to Setosphaeria turcica infection. Plant Science304, 110811.

Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods25, 402–408.

Love M I, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology15, 550.

Lu L, Xu Z N, Sun S L, Du Q, Zhu Z D, Weng J F, Duan C X. 2020. Discovery and fine mapping of qSCR6.01, a novel major QTL conferring southern rust resistance in maize. Plant Disease Journal104, 1918–1924.

Lv M, Deng C, Li X Y, Zhao X D, Li H M, Li Z M, Tian Z Q, Leonard A, Jaqueth J, Li B, Hao J J, Chang Y X, Ding J Q. 2021. Identification and fine-mapping of RppCML496, a major QTL for resistance to Puccinia polysora in maize. The Plant Genome14, e20062.

Meyer J, Berger D K, Christensen S A, Murray S L. 2017. RNA-Seq analysis of resistant and susceptible sub-tropical maize lines reveals a role for kauralexins in resistance to grey leaf spot disease, caused by Cercospora zeinaBMC Plant Biology17, 197.

Ordoñez M E, Germán S E, Kolmer J A. 2010. Genetic differentiation within the Puccinia triticina population in South America and comparison with the North American population suggests common ancestry and intercontinental migration. Phytopathology100, 376–383.

Poland J A, Bradbury P J, Buckler E S, Nelson R J. 2011. Genome-wide nested association mapping of quantitative resistance to northern leaf blight in maize. Proceedings of the National Academy of Sciences of the United States of America108, 6893–6898.

Rhind D, Waterston J M, Deighton F C. 1952. Occurrence of Puccinia polysora Underw. in West Africa. Nature169, 631.

Schliebner I, Becher R, Hempel M, Deising H B, Horbach R. 2014. New gene models and alternative splicing in the maize pathogen Colletotrichum graminicola revealed by RNA-Seq analysis. BMC Genomics15, 842.

Shi F M, Zhang Y H, Wang K Q, Meng Q L, Liu X L, Ma L G, Li Y C, Liu J, Ma L. 2018. Expression profile analysis of maize in response to Setosphaeria turcicaGene659, 100–108.

Storey H H, Howland A K. 1967. Resistance in maize to a third East African race of Puccinia polysora Underw. Annals of Applied Biology60, 297–303.

Sun Q Y, Li L F, Guo F F, Zhang K Y, Dong J Y, Luo Y, Ma Z H. 2021. Southern corn rust caused by Puccinia polysora Underw: A review. Phytopathology Research3, 25.

Tencent. 2021. “National outstanding contribution maize inbred lines” released 55 maize inbred lines selected. [2021-11-15]. https://new.qq.com/rain/a/20211018A075SF00

Wang B W, Qin J M, Shi C Q, Zheng J X, Qin Y A, Huang A X. 2019. QTL mapping and genetic analysis of a gene with high resistance to Southern corn rust. Scientia Agricultura Sinica52, 2033–2041. (in Chinese)

Wang G F, He Y J, Strauch R, Olukolu B A, Nielsen D, Li X, Balint-Kurti P J. 2015. Maize homologs of hydroxycinnamoyltransferase, a key enzyme in lignin biosynthesis, bind the nucleotide binding leucine-rich repeat Rp1 proteins to modulate the defense response. Plant Physiology169, 2230–2243.

Wang J L, Zhang Y, Du J J, Pan X D, Ma L M, Shao M, Guo X Y. 2018. Combined analysis of genome-wide expression profiling of maize (Zea mays L.) leaves infected with Ustilago maydisGenome61, 505–513.

Wang N, Tang C L, Fan X, He M Y, Gan P F, Zhang S, Hu Z Y, Wang X D, Yan T, Shu W X, Yu L G, Zhao J R, He J N, Li L L, Wang J F, Huang X L, Huang L L, Zhou J M, Kang Z S, Wang X J. 2022. Inactivation of a wheat protein kinase gene confers broad-spectrum resistance to rust fungi. Cell185, 2961–2974.

Wang S, Wang X Q, Zhang R Y, Liu Q, Sun X, Wang J D, Wang Y D, Xing J F, Liu Y, Zhao Y X, Shi Z, Su A G, Li C H, Xiao S L, Jiao Y Y, Li Z Y, Wang R H, Song W, Zhao J R. 2022. RppM, encoding a typical CC-NBS-LRR protein, confers resistance to Southern corn rust in maize. Frontiers in Plant Science13951318.

Wang S, Zhang R Y, Shi Z, Zhao Y X, Su A G, Wang Y D, Xing J F, Ge J R, Li C H, Wang X Q, Wang J D, Sun X, Liu Q, Chen Y N, Zhang Y X, Wang S S, Song W, Zhao J R. 2020. Identification and fine mapping of RppM, a Southern corn rust resistance gene in maize. Frontiers in Plant Science11, 1057.

Wang Y P, Zhou Z J, Gao J Y, Wu Y B, Xia Z L, Zhang H Y, Wu J Y. 2016. The mechanisms of maize resistance to Fusarium verticillioides by comprehensive analysis of RNA-seq data. Frontiers in Plant Science7, 1654.

Wu X J, Li N, Zhao P F, He Y, Wang S C. 2015. Geographic and genetic identification of RppS, a novel locus conferring broad resistance to southern corn rust disease in China. Euphytica205, 17–23.

Wu Y B, Zhou Z J, Dong C P, Chen J F, Ding J Q, Zhang X C, Mu C, Chen Y N, Li X P, Li H M, Han Y N, Wang R X, Sun X D, Li J J, Dai X D, Song W B, Chen W, Wu J Y. 2020. Linkage mapping and genome-wide association study reveals conservative QTL and candidate genes for Fusarium rot resistance in maize. BMC Genomics21, 357.

Yang Q, He Y J, Kabahuma M, Chaya T, Kelly A, Borrego E, Bian Y, El Kasmi F, Yang L, Teixeira P, Kolkman J, Nelson R, Kolomiets M, L Dangl J, Wisser R, Caplan J, Li X, Lauter N, Balint-Kurti P. 2017. A gene encoding maize caffeoyl-CoA O-methyltransferase confers quantitative resistance to multiple pathogens. Nature Genetics49, 1364–1372.

Yao G Q, Chan J, Cao B, Cui L G, Dou S L, Han Z J, Liu T S, Li C L, Wang L M. 2013. Mapping the maize Southern rust resistance gene in inbred line CML470. Journal of Plant Genetics Resources14, 518–522. (in Chinese)

Yao L S, Li Y M, Ma C Y, Tong L X, Du F L, Xu M L. 2020. Combined genome-wide association study and transcriptome analysis reveal candidate genes for resistance to Fusarium ear rot in maize. Journal of Integrative Plant Biology62, 1535–1551.

Yin J J, Xiong J, Xu L T, Chen X W, Li W T. 2022. Recent advances in plant immunity with cell death: A review. Journal of Integrative Agriculture, 21, 610–620.

Zhang X H, Liu H, Ma X H, Zhou G Y, Ruan H Q, Cui H W, Pang J l, Khan U S, Zong N, Wang R Z, Leng P F, Zhao J. 2022. Genome-wide association study and metabolic pathway prediction of barrenness in maize as a response to high planting density. Journal of Integrative Agriculture, 21, 3514–3523.

Zhang Y, Xu L, Zhang D F, Dai J R, Wang S C. 2010. Mapping of southern corn rust-resistant genes in the W2D inbred line of maize (Zea mays L.). Molecular Breeding25, 433–439.

Zhao M. 2022. Investigation of the occurrence and damage loss of maize in the southern part of the Huang-Huai-Hai region in 2021. Bulletin of Agricultural Science and Technology7118–120. (in Chinese)

Zhao P F, Zhang G B, Wu X J, Li N, Shi D Y, Zhang D F, Ji C F, Xu M L, Wang S C. 2013. Fine mapping of RppP25, a Southern rust resistance gene in maize. Journal of Integrative Plant Biology55, 462–472.

Zhou C J, Chen C X, Cao P X, Wu S W, Sun J W, Jin D M, Wang B. 2007. Characterization and fine mapping of RppQ, a resistance gene to southern corn rust in maize. Molecular Genetics and Genomics278, 723–728.

Zhou G F, Hao D R, Mao Y X, Zhu Q L, Chen G Q, Lu H H, Shi M L, Huang X L, Zhang Z L, Zhao J Y, Xue L. 2018. Identification of genetic loci conferring partial resistance to southern corn rust through a genome-wide association study. European Journal of Plant Pathology150, 1083–1090.

Zhou X, Stephens M. 2012. Genome-wide efficient mixed-model analysis for association studies. Nature Genetics44, 821–824.

Zou K K, Li Y, Zhang W J, Jia Y F, Wang Y, Ma Y T, Lv X L, Xuan Y H, Du W L. 2022. Early infection response of fungal biotroph Ustilago maydis in maize. Frontiers in Plant Science13, 970897.

[1] Xin Dong, Baole Li, Zhenzhen Yan, Ling Guan, Shoubing Huang , Shujun Li, Zhiyun Qi, Ling Tang, Honglin Tian, Zhongjun Fu, Hua Yang. Impacts of high temperature, relative air humidity, and vapor pressure deficit on the seed set of contrasting maize genotypes during flowering[J]. >Journal of Integrative Agriculture, 2024, 23(9): 2955-2969.
[2] Xiaogang He, Zirong Li, Sicheng Guo, Xingfei Zheng, Chunhai Liu, Zijie Liu, Yongxin Li, Zheming Yuan, Lanzhi Li. Epistasis-aware genome-wide association studies provide insights into the efficient breeding of high-yield and high-quality rice[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2541-2556.
[3] Peng Liu, Langlang Ma, Siyi Jian, Yao He, Guangsheng Yuan, Fei Ge, Zhong Chen, Chaoying Zou, Guangtang Pan, Thomas Lübberstedt, Yaou Shen. Population genomic analysis reveals key genetic variations and the driving force for embryonic callus induction capability in maize[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2178-2195.
[4] Haiqing Gong, Yue Xiang, Jiechen Wu, Laichao Luo, Xiaohui Chen, Xiaoqiang Jiao, Chen Chen.

Integrating phosphorus management and cropping technology for sustainable maize production [J]. >Journal of Integrative Agriculture, 2024, 23(4): 1369-1380.

[5] Pengcheng , Shuangyi Yin, Yunyun Wang, Tianze Zhu, Xinjie Zhu, Minggang Ji, Wenye Rui, Houmiao Wang Chenwu Xu, Zefeng Yang.

Dynamics and genetic regulation of macronutrient concentrations during grain development in maize [J]. >Journal of Integrative Agriculture, 2024, 23(3): 781-794.

[6] Liyao Su, Min Wu, Tian Zhang, Yan Zhong, Zongming (Max) Cheng.

Identification of key genes regulating the synthesis of quercetin derivatives in Rosa roxburghii through integrated transcriptomics and metabolomics [J]. >Journal of Integrative Agriculture, 2024, 23(3): 876-887.

[7] Weina Zhang, Zhigan Zhao, Di He, Junhe Liu, Haigang Li, Enli Wang.

Combining field data and modeling to better understand maize growth response to phosphorus (P) fertilizer application and soil P dynamics in calcareous soils [J]. >Journal of Integrative Agriculture, 2024, 23(3): 1006-1021.

[8] Peng Wang, Lan Yang, Xichao Sun, Wenjun Shi, Rui Dong, Yuanhua Wu, Guohua Mi.

Lateral root elongation in maize is related to auxin synthesis and transportation mediated by N metabolism under a mixed NO3 and NH4+ supply [J]. >Journal of Integrative Agriculture, 2024, 23(3): 1048-1060.

[9] Jiaxing Wei, Hong Yan, Jie Ren, Guangyue Li, Bo Zhang, Xuenong Xu.

Acaricidal effect of the antimicrobial metabolite xenocoumacin 1 on spider mite control [J]. >Journal of Integrative Agriculture, 2024, 23(3): 948-959.

[10] Binbin Li, Xianmin Chen, Tao Deng, Xue Zhao, Fang Li, Bingchao Zhang, Xin Wang, Si Shen, Shunli Zhou.

Timing effect of high temperature exposure on the plasticity of internode and plant architecture in maize [J]. >Journal of Integrative Agriculture, 2024, 23(2): 551-565.

[11] WANG Peng, WANG Cheng-dong, WANG Xiao-lin, WU Yuan-hua, ZHANG Yan, SUN Yan-guo, SHI Yi, MI Guo-hua. Increasing nitrogen absorption and assimilation ability under mixed NO3 and NH4+ supply is a driver to promote growth of maize seedlings[J]. >Journal of Integrative Agriculture, 2023, 22(6): 1896-1908.
[12] LIU Min-guo, Thomas CAMPBELL, LI Wei, WANG Xi-qing. Analyzing architectural diversity in maize plants using the skeletonimage- based method[J]. >Journal of Integrative Agriculture, 2023, 22(12): 3804-3809.
[13] XU Meng-ze, WANG Yu-hong, NIE Cai-e, SONG Gui-pei, XIN Su-ning, LU Yan-li, BAI You-lu, ZHANG Yin-jie, WANG Lei. Identifying the critical phosphorus balance for optimizing phosphorus input and regulating soil phosphorus effectiveness in a typical winter wheat-summer maize rotation system in North China[J]. >Journal of Integrative Agriculture, 2023, 22(12): 3769-3782.
[14] ZHAO Wen-juan, YUAN Xiao-ya, XIANG Hai, MA Zheng, CUI Huan-xian, LI Hua, ZHAO Gui-ping. Transcriptome-based analysis of key genes and pathways affecting the linoleic acid content in chickens[J]. >Journal of Integrative Agriculture, 2023, 22(12): 3744-3754.
[15] SHA Xiao-qian, GUAN Hong-hui, ZHOU Yu-qian, SU Er-hu, GUO Jian, LI Yong-xiang, ZHANG Deng-feng, LIU Xu-yang, HE Guan-hua, LI Yu, WANG Tian-yu, ZOU Hua-wen, LI Chun-hui. Genetic dissection of crown root traits and their relationships with aboveground agronomic traits in maize[J]. >Journal of Integrative Agriculture, 2023, 22(11): 3394-3407.
No Suggested Reading articles found!