Please wait a minute...
Journal of Integrative Agriculture  2024, Vol. 23 Issue (03): 948-959    DOI: 10.1016/j.jia.2023.06.008
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |

Acaricidal effect of the antimicrobial metabolite xenocoumacin 1 on spider mite control

Jiaxing Wei1, Hong Yan1, Jie Ren1, 2, Guangyue Li1, 2#, Bo Zhang1, 3#, Xuenong Xu1, 3#

1 Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China

2 State Key Laboratory for Biology of Plant Diseases and Insect Pests, Beijing 100193, China

3 Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Beijing 100193, China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

二斑叶螨是全多种农业生态系统中普遍发生且影响极为严重有害生物之一,目前的主要防控手段是化学杀螨剂及捕食螨天敌,然而两者兼容性较低。为有效防治该虫害,迫切需要开发新型生物农药以支持二斑叶螨有害生物综合治理研究中,我们探明了高纯度抗菌代谢产物xenocoumacin 1Xcn1)对二斑叶螨及加州新小绥螨的致死效应,明确了该化合物对叶螨的防控作用及天敌友好程度。首先,我们利用简易启动子激活化合物识别方法(easyPACId)构建了嗜线虫致病杆菌CB6的突变体,在其无细胞上清液中提取并纯化获得Xcn1代谢产物。当喷施浓度超过100μg mL-1 的Xcn1溶液6二斑叶螨存活率降至不足40%繁殖率降低了80%此外,我们发现Xcn1在浓度为25μg mL-150μg mL-1时可通过抑制蜕皮中止二斑叶螨发育,但这两个浓度对捕食螨天敌加州新小绥螨的生存和繁殖没有任何不利影响。结合实验室和半田间实验结果,我们发现抗菌代谢Xcn1在分子水平种群水平上均具有控制害螨的可行性因此,本研究提供了结合Xcn1捕食螨类可兼容生物控制剂进行害螨综合防治的参考模式,为叶螨绿色防控技术提供了理论基础



Abstract  

The two-spotted spider mite, Tetranychus urticae Koch, is one of the most harmful pests in many agroecosystems worldwide.  To effectively manage this pest, there is an urgent need to develop novel bio-active acaricides that support integrated pest management strategies targeting Turticae.  In this study, we explored the acaricidal effects of xenocoumacin 1 (Xcn1) on Turticae and its predator Neoseiulus californicus using the highly purified compound.  Xcn1 was extracted and purified from the cell-free supernatant of the Xenorhabdus nematophila CB6 mutant constructed by the easy promoter activated compound identification (easyPACId) method.  When the concentration of Xcn1 exceeded 100 μg mL–1, the survival rate of spider mite adults declined to below 40% and the fecundity was decreased by 80% at six days post-application.  At concentrations of 25 and 50 μg mL–1, Xcn1 significantly impeded spider mite development by inhibiting the molt.  However, neither concentration had any adverse effects on the survival or reproduction of the predatory mite Ncalifornicus.  The results from laboratory and semi-field experiments consistently demonstrated the effectiveness of the antimicrobial metabolite Xcn1 in controlling pest mites at both the molecular and physiological levels.  Our study offers a promising possibility that combines the compatible biocontrol agents of Xcn1 and predatory mites for integrated pest mite control.

Keywords:  pest management        predatory mite        Xcn1        morphology        developmental inhibition        transcriptome   
Received: 24 February 2023   Accepted: 05 May 2023
Fund: 

This work was supported by the National Natural Science Foundation of China (32070402) and the Beijing Natural Science Foundation, China (6222052).

About author:  Jiaxing Wei, E-mail: weijiaxing7@163.com; #Correspondence Guangyue Li, E-mail: liguangyue@caas.cn; Bo Zhang, E-mail: zhangbo05@caas.cn; Xuenong Xu, E-mail: xuxuenong@caas.cn

Cite this article: 

Jiaxing Wei, Hong Yan, Jie Ren, Guangyue Li, Bo Zhang, Xuenong Xu. 2024.

Acaricidal effect of the antimicrobial metabolite xenocoumacin 1 on spider mite control . Journal of Integrative Agriculture, 23(03): 948-959.

Abebew D, Sayedain F S, Bode E, Bode H B. 2022. Uncovering nematicidal natural products from Xenorhabdus bacteria. Journal of Agricultural and Food Chemistry, 70, 498–506.

Adesanya A W, Lavine M D, Moural T W, Lavine L C, Fang Z, Walsh D B. 2021. Mechanisms and management of acaricide resistance for Tetranychus urticae in agroecosystems. Journal of Pest Science, 94, 639–663.

Barber A, Campbell C, Crane H, Lilley R, Tregidga E. 2003. Biocontrol of two-spotted spider mite Tetranychus urticae on dwarf hops by the phytoseiid mites Phytoseiulus persimilis and Neoseiulus californicus. Biocontrol Science and Technology, 13, 275–284.

Benjamini Y, Hochberg Y. 1997. Multiple hypotheses testing with weights. Scandinavian Journal of Statistics, 24, 407–418.

Bode E, Brachmann A O, Kegler C, Simsek R, Dauth C, Zhou Q Q, Kaiser M, Klemmt P, Bode H B. 2015. Simple “on-demand” production of bioactive natural products. Chembiochem, 16, 1115–1124.

Bode E, Heinrich A K, Hirschmann M, Abebew D, Shi Y N, Vo T D, Wesche F, Shi Y M, Grün P, Simonyi S, Keller N, Engel Y, Wenski S, Bennet R, Beyer S, Bischoff I, Buaya A, Brandt S, Cakmak I, Cimen H, et al. 2019. Promoter activation in Δhfq mutants as an efficient tool for specialized metabolite production enabling direct bioactivity testing. Angewandte Chemie International Edition, 58, 18957–18963.

Bode H B. 2009. Entomopathogenic bacteria as a source of secondary metabolites. Current Opinion in Chemical Biology, 13, 224–230.

Bussaman P, Sa-Uth C, Rattanasena P, Chandrapatya A. 2012. Acaricidal activities of whole cell suspension, cell-free supernatant, and crude cell extract of Xenorhabdus stokiae against mushroom mite (Luciaphorus sp.). Journal of Zhejiang University Science (B: Biomedicine & Biotechnology), 13, 261–266.

Bussaman P, Sermswan R W, Grewal P S. 2006. Toxicity of the entomopathogenic bacteria Photorhabdus and Xenorhabdus to the mushroom mite (Luciaphorus sp.; Acari: Pygmephoridae). Biocontrol Science and Technology, 16, 245–256.

Cevizci D, Ulug D, Cimen H, Touray M, Hazir S, Cakmak I. 2020. Mode of entry of secondary metabolites of the bacteria Xenorhabdus szentirmaii and X. nematophila into Tetranychus urticae, and their toxicity to the predatory mites Phytoseiulus persimilis and Neoseiulus californicus. Journal of Invertebrate Pathology, 174, 107418.

Dermauw W, Leeuwen T W, Feyereisen R. 2020. Diversity and evolution of the P450 family in arthropods. Insect Biochemistry and Molecular Biology, 127, 103490.

Dong Y J, Li X H, Duan J Q, Qin Y C, Yang X F, Ren J, Li G Y. 2020. Improving the yield of Xenocoumacin 1 enabled by in situ product removal. ACS Omega, 5, 20391–20398.

Eroglu C, Cimen H, Ulug D, Karagoz M, Hazir S, Cakmak I. 2019. Acaricidal effect of cell-free supernatants from Xenorhabdus and Photorhabdus bacteria against Tetranychus urticae (Acari: Tetranychidae). Journal of Invertebrate Pathology, 160, 61–66.

Fonseca M M, Pallini A, Marques P H, Lima E, Janssen A. 2020. Compatibility of two predator species for biological control of the two-spotted spider mite. Experimental and Applied Acarology, 80, 409–422.

Fraulo A B, Liburd O E. 2007. Biological control of two spotted spider mite, Tetranychus urticae, with predatory mite, Neoseiulus californicus, in strawberries. Experimental and Applied Acarology, 43, 109–119.

Grbić M, Van Leeuwen T, Clark R M, Rombauts S, Rouzé P, Grbić V, Osborne E J, Dermauw W, Ngoc P C T, Ortego F, Hernández-Crespo P, Diaz I, Martinez M, Navajas M, Sucena É, Magalhães S, Nagy L, Pace R M, Djuranović S, Smagghe G, et al. 2011. The genome of Tetranychus urticae reveals herbivorous pest adaptations. Nature, 479, 487–492.

Guittard E, Blais C, Maria A, Parvy J P, Pasricha S, Lumb C, Lafont R, Daborn P J, Villemant C D. 2011. CYP18A1, a key enzyme of Drosophila steroid hormone inactivation, is essential for metamorphosis. Developmental Biology, 349, 35–45.

Gulsen S H, Tileklioglu E, Bode E, Cimen H, Ertabaklar H, Ulug D, Ertug S, Wenski S L, Touray M, Hazir C, Bilecenoglu D K, Yildiz I, Bode H B, Hazir S. 2022. Antiprotozoal activity of different Xenorhabdus and Photorhabdus bacterial secondary metabolites and identification of bioactive compounds using the easyPACId approach. Scientific Reports, 12, 10779.

Huang W R, Yang X F, Yang H W, Liu Z, Yuan J J. 2006. Identification and activity of antibacterial substance from Xenorhabdus nematophila var. pekingensis. Natural Product Research and Development, 18, 25–28. (in Chinese)

Huang W R, Zhu C X, Yang X F, Yang H W. 2005. Isolation and structural identification of main component CB6–1 produced by Xenorhabdus nematophilus var. pekingensis. Chinese Journal of Antibiotics, 30, 513–515. (in Chinese)

Iga M, Kataoka H. 2012. Recent studies on insect hormone metabolic pathways mediated by cytochrome P450 enzymes. Biological and Pharmaceutical Bulletin, 35, 838–843.

Incedayi G, Cimen H, Ulug D, Touray M, Bode E, Bode H B, Yaylagul E O, Hazir S, Cakmak I. 2021. Relative potency of a novel acaricidal compound from Xenorhabdus, a bacterial genus mutualistically associated with entomopathogenic nematodes. Scientific Reports, 11, 2045–2322.

Kim D, Langmead B, Salzberg S. 2015. HISAT: A fast spliced aligner with low memory requirements. Nature Methods, 12, 357–360.

Kurlovs A H, De Beer B, Ji M, Vandenhole M, Meyer T D, Feyereisen R, Clark R M, Leeuwen T V. 2022. Trans-driven variation in expression is common among detoxification genes in the extreme generalist herbivore Tetranychus urticae. PLoS Genetics, 18, e1010333.

Van Leeuwen T, Dermauw W. 2016. The molecular evolution of xenobiotic metabolism and resistance in chelicerate mites. Annual Review of Entomology, 61, 475–498.

Van Leeuwen T, Pottelberge S V, Nauen R, Tirry L. 2010. Organophosphate insecticides and acaricides antagonise bifenazate toxicity through esterase inhibition in Tetranychus urticae. Pest Management Science, 63, 1172–1177.

Liu N, Li M, Gong Y H, Liu F, Li T. 2015. Cytochrome P450s - Their expression, regulation, and role in insecticide resistance. Pesticide Biochemistry and Physiology, 120, 77–81.

Love M I, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 15, 550.

Masui S, Katayama H, Tsuchiya M. 2018. Occurrence of Panonychus citri (Acari: Tetranychidae) and natural enemies in citrus fields under conventional pesticide application in Shizuoka Prefecture. Japanese Journal of Applied Entomology and Zoology, 62, 47–53. (in Japanese)

Migeon A, Nouguier E, Dorkeld F. 2010. Spider Mites Web: A comprehensive database for the Tetranychidae. In: Trends in Acarology. Springer, Berlin. pp. 557–560.

Namsena P, Bussaman P, Rattanasena P. 2016. Bioformulation of Xenorhabdus stockiae PB09 for controlling mushroom mite, Luciaphorus perniciosus rack. Bioresources and Bioprocessing, 3, 1–7.

Nermut J, Zemek R, Mráček Z, Palevsky E, Půža V. 2019. Entomopathogenic nematodes as natural enemies for control of Rhizoglyphus robini (Acari: Acaridae)? Biological Control, 128, 102–110.

Ozkan H D, Cimen H, Ulug D, Wenski S, Ozer S Y, Telli M, Aydin N, Bode H B, Hazir S. 2019. Nematode-associated bacteria: Production of antimicrobial agent as a presumptive nominee for curing endodontic infections caused by Enterococcus faecalis. Frontiers in Microbiology, 10, 2672.

Pertea M, Pertea G M, Antonescu C M, Chang T C, Mendell J T, Salzberg S L. 2015. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nature Biotechnology, 33, 290–295.

R Core Team. 2022. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.

Reimer D, Luxenburger E, Brachmann A O, Bode H B. 2009. A new type of pyrrolidine biosynthesis is involved in the late steps of xenocoumacin production in Xenorhabdus nematophila. Chembiochem, 10, 1997–2001.

Reimer D, Pos K M, Thines M, Grün P, Bode H B. 2011. A natural prodrug activation mechanism in nonribosomal peptide synthesis. Nature Chemical Biology, 7, 888–890.

Rewitz K F, Rybczynski R, Warren J T, Gilbert L I. 2006. The halloween genes code for cytochrome p450 enzymes mediating synthesis of the insect moulting hormone. Biochemical Society Transactions, 34, 1256–1260.

Rott A S, Ponsonby D J. 2000. The effects of temperature, relative humidity and host plant on the behaviour of Stethorus punctillum as a predator of the two-spotted spider mite, Tetranychus urticae. BioControl, 45, 155–164.

Silva D E, do Nascimento J M, da Silva R T L, Juchem C F, Ruffatto K, da Silva G L, Johann L, Corrêa L L C, Ferla N J. 2019. Impact of vineyard agrochemicals against Panonychus ulmi (Acari: Tetranychidae) and its natural enemy, Neoseiulus californicus (Acari: Phytoseiidae) in Brazil. Crop Protection, 123, 5–11.

Song Z W, Nguyen D T, Li D S, Clercq P D. 2019. Continuous rearing of the predatory mite Neoseiulus californicus on an artificial diet. BioControl, 64, 125–137.

Tobias N J, Heinrich A K, Eresmann H, Wright P R, Neubacher N, Backofen R, Bode H B. 2017. Photorhabdus-nematode symbiosis is dependent on hfq-mediated regulation of secondary metabolites. Environmental Microbiology, 19, 119–129.

Tobias N J, Shi Y M, Bode H B. 2018. Refining the natural product repertoire in entomopathogenic bacteria. Trends in Microbiology, 26, 833–840.

Urbaneja A, Pascual-Ruiz S, Pina T, Abad-Moyano R, Vanaclocha P, Montón H, Dembilio O, Castañera P, Jacas J A. 2008. Efficacy of five selected acaricides against Tetranychus urticae (Acari: Tetranychidae) and their side effects on relevant natural enemies occurring in citrus orchards. Pest Management Science, 64, 834–842.

Wang R L, Jiang C X, Liu L, Shen Z H, Yang J T, Wang Y L, Hu J Y, Wang M T, Hu J Y, Lu X L, Li Q. 2021. Prediction of the potential distribution of the predatory mite Neoseiulus californicus McGregor in China using MaxEnt. Global Ecology and Conservation, 29, e01733.

Wang Z, Cang T, Wu S. 2018. Screening for suitable chemical acaricides against two-spotted spider mites, Tetranychus urticae, on greenhouse strawberries in China. Ecotoxicology and Environmental Safety, 163, 63–68.

Wu L X, Li L B, Xu Y J, Li Q, Liu F, Zhao H X. 2023. Identification and characterization of CYP307A1 as a molecular target for controlling the small hive beetle, Aethina tumida. Pest Management Science, 79, 37–44.

Xu D D, Zhang Y, Zhang Y J, Wu Q J, Guo Z J, Xie W, Zhou X M, Wang S L. 2020. Transcriptome profiling and functional analysis suggest that the constitutive overexpression of four cytochrome P450s confers resistance to abamectin in Tetranychus urticae from China. Pest Management Science, 77, 1204–1213.

Xu X N, Wang B M, Wang E D, Zhang Z Q. 2013. Comments on the identity of Neoseiulus californicus sense lato (Acari: Phytoseiidae) with a redescription of this species from southern China. Systematic and Applied Acarology, 18, 329–344.

Yan J Y, Zhang B, Li G T, Xu X N. 2021. Bacterial communities in predatory mites are associated with species and diet types. BioControl, 66, 803–811.

Yang X F, Qiu D W, Yang H W, Liu, Z, Zeng H M, Yuan J J. 2011. Antifungal activity of xenocoumacin 1 from Xenorhabdus nematophilus var. pekingensis against Phytophthora infestans. World Journal of Microbiology and Biotechnology, 27, 523–528.

Yang Z M, Yu N, Wang S J, Korai S K, Liu Z W. 2021. Characterization of ecdysteroid biosynthesis in the pond wolf spider, Pardosa pseudoannulata. Insect Molecular Biology, 30, 71–80.

Zhang S J, Liu Q, Han Y F, Han J H, Yan Z Q, Wang Y H, Zhang X. 2019. Nematophin, an antimicrobial dipeptide compound from Xenorhabdus nematophila YL001 as a potent biopesticide for Rhizoctonia solani control. Frontiers in Microbiology, 10, 1765.

Zheng Y, Clercq P D, Song Z W, Li D S, Zhang B X. 2016. Functional response of two Neoseiulus species preying on Tetranychus urticae Koch. Systematic and Applied Acarology, 22, 1059–1068.

Zhou T T, Yan X F, Qiu D W, Zeng H M. 2017. Inhibitory effects of xenocoumacin 1 on the different stages of Phytophthora capsica and its control effect on Phytophthora blight of pepper. BioControl, 62, 151–160.

[1] Liyao Su, Min Wu, Tian Zhang, Yan Zhong, Zongming (Max) Cheng.

Identification of key genes regulating the synthesis of quercetin derivatives in Rosa roxburghii through integrated transcriptomics and metabolomics [J]. >Journal of Integrative Agriculture, 2024, 23(03): 876-887.

[2] ZHAO Wen-juan, YUAN Xiao-ya, XIANG Hai, MA Zheng, CUI Huan-xian, LI Hua, ZHAO Gui-ping. Transcriptome-based analysis of key genes and pathways affecting the linoleic acid content in chickens[J]. >Journal of Integrative Agriculture, 2023, 22(12): 3744-3754.
[3] LIAO Guang-lian, HUANG Chun-hui, JIA Dong-feng, ZHONG Min, TAO Jun-jie, QU Xue-yan, XU Xiao-biao. A high-quality genome of Actinidia eriantha provides new insight into ascorbic acid regulation[J]. >Journal of Integrative Agriculture, 2023, 22(11): 3244-3255.
[4] ZHENG Qi, HU Rong-cui, ZHU Cui-yun, JING Jing, LOU Meng-yu, ZHANG Si-huan, LI Shuang, CAO Hong-guo, ZHANG Xiao-rong, LING Ying-hui. Identification of transition factors in myotube formation from proteome and transcriptome analyses[J]. >Journal of Integrative Agriculture, 2023, 22(10): 3135-3147.
[5] WANG Xiao-dong, CAI Ying, PANG Cheng-ke, ZHAO Xiao-zhen, SHI Rui, LIU Hong-fang, CHEN Feng, ZHANG Wei, FU San-xiong, HU Mao-long, HUA Wei, ZHENG Ming, ZHANG Jie-fu. BnaSD.C3 is a novel major quantitative trait locus affecting semi-dwarf architecture in Brassica napus L.[J]. >Journal of Integrative Agriculture, 2023, 22(10): 2981-2992.
[6] LÜ Jing, Satyabrata NANDA, CHEN Shi-min, MEI Yang, HE Kang, QIU Bao-li, ZHANG You-jun, LI Fei, PAN Hui-peng.

A survey on the off-target effects of insecticidal double-stranded RNA targeting the Hvβ´COPI gene in the crop pest Henosepilachna vigintioctopunctata through RNA-seq [J]. >Journal of Integrative Agriculture, 2022, 21(9): 2665-2674.

[7] WANG Bo, HUANG Tian-yu, YAO Yuan, Frederic FRANCIS, YAN Chun-cai, WANG Gui-rong, WANG Bing. A conserved odorant receptor identified from antennal transcriptome of Megoura crassicauda that specifically responds to cis-jasmone[J]. >Journal of Integrative Agriculture, 2022, 21(7): 2042-2054.
[8] ZHOU Cheng-zhe, ZHU Chen, LI Xiao-zhen, CHEN Lan, XIE Si-yi, CHEN Guang-wu, ZHANG Huan, LAI Zhong-xiong, LIN Yu-ling, GUO Yu-qiong. Transcriptome and phytochemical analyses reveal roles of characteristic metabolites in the taste formation of white tea during withering process[J]. >Journal of Integrative Agriculture, 2022, 21(3): 862-877.
[9] SHI Hai-yan, CAO Li-wen, XU Yue, YANG Xiong, LIU Shui-lin, LIANG Zhong-shuo, LI Guo-ce, YANG Yu-peng, ZHANG Yu-xing, CHEN Liang. Transcriptional profiles underlying the effects of salicylic acid on fruit ripening and senescence in pear (Pyrus pyrifolia Nakai)[J]. >Journal of Integrative Agriculture, 2021, 20(9): 2424-2437.
[10] WANG Chao-nan, LUAN Fei-shi, LIU Hong-yu, Angela R. DAVIS, ZHANG Qi-an, DAI Zu-yun, LIU Shi. Mapping and predicting a candidate gene for flesh color in watermelon[J]. >Journal of Integrative Agriculture, 2021, 20(8): 2100-2111.
[11] WU Tong, FENG Shu-yan, YANG Qi-hang, Preetida J BHETARIYA, GONG Ke, CUI Chun-lin, SONG Jie, PING Xiao-rui, PEI Qiao-ying, YU Tong, SONG Xiao-ming. Integration of the metabolome and transcriptome reveals the metabolites and genes related to nutritional and medicinal value in Coriandrum sativum[J]. >Journal of Integrative Agriculture, 2021, 20(7): 1807-1818.
[12] ZHAO Juan, LIU Ting, LIU Wei-cheng, ZHANG Dian-peng, DONG Dan, WU Hui-ling, ZHANG Tao-tao, LIU De-wen. Transcriptomic insights into growth promotion effect of Trichoderma afroharzianum TM2-4 microbial agent on tomato plants[J]. >Journal of Integrative Agriculture, 2021, 20(5): 1266-1276.
[13] CHENG Jin-tao, CHEN Hai-wen, DING Xiao-chen, SHEN Tai, PENG Zhao-wen, KONG Qiu-sheng, HUANG Yuan, BIE Zhi-long. Transcriptome analysis of the influence of CPPU application for fruit setting on melon volatile content[J]. >Journal of Integrative Agriculture, 2021, 20(12): 3199-3208.
[14] FU Fang-fang, PENG Ying-shu, WANG Gui-bin, Yousry A. EL-KASSABY, CAO Fu-liang. Integrative analysis of the metabolome and transcriptome reveals seed germination mechanism in Punica granatum L.[J]. >Journal of Integrative Agriculture, 2021, 20(1): 132-146.
[15] LAN Hao, ZHANG Zhan-feng, WU Jun, CAO He-he, LIU Tong-xian. Performance and transcriptomic response of the English grain aphid, Sitobion avenae, feeding on resistant and susceptible wheat cultivars[J]. >Journal of Integrative Agriculture, 2021, 20(1): 178-190.
No Suggested Reading articles found!