昆虫毒理和抗药性Insect toxicology & drug resistance
In this study, lambda-cyhalothrin (LC) loaded polyurea microcapsules (MCs) with different particle sizes were fabricated. All of the MCs showed varying degrees of physical collapse, which was more obvious among those with smaller particle sizes. MCs with particle sizes of 1.38 μm (MC-S), 5.13 μm (MC-M) and 10.05 μm (MC-L) had shell thicknesses of 39.6, 50.3 and 150.1 nm, respectively. MCs with smaller particles tended to have significantly faster release profiles, and the MC-S group had much higher bioactivity against Agrotis ipsilon and better foliar affinity on the peanut leaves (indicated by rainfastness) than MC-M and MC-L. All of the MCs exhibited light-enhanced release profiles and had much slower degradation compared with the emulsifiable concentrate (EC) group, among which MC-L had the slowest degradation. To generate MCs with both favorable quick efficacy and long-lasting efficacy, binary mixtures of MC-S, MC-M and MC-L were produced by mixing them in pairs at ratios of 2:1, 1:1 and 1:2. The mixture of MC-S:MC-L at 1:2 showed the best comprehensive efficacy in the peanut foliar spray scenario among the nine tested combinations, and its effective duration was three times longer than that of EC. Overall, the precise combination of MCs with different particle sizes can regulate the efficacy of pesticide control and serve as a strategy for the better utilization of pesticides.
In the U.S., Helicoverpa zea (Boddie) is a major pest targeted by both transgenic maize and cotton expressing Bacillus thuringiensis (Bt) proteins. Resistance of insect to Bt maize and cotton containing cry1A and cry2A genes has widely occurred in the U.S. In this study, two trials were performed to investigate larval survival and development of a Cry1A.105/Cry2Ab2 dual-protein resistant (VT2P-RR), a susceptible, and an F1 heterozygous (VT2P-RS) populations of H. zea on ears of nine Bt and three non-Bt maize hybrids. The Bt maize hybrids evaluated represent five common pyramided traits expressing two or three of the Cry1A.105, Cry1Ab, Cry1F, Cry2Ab2, and Vip3Aa20 proteins. In the laboratory, neonates of the three H. zea populations were inoculated on silks of ears collected from maize at R1-R2 plant stages; and larval survivorship was checked 10 d after neonate release. All three insect populations survived normally on non-Bt maize ears. Varied numbers of VT2P-RR and VT2P-RS survived on ears of Cry1A.105/Cry2Ab2 maize, while all larvae of the three populations died or could not develop on ears of Vip3Aa20-expressing maize. The results demonstrated that the dual-protein resistant H. zea was not cross-resistant to Vip3Aa20-expressing maize, and thus traits with vip3Aa20 gene should be effective to manage Cry1A.105/Cry2Ab2-resistant H. zea. The resistance in VT2P-RR was determined to be incomplete on Cry1A.105/Cry2Ab2 maize. The effective dominance levels varied greatly, from recessive to incompletely dominant, depending on maize hybrids and trials, suggesting that proper selection of maize hybrids could be important for mitigating the Cry1A.105/Cry2Ab2 resistance. The data generated should aid in modeling multiple-protein Bt resistance in H. zea.
Lack of fitness cost and inheritance of resistance to abamectin based on the establishment of a near-isogenic strain of Tetranychus urticae
Many populations of the two-spotted spider mite, Tetranychus urticae Koch, have developed high levels of resistance to the pesticide abamectin in China and other countries. This study developed a near-isogenic line to understand better the inheritance, cross-resistance, and fitness costs associated with abamectin resistance in the field population of T. urticae in China. We introduced the trait that confers extremely high abamectin resistance in a field-collected population of T. urticae into a susceptible laboratory strain (IPP-SS) to generate an abamectin-resistant near-isogenic line (NIL-Aba). This process was carried out through multiple backcrossing to IPP-SS and via parthenogenesis and abamectin screening. Compared with IPP-SS, the NIL-Aba strain had a 25 147-fold resistance to abamectin and a high level of cross-resistance to bifenthrin (288.17-fold), an intermediate level to emamectin benzoate (42.57-fold), and low levels to bifenazate, chlorfenapyr, cyflumetofen, cyenopyrafen, and cyetpyrafen with resistance ranging from 3.18- to 9.31-fold. But it had no cross-resistance to profenofos. The resistance to abamectin in NIL-Aba was autosomal, incompletely dominant, and polygenic. Based on two sex life table parameters, no fitness cost was found in NIL-Aba. Establishing the NIL-Aba strain provides a reliable basis for an in-depth study of abamectin resistance in T. urticae. New information on toxicological characteristics and fitness cost should facilitate the management of abamectin resistance in field populations of T. urticae.
Toxicity and horizontal transfer of bifenthrin and dimefluthrin against the red imported fire ant, Solenopsis invicta Buren (Hymenoptera: Formicidae), and the efficacy of their dust applications in the field
The red imported fire ant, Solenopsis invicta Buren, poses a significant threat to biodiversity, agriculture, and public health in its introduced ranges. While chemicals such as toxic baits and dust are the main methods for S. invicta control, toxic baits are slow, requiring approximately one or two weeks, but dust can eliminate the colony of fire ants rapidly in just three to five days. To explore more active ingredients for fire ant control using dusts, the toxicity of bifenthrin and dimefluthrin, the horizontal transfer of bifenthrin and dimefluthrin dust and their efficacy in the field were tested. The results showed that the LD50 (lethal dose) values of bifenthrin and dimefluthrin were 3.40 and 1.57 ng/ant, respectively. The KT50 (median knockdown time) and KT95 (95% knockdown time) values of a 20 μg mL–1 bifenthrin dose were 7.179 and 16.611 min, respectively. The KT50 and KT95 of a 5 μg mL–1 dimefluthrin dose were 1.538 and 2.825 min, respectively. The horizontal transfers of bifenthrin and dimefluthrin among workers were effective. The mortality of recipients (secondary mortality) and secondary recipients (tertiary mortality) were both over 80% at 48 h after 0.25, 0.50 and 1.00% bifenthrin dust treatments. The secondary mortality of recipients was over 99% at 48 h after 0.25, 0.50 and 1.00% dimefluthrin dust treatments, but the tertiary mortality was below 20%. The field trial results showed that both bifenthrin and dimefluthrin exhibited excellent fire ant control effects, and the comprehensive control effects of 1.00% bifenthrin and dimefluthrin dusts at 14 d post-treatment were 95.87 and 85.70%, respectively.
The identification of functional midgut receptors for pesticidal proteins produced by Bacillus thuringiensis (Bt) is critical for deciphering the molecular mechanism of Bt resistance in insects. Reduced expression of the PxABCB1 gene was previously found to be associated with Cry1Ac resistance in the diamondback moth, Plutella xylostella (L.). To directly validate the potential receptor role of PxABCB1 and its contribution to Bt Cry1Ac toxicity in P. xylostella, we used CRISPR/Cas9 to generate a homozygous knockout ABCB1KO strain with a 5-bp deletion in exon 3 of its gene. The ABCB1KO strain exhibited a 63-fold resistance to Cry1Ac toxin compared to the parental DBM1Ac-S strain. Intriguingly, the ABCB1KO strain also exhibited significant increases in susceptibility to abamectin and emamectin benzoate. No changes in susceptibility to various other Bt Cry proteins or synthetic insecticides were observed. The knockout strain exhibited no significant fitness costs. Overall, our study indicates that PxABCB1 can protect the insect against avermectin insecticides on one hand, while on the other hand it facilitates the toxic effect of the Bt Cry1Ac toxin. The results of this study will help to inform integrated pest management approaches against this destructive pest.
Acaricidal effect of the antimicrobial metabolite xenocoumacin 1 on spider mite control
The two-spotted spider mite, Tetranychus urticae Koch, is one of the most harmful pests in many agroecosystems worldwide. To effectively manage this pest, there is an urgent need to develop novel bio-active acaricides that support integrated pest management strategies targeting T. urticae. In this study, we explored the acaricidal effects of xenocoumacin 1 (Xcn1) on T. urticae and its predator Neoseiulus californicus using the highly purified compound. Xcn1 was extracted and purified from the cell-free supernatant of the Xenorhabdus nematophila CB6 mutant constructed by the easy promoter activated compound identification (easyPACId) method. When the concentration of Xcn1 exceeded 100 μg mL–1, the survival rate of spider mite adults declined to below 40% and the fecundity was decreased by 80% at six days post-application. At concentrations of 25 and 50 μg mL–1, Xcn1 significantly impeded spider mite development by inhibiting the molt. However, neither concentration had any adverse effects on the survival or reproduction of the predatory mite N. californicus. The results from laboratory and semi-field experiments consistently demonstrated the effectiveness of the antimicrobial metabolite Xcn1 in controlling pest mites at both the molecular and physiological levels. Our study offers a promising possibility that combines the compatible biocontrol agents of Xcn1 and predatory mites for integrated pest mite control.
Aphis gossypii has become increasingly difficult to manage due to its strong insecticide resistance. In the laboratory, we established sulfoxaflor-resistant and acetamiprid-resistant strains in two A. gossypii populations with different basal insecticide resistance levels, and evaluated the effects of basal insecticide resistance on the resistance development and cross-resistance, as well as differences in fitness. Under the same selection pressure, Yarkant A. gossypii (with low basal insecticide resistance) evolved resistance to sulfoxaflor and acetamiprid more quickly than Jinghe A. gossypii (with high basal insecticide resistance), and the evolution of A. gossypii resistance to sulfoxaflor developed faster than acetamiprid in both Yarkant and Jinghe, Xingjiang, China. The sulfoxaflor-resistant strains selected from Yarkant and Jinghe developed significant cross-resistance to acetamiprid, imidacloprid, thiamethoxam and pymetrozine; while the acetamiprid-resistant strains developed significant cross-resistance to sulfoxaflor, imidacloprid, thiamethoxam, pymetrozine, and chlorpyrifos. The relative fitness of A. gossypii decreased as the resistance to sulfoxaflor and acetamiprid developed. The relative fitness levels of the sulfoxaflor-resistant strains (Yarkant-SulR and Jinghe-SulR) were lower than those of the acetamiprid-resistant strains (Yarkant-AceR and Jinghe-AceR). In addition, the relative fitness levels of sulfoxaflor- and acetamiprid-resistant strains were lower in Jinghe than in Yarkant. In summary, basal insecticide resistance of A. gossypii and insecticide type affected the evolution of resistance to insecticides in A. gossypii, as well as cross-resistance to other insecticides. The sulfoxaflor- and acetamiprid-resistant A. gossypii strains had obvious fitness costs. The results of this work will contribute to the insecticide resistance management and integrated management of A. gossypii.