Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Multi-omics analysis revealed adaptation mechanisms in roots of different nitrogen-efficiency peanut genotypes under low-nitrogen stress

Ping Zhang1, Yongqi Liu1, Xiuli Wang2, Pei Guo1, Fei Liu1, Xinhua Zhao1, He Zhang1, Jing Wang1, Chao Zhong1, Xiaoguang Wang1, Chunji Jiang1#, Haiqiu Yu1, 2#

1 College of Agronomy, Shenyang Agricultural University, Shenyang 110161, China

2 Liaoning Agriculture Vocational and Technical College, Yingkou 115009, China

 Highlights 

1. N-efficient genotype maintained higher N metabolism (via N uptake and assimilation), antioxidant capacity (via increased antioxidant activities), and flavonoid accumulation under N-deficiency.

2. The key genes encoding CCoAOMT, CHS, IFR and HCT affected epicatechin, kaempferol, calycosin, and biochanin A levels, with relatively higher levels in JH under low-N stress.

3. Under low-N treatment, WRKY40 and MYB30, MYB4, and bHLH35 might regulate flavonoid accumulation as positive and negative regulators, respectively.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

过度施氮是限制农业可持续发展的重要因素培育氮高效基因型是实现作物减氮增效、提高生产力的有效举措。然而,针对花生根系响应低氮胁迫的分子机制尚不明确。本研究从氮代谢和抗氧化能力的角度比较了花生氮高效基因型JH15JH)和氮低效基因型HY20HY)根系对低氮胁迫的适应性差异。低氮胁迫下JH表现出更发达的根系构型、更高的抗氧化活性以及氮代谢酶水平。JH中高、低亲和力硝酸盐转运蛋白(NRT2.5NRT1.6和氯离子通道蛋白CLC表达量上调,编码谷氨酰胺合成酶和天冬酰胺合成酶的基因表达量较高,而HY中仅低亲和力硝酸盐转运蛋白(NPF5.2NPF7.3表达上调。类黄酮和异黄酮的生物合成是两基因型在低氮胁迫下产生差异的主要代谢途径利用加权基因共表达分析和相关性网络分析相结合发现编码咖啡酰辅酶A-O-甲基转移酶、查耳酮合酶、2'-羟异黄酮还原酶和莽草酸羟基肉桂酰辅酶A转移酶关键基因的差异性表达,影响关键代谢物表儿茶素、山柰酚、毛蕊异黄酮和鹰嘴豆芽素A)水平。我们还发现WRKY40MYB30MYB4bHLH35可能分别作为正、负调控因子调节黄酮类物质的积累。综上所述,JH中氮吸收和同化的增强、黄酮类物质的积累激活了氮代谢和抗氧化能力,提高氮效率。



Abstract  

Overapplication of nitrogen (N) is an important limiting factor in sustainable agricultural development. Breeding N-efficient genotypes is an effective approach to reduce crop N input, increase N-efficiency, and improve crop productive. However, the molecular mechanisms underlying low-N adaptations in peanut (Arachis hypogaea L.) roots are unknown. Herein, we compared root adaptation mechanisms to low-N stress between the N-efficient genotype JH15 (JH) and the N-inefficient genotype HY20 (HY), focusing on N metabolism and antioxidant capacity. Under N deficiency, JH exhibited a more developed root architecture, higher antioxidant activity, and higher N-metabolic enzyme levels under N deficiency. The expression of both high- and low-affinity nitrate transporter proteins (NRT2.5, NRT1.6), and the chloride channel protein CLC was upregulated in JH, with higher expression of genes encoding glutamine synthetase and asparagine synthase. However, only the low-affinity N transporters (NPF5.2, NPF7.3) were upregulated in HY. Flavonoid and isoflavonoid biosynthesis were the main metabolic pathways underlying the differences between the two genotypes under low-N treatment. The results of weighted gene co-expression network analysis and correlation network analysis revealed that differential expression of the key genes encoding caffeoyl-CoA O-methyltransferase, chalcone synthase, 2'-hydroxyisoflavone reductase, and shikimate hydroxycinnamoyl-CoA transferase affected key metabolites levels (epicatechin, kaempferol, calycosin, and biochanin A). We also found that WRKY40 and MYB30, MYB4, and bHLH35 may regulate flavonoids accumulation as positive and negative regulators, respectively. In summary, enhanced N uptake and assimilation and flavonoid accumulation in JH enhanced N metabolism and antioxidant capacity, improving N-efficiency.

Keywords:  low nitrogen       peanut       nitrogen metabolism       flavonoid biosynthesis       isoflavonoid biosynthesis  
Online: 30 January 2026  
Fund: 

The authors would like to thank the China Agricultural Research System (CARS-13). 

About author:  #Correspondence Chunji Jiang, E-mail: jiangchunji2002@syau.edu.cn; Haiqiu Yu, E-mail: yuhaiqiu@syau.edu.cn

Cite this article: 

Ping Zhang, Yongqi Liu, Xiuli Wang, Pei Guo, Fei Liu, Xinhua Zhao, He Zhang, Jing Wang, Chao Zhong, Xiaoguang Wang, Chunji Jiang, Haiqiu Yu. 2026. Multi-omics analysis revealed adaptation mechanisms in roots of different nitrogen-efficiency peanut genotypes under low-nitrogen stress. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2026.01.046

Abedi M, Karimi F, Saboora A, Razavi K. 2023. NaCl-induced flavonoid biosynthesis and oxidative stress responses in suspension cells of Haplophyllum virgatum var. virgatum. Plant Cell Tissue and Organ Culture, 154, 325.

Aci M M, Lupini A, Mauceri A, Sunseri F, Abenavoli M R. 2021. New insights into N-utilization efficiency in tomato (Solanum lycopersicum L.) under N limiting condition. Plant Physiology and Biochemistry, 166, 634-644.

Arifin H A, Hashiguchi T, Nagahama K, Hashiguchi M, Muguerza M, Sakakibara Y, Tanaka H, Akashi R. 2021. Varietal differences in flavonoid and antioxidant activity in Japanese soybean accessions. Bioscience Biotechnology and Biochemistry, 85, 916-922.

Beshamgan E S, Sharifi M, Zarinkamar F. 2019. Crosstalk among polyamines, phytohormones, hydrogen peroxide, and phenylethanoid glycosides responses in Scrophularia striata to Cd stress. Plant Physiology and Biochemistry, 143, 129-141.

Binenbaum J, Wulff N, Camut L, Kiradjiev K, Anfang M, Tal I, Vasuki H, Zhang Y Q, Sakvarelidze-Achard L, Davière J M, Ripper D, Carrera E, Manasherova E, Ben Yaakov S, Lazary S, Hua C Y, Novak V, Crocoll C, Weinstain R, Cohen H, et al. 2023. Gibberellin and abscisic acid transporters facilitate endodermal suberin formation in Arabidopsis. Nature Plants, 9, 785-802.

Bouche N. 2010. New insights into miR398 functions in Arabidopsis. Plant Signaling & Behavior, 5, 684-686.

Bouguyon E, Brun F, Meynard D, Kubes M, Pervent M, Leran S, Lacombe B, Krouk G, Guiderdoni E, Zazímalová E, Hoyerová K, Nacry P, Gojon A. 2015. Multiple mechanisms of nitrate sensing by Arabidopsis nitrate transceptor NRT1.1. Nature Plants, 1, 15015. 

Brown D E, Rashotte A M, Murphy A S, Normanly J, Tague B W, Peer W A, Taiz L, Muday G K. 2001. Flavonoids act as negative regulators of auxin transport in vivo in arabidopsis. Plant Physiology, 126, 524-535.

Buer C S, Muday G K. 2004. The transparent testa4 mutation prevents flavonoid synthesis and alters auxin transport and the response of Arabidopsis roots to gravity and light. The Plant Cell, 16, 1191-1205.

Chaput V, Li J F, Séré D, Tillard P, Fizames C, Moyano T, Zuo K J, Martin A, Gutiérrez R A, Gojon A, Lejay L. 2023. Characterization of the signalling pathways involved in the repression of root nitrate uptake by nitrate in Arabidopsis thaliana. Journal of Experimental Botany, 74, 4244-4258.

Danaeipour R, Sharifi M, Noori A. 2024. Responses to lead stress in Scrophularia striata: Insights into antioxidative defence mechanisms and changes in flavonoids profile. Functional Plant Biology, 51.

Dong X, Li W Y, Li C Z, Akan O D, Liao C C, Cao J, Zhang L. 2024. Integrated transcriptomics and metabolomics revealed the mechanism of catechin biosynthesis in response to lead stress in tung tree (Vernicia fordii). Science of the Total Environment, 930, 172796.

Dong X M, Zhang W, Hu H, Gao T Y, Wang X Q, Shi Q, He B, Zhang S B. 2024. Physiological and transcriptome analysis reveal the nitrogen preference and regulatory pathways of nitrogen metabolism in an epiphytic orchid, Cymbidium tracyanum. Environmental and Experimental Botany, 219, 105618. 

Dunand C, Crevecoeur M, Penel C. 2007. Distribution of superoxide and hydrogen peroxide in Arabidopsis root and their influence on root development: Possible interaction with peroxidases. The New Phytologist, 174, 332-341.

Fuentes S I, Allen D J, Ortiz-Lopez A, Hernandez G. 2001. Over-expression of cytosolic glutamine synthetase increases photosynthesis and growth at low nitrogen concentrations. Journal of Experimental Botany, 52, 1071-1081.

Gai Z S, Wang Y, Ding Y Q, Qian W J, Qiu C, Xie H, Sun L T, Jiang Z W, Ma Q P, Wang L J, Ding Z T. 2020. Exogenous abscisic acid induces the lipid and flavonoid metabolism of tea plants under drought stress. Scientific Reports, 10, 12275. 

Gallego-Giraldo L, Bhattarai K, Pislariu C I, Nakashima J, Jikumaru Y, Kamiya Y, Udvardi M K, Monteros M J, Dixon R A. 2014. Lignin modification leads to increased nodule numbers in alfalfa. Plant Physiology, 164, 1139-1150.

Govindasamy P, Muthusamy S K, Bagavathiannan M, Mowrer J, Jagannadham P T K, Maity A, Halli H M, Sujayananad G K, Vadivel R, Das T K, Raj R, Pooniya V, Babu S, Rathore S S, Muralikrishnan L, Tiwari G. 2023. Nitrogen use efficiency-a key to enhance crop productivity under a changing climate. Frontiers in Plant Science, 14, 1121073. 

Guo L C, Qiao J L, Zhang L J, Ma K, Yang H, Zhao J R, Qin D, Huo J W. 2025. Metabolome reveals high nitrogen supply decreases the antioxidant capacity of blue honeysuckle (Lonicera caerulea L.) by regulating flavonoids. Food Chemistry, 480, 143954. 

Hua Y P, Zhou T, Huang J Y, Yue C P, Song H X, Guan C Y, Zhang Z H. 2020. Genome-wide differential DNA methylation and miRNA expression profiling reveals epigenetic regulatory mechanisms underlying nitrogen-limitation-triggered adaptation and use efficiency enhancement in allotetraploid rapeseed. International Journal of Molecular Sciences, 21, 8453.

Huang H, Yao Q Y, Xia E H, Gao L Z. 2018. Metabolomics and transcriptomics analyses reveal nitrogen influences on the accumulation of flavonoids and amino acids in young shoots of tea plant (Camellia sinensis L.) associated with tea flavor. Journal of Agricultural and Food Chemistry, 66, 9828-9838.

Jia Z T, von Wirén N. 2020. Signaling pathways underlying nitrogen-dependent changes in root system architecture: From model to crop species. Journal of Experimental Botany, 71, 4393-4404.

Jiang S Y, Sun J Y, Tian Z W, Hu H, Michel E J S, Gao J W, Jiang D, Cao W X, Dai T B. 2017. Root extension and nitrate transporter up-regulation induced by nitrogen deficiency improves nitrogen status and plant growth at the seedling stage of winter wheat (Triticum aestivum L.). Environmental and Experimental Botany, 141, 28-40.

Jung J Y, Ahn J H, Schachtman D P. 2018. CC-type glutaredoxins mediate plant response and signaling under nitrate starvation in Arabidopsis. Bmc Plant Biology, 18, 281. 

Karimi F, Khataee E. 2012. Aluminum elicits tropane alkaloid production and antioxidant system activity in micropropagated Datura innoxia plantlets. Acta Physiologiae Plantarum, 34, 1035-1041.

Khataee E, Karimi F, Razavi K. 2021. Different carbon sources and their concentrations change alkaloid production and gene expression in Catharanthus roseus shoots in vitro. Functional Plant Biology, 48, 40-53.

Kong X J, Wang R, Jia P P, Li H B, Khan A, Muhammad A, Fiaz S, Xing Q, Zhang Z Y. 2025. Physio-biochemical and molecular mechanisms of low nitrogen stress tolerance in peanut (Arachis hypogaea L.). Plant Molecular Biology, 115, 19.

Lezhneva L, Kiba T, Feria-Bourrellier A B, Lafouge F, Boutet-Mercey S, Zoufan P, Sakakibara H, Daniel-Vedele F, Krapp A. 2014. The Arabidopsis nitrate transporter NRT2.5 plays a role in nitrate acquisition and remobilization in nitrogen-starved plants. Plant Journal, 80, 230-241.

Li L J, Cheng X G, Kong X J, Jia P P, Wang X H, Zhang L, Zhang X T, Zhang Y, Zhang Z Y, Zhang B H. 2023. Comparative transcriptomic analysis reveals the negative response mechanism of peanut root morphology and nitrate assimilation to nitrogen deficiency. Plants-Basel, 12, 732.

Li Q, Song H L, Zhou T, Pei M N, Wang B, Yan S X, Liu Y Q, Wu P J, Hua Y P. 2024. Differential morpho-physiological, ionomic, and phytohormone profiles, and genome-wide expression profiling involving the tolerance of allohexaploid wheat (Triticum aestivum L.) to nitrogen limitation. Journal of Agricultural and Food Chemistry, 72, 3814-3831.  

Li Z Y, Jiang H, Jiang X M, Zhang L F, Qin Y. 2023. Integrated physiological, transcriptomic, and metabolomic analyses reveal that low-nitrogen conditions improve the accumulation of flavonoids in snow chrysanthemum. Industrial Crops and Products, 197, 116574.

Liebthal M, Maynard D, Dietz K J. 2018. Peroxiredoxins and redox signaling in plants. Antioxidants & Redox Signaling, 28, 609-624.

Lin K Y, Wu S Y, Hsu Y H, Lin N S. 2022. MiR398-regulated antioxidants contribute to Bamboo mosaic virus accumulation and symptom manifestation. Plant Physiology, 188, 593-607.

Lin S H, Kuo H F, Canivenc G, Lin C S, Lepetit M, Hsu P K, Tillard P, Lin H L, Wang Y Y, Tsai C B, Gojon A, Tsay Y F. 2008. Mutation of the Arabidopsis NRT1.5 nitrate transporter causes defective root-to-shoot nitrate transport. The Plant Cell, 20, 2514-2528.

Liu B H, Wu J Y, Yang S Q, Schiefelbein J, Gan Y B. 2020. Nitrate regulation of lateral root and root hair development in plants. Journal of Experimental Botany, 71, 4405-4414.

Lovdal T, Olsen K M, Slimestad R, Verheul M, Lillo C. 2010. Synergetic effects of nitrogen depletion, temperature, and light on the content of phenolic compounds and gene expression in leaves of tomato. Phytochemistry, 71, 605-613.

Lyu H, Li Y, Wang Y L, Wang P F, Shang Y P, Yang X H, Wang F, Yu A Z. 2024. Drive soil nitrogen transformation and improve crop nitrogen absorption and utilization-a review of green manure applications. Frontiers in Plant Science, 14, 1305600. 

Ma Y C, Zhang K, Xu C W, Lai C R, Liu Y, Cao Y, Zhao L C. 2024. Contribution of lipid to the formation of characteristic volatile flavor of peanut oil. Food Chemistry, 442, 138496. 

Ma Y L, Zhu D Y, Thakur K, Wang C H, Wang H, Ren Y F, Zhang J G, Wei Z J. 2018. Antioxidant and antibacterial evaluation of polysaccharides sequentially extracted from onion (Allium cepa L.). International Journal of Biological Macromolecules, 111, 92-101.

Mai C H, Zhao X R, Li X G, Wang X M, Wang X L, Du W J, Kong Z S, Wang L X. 2024. Integrated metabolomic and transcriptomic assisted identification of nodulated Sophora flavescens SfIF7GT for improvement of flavonoid content. Industrial Crops and Products, 220, 119194. 

Matsuo M, Johnson J M, Hieno A, Tokizawa M, Nomoto M, Tada Y, Godfrey R, Obokata J, Sherameti I, Yamamoto Y Y, Böhmer F D, Oelmüller R. 2015. High REDOX RESPONSIVE TRANSCRIPTION FACTOR1 levels result in accumulation of reactive oxygen species in Arabidopsis thaliana shoots and roots. Molecular Plant, 8, 1253-1273.

McKhann H I, Hirsch A M. 1994. Isolation of chalcone synthase and chalcone isomerase cDNAs from alfalfa (Medicago sativa L.): Highest transcript levels occur in young roots and root tips. Plant Molecular Biology, 24, 767-777.

Medici A, Krouk G. 2014. The Primary Nitrate Response: A multifaceted signalling pathway. Journal of Experimental Botany, 65, 5567-5576.

Meng H X, Wang Y Z, Yao X L, Xie X R, Dong S Q, Yuan X Y, Li X R, Gao L L, Yang G H, Chu X Q, Wang J G. 2024. Reactive oxygen species (ROS) modulate nitrogen signaling using temporal transcriptome analysis in foxtail millet. Plant Molecular Biology, 114, 119. 

Nigro D, Fortunato S, Giove S L, Paradiso A, Gu Y Q, Blanco A, de Pinto M C, Gadaleta A. 2016. Glutamine synthetase in durum wheat: Genotypic variation and relationship with grain protein content. Frontiers in Plant Science, 7, 00971.

Peer W A, Bandyopadhyay A, Blakeslee J J, Makam S N, Chen R J, Masson P H, Murphy A S. 2004. Variation in expression and protein localization of the PIN family of auxin efflux facilitator proteins in flavonoid mutants with altered auxin transport in Arabidopsis thaliana. The Plant Cell, 16, 1898-1911.

De Pessemier J, Moturu T R, Nacry P, Ebert R, De Gernier H, Tillard P, Swarup K, Wells D M, Haseloff J, Murray S C, Bennett M J, Inzé D, Vincent C, Hermans C. 2022. Root system size and root hair length are key phenes for nitrate acquisition and biomass production across natural variation in Arabidopsis. Journal of Experimental Botany, 73, 3569-3583.

Qin L, Walk T C, Han P P, Chen L Y, Zhang S, Li Y S, Hu X J, Xie L H, Yang Y, Liu J P, Lu X, Yu C B, Tian J, Shaff J E, Kochian L V, Liao X, Liao H. 2019. Adaption of roots to nitrogen deficiency revealed by 3D quantification and proteomic analysis. Plant Physiology, 179, 329-347.

Rishmawi L, Pesch M, Juengst C, Schauss A C, Schrader A, Huelskamp M. 2014. Non-cell-autonomous regulation of root hair patterning genes by WRKY75 in Arabidopsis. Plant Physiology, 165, 186-195.

Sagharyan M, Sharifi M, Samari E. 2023. Methyl jasmonate redirects the dynamics of carbohydrates and amino acids toward the lignans accumulation in Linum album cells. Plant Physiology and Biochemistry, 198, 107677. 

Sánchez-Rojo S, Cerda-García-Rojas C M, Esparza-García F, Plasencia J, Poggi-Varaldo H M, Ponce-Noyola T, Ramos-Valdivia A C. 2015. Long-term response on growth, antioxidant enzymes, and secondary metabolites in salicylic acid pre-treated Uncaria tomentosa microplants. Biotechnology Letters, 37, 2489-2496.

Singh K, Gupta S, Singh A P. 2024. Review: Nutrient-nutrient interactions governing underground plant adaptation strategies in a heterogeneous environment. Plant Science, 342, 112024. 

Song Y, Ma B, Guo Q X, Zhou L X, Lv C Y, Liu X M, Wang J L, Zhou X T, Zhang C Y. 2022. UV-B induces the expression of flavonoid biosynthetic pathways in blueberry (Vaccinium corymbosum) calli. Frontiers in Plant Science, 13, 1079087.

Srivastava H S. 1974. In vivo activity of nitrate reductase in maize seedlings. Indian Journal of Biochemistry & Biophysics, 11, 230-232.

Treml J, Smejkal K. 2016. Flavonoids as potent scavengers of hydroxyl radicals. Comprehensive Reviews in Food Science and Food Safety, 15, 720-738.

Villordon A Q, Ginzberg I, Firon N. 2014. Root architecture and root and tuber crop productivity. Trends in Plant Science, 19, 419-425.

Wang C C, Wu D W, Jiang L Y, Liu X H, Xie T T. 2023. Multi-omics elucidates difference in accumulation of bioactive constituents in licorice (Glycyrrhiza uralensis) under drought stress. Molecules, 28, 7042.

Wang Q, Liu K, Li J R, Huang D. 2025. Overexpression of apple MdNRT1.7 enhances low nitrogen tolerance via the regulation of ROS scavenging. International Journal of Biological Macromolecules, 293, 139358.

Wang X C, Wu J, Guan M L, Zhao C H, Geng P, Zhao Q. 2020. Arabidopsis MYB4 plays dual roles in flavonoid biosynthesis. Plant Journal, 101, 637-652.

Wang X N, Chai X F, Gao B B, Deng C, Günther C S, Wu T, Zhang X Z, Xu X F, Han Z H, Wang Y. 2023. Multi-omics analysis reveals the mechanism of bHLH130 responding to low-nitrogen stress of apple rootstock. Plant Physiology, 191, 1305-1323.

Wang Y Y, Hsu P K, Tsay Y F. 2012. Uptake, allocation and signaling of nitrate. Trends in Plant Science, 17, 624.

Wu Z M, Luo J S, Han Y L, Hua Y P, Guan C Y, Zhang Z H. 2019. Low nitrogen enhances nitrogen use efficiency by triggering NO3- uptake and its long-distance translocation. Journal of Agricultural and Food Chemistry, 67, 6736-6747.

Yamauchi T, Tanaka A, Inahashi H, Nishizawa N K, Tsutsumi N, Inukai Y, Nakazono M. 2019. Fine control of aerenchyma and lateral root development through AUX/IAA- and ARF-dependent auxin signaling. Proceedings of the National Academy of Sciences of the United States of America, 116, 20770-20775.

Yang Y Y, Gao S W, Su Y C, Lin Z L, Guo J L, Li M J, Wang Z T, Que Y X, Xu L P. 2019. Transcripts and low nitrogen tolerance: Regulatory and metabolic pathways in sugarcane under low nitrogen stress. Environmental and Experimental Botany, 163, 97-111.

Ye X S, Hong J A, Shi L, Xu F S. 2010. Adaptability mdchanism of nitrogen-efficient germplasm of natural variation to low nitrogen stress in Brassica NapusJournal of Plant Nutrition, 33, 2028-2040.

Yin Y Q, Tian X, Yang J, Yang Z F, Tao J, Fang W M. 2022. Melatonin mediates isoflavone accumulation in germinated soybeans (Glycine max L.) under ultraviolet-B stress. Plant Physiology and Biochemistry, 175, 23-32.

Zhang P, Gang D M, Wang Y L, Guo P, Zhao X H, Jiang C J, Yu H Q. 2024. Establishment of a comprehensive evaluation system for low nitrogen and screening of nitrogen-efficient germplasm in peanut. Horticulturae, 10. 

Zheng X L, Yang H F, Zou J P, Jin W D, Qi Z Y, Yang P, Yu J Q, Zhou J. 2024. SnRK1α1-mediated RBOH1 phosphorylation regulates reactive oxygen species to enhance tolerance to low nitrogen in tomato. Plant Cell, 37, 1025

[1] Qi Zhao, Mengjie Cui, Tengda Guo, Lei Shi, Feiyan Qi, Ziqi Sun, Pei Du, Hua Liu, Yu Zhang, Zheng Zheng, Bingyan Huang, Wenzhao Dong, Suoyi Han, Xinyou Zhang. Genome-wide characterization and expression analysis of the cultivated peanut AhPR10 gene family mediating resistance to Aspergillus flavus[J]. >Journal of Integrative Agriculture, 2026, 25(1): 56-67.
[2] Shengzhong Zhang, Xiaohui Hu, Feifei Wang, Huarong Miao, Chu Ye, Weiqiang Yang, Wen Zhong, Jing Chen. Identification of QTLs for plant height and branching-related traits in cultivated peanut[J]. >Journal of Integrative Agriculture, 2025, 24(7): 2511-2524.
[3] Bingyan Huang, Hua Liu, Yuanjin Fang, Lijuan Miao, Li Qin, Ziqi Sun, Feiyan Qi, Lei Chen, Fengye Zhang, Shuanzhu Li, Qinghuan Zheng, Lei Shi, Jihua Wu, Wenzhao Dong, Xinyou Zhang. Identification of oil content QTLs on Arahy12 and Arahy16, and development of KASP markers in cultivated peanut (Arachis hypogaea L.)[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2096-2105.
[4] Kai Zhao, Yanzhe Li, Zhan Li, Zenghui Cao, Xingli Ma, Rui Ren, Kuopeng Wang, Lin Meng, Yang Yang, Miaomiao Yao, Yang Yang, Xiaoxuan Wang, Jinzhi Wang, Sasa Hu, Yaoyao Li, Qian Ma, Di Cao, Kunkun Zhao, Ding Qiu, Fangping Gong, Zhongfeng Li, Xingguo Zhang, Dongmei Yin. Genome-wide analysis of AhCN genes reveals that AhCN34 is involved in bacterial wilt resistance in peanut[J]. >Journal of Integrative Agriculture, 2025, 24(10): 3757-3771.
[5] Fei Xiang, Zhenyuan Li, Yichen Zheng, Caixia Ding, Benu Adhikari, Xiaojie Ma, Xuebing Xu, Jinjin Zhu, Bello Zaki Abubakar, Aimin Shi, Hui Hu, Qiang Wang. Characterization and correlation of engineering properties with microstructure in peanuts: A microscopic to macroscopic analysis[J]. >Journal of Integrative Agriculture, 2025, 24(1): 339-352.
[6] Bo Jiao, Xin Guo, Yiying Chen, Shah Faisal, Wenchao Liu, Xiaojie Ma, Bicong Wu, Guangyue Ren, Qiang Wang. Low-fat microwaved peanut snacks production: Effect of defatting treatment on structural characteristics, texture, color, and nutrition[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2491-2502.
[7] Song Wan, Yongxin Lin, Hangwei Hu, Milin Deng, Jianbo Fan, Jizheng He. Excessive manure application stimulates nitrogen cycling but only weakly promotes crop yields in an acidic Ultisol: Results from a 20-year field experiment[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2434-2445.
[8] Xiaohui Wu, Mengyuan Zhang, Zheng Zheng, Ziqi Sun, Feiyan Qi, Hua Liu, Juan Wang, Mengmeng Wang, Ruifang Zhao, Yue Wu, Xiao Wang, Hongfei Liu, Wenzhao Dong, Xinyou Zhang.

Fine-mapping of a candidate gene for web blotch resistance in Arachis hypogaea L. [J]. >Journal of Integrative Agriculture, 2024, 23(5): 1494-1506.

[9] Zhenyu Liu, Shu Dong, Yuting Liu, Hanjia Li, Fuqin Zhou, Junfeng Ding, Zixu Zhao, Yinglong Chen, Xiang Zhang, Yuan Chen, Dehua Chen. Optimizing the Bacillus thuringiensis (Bt) protein concentration in cotton: Coordinated application of exogenous amino acids and EDTA to reduce spatiotemporal variability in boll and leaf toxins[J]. >Journal of Integrative Agriculture, 2024, 23(10): 3419-3436.
[10] ZHANG Sheng-zhong, HU Xiao-hui, WANG Fei-fei, CHU Ye, YANG Wei-qiang, XU Sheng, WANG Song, WU Lan-rong, YU Hao-liang, MIAO Hua-rong, FU Chun, CHEN Jing. A stable and major QTL region on chromosome 2 conditions pod shape in cultivated peanut (Arachis hyopgaea L.)[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2323-2334.
[11] LIU Zhu, NAN Zhen-wu, LIN Song-ming, YU Hai-qiu, XIE Li-yong, MENG Wei-wei, ZHANG Zheng, WAN Shu-bo. Millet/peanut intercropping at a moderate N rate increases crop productivity and N use efficiency, as well as economic benefits, under rain-fed conditions[J]. >Journal of Integrative Agriculture, 2023, 22(3): 738-751.
[12] XU Hui, HOU Kuo-yang, FANG Hao, LIU Qian-qian, WU Qiu, LIN Fei-fei, DENG Rui, ZHANG Lin-jie, CHEN Xiang, LI Jin-cai. Twice-split phosphorus application alleviates low-temperature impacts on wheat by improved spikelet development and setting[J]. >Journal of Integrative Agriculture, 2023, 22(12): 3667-3680.
[13] ZHU Peng-fei, YANG Qing-li, ZHAO Hai-yan. Identification of peanut oil origins based on Raman spectroscopy combined with multivariate data analysis methods[J]. >Journal of Integrative Agriculture, 2022, 21(9): 2777-2785.
[14] WANG Xiang-yuan, TIAN Lu, FENG Shi-jing, WEI An-zhi. Identifying potential flavonoid biosynthesis regulator in Zanthoxylum bungeanum Maxim. by genome-wide characterization of the MYB transcription factor gene family[J]. >Journal of Integrative Agriculture, 2022, 21(7): 1997-2018.
[15] ZHAO Zhi-hao, SHI Ai-min, GUO Rui, LIU Hong-zhi, HU Hui, WANG Qiang. Protective effect of high-oleic acid peanut oil and extra-virgin olive oil in rats with diet-induced metabolic syndrome by regulating branched-chain amino acids metabolism[J]. >Journal of Integrative Agriculture, 2022, 21(3): 878-891.
No Suggested Reading articles found!