Please wait a minute...
Journal of Integrative Agriculture  2023, Vol. 22 Issue (3): 738-751    DOI: 10.1016/j.jia.2022.08.078
Special Issue: 油料作物合辑Oil Crops
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
Millet/peanut intercropping at a moderate N rate increases crop productivity and N use efficiency, as well as economic benefits, under rain-fed conditions

LIU Zhu1, 2, NAN Zhen-wu1, LIN Song-ming1, YU Hai-qiu2, XIE Li-yong2, MENG Wei-wei1#, ZHANG Zheng1, 3#, WAN Shu-bo1

1 Shandong Academy of Agricultural Sciences, Jinan 250100, P.R.China

2 Agronomy College, Shenyang Agricultural University, Shenyang 110866, P.R.China

3 College of Life Sciences, Shandong Normal University, Jinan 250014, P.R.China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      

谷类/豆类间作已在世界范围内被广泛采用,以提高可持续农业系统中的作物生产力。在不同间作组合中,谷子/花生间作可以适应大部分缺水地区。然而,关于谷子/花生间作与单作在不同施氮水平下的产量性状和氮素利用效率差异的研究较少。本研究旨在确定谷子/花生间作的产量优势、经济效益以及适宜的氮肥用量。采用三种种植模式(单作谷子、单作花生和谷子/花生间作)和四种施氮量(075150225 kg ha-1)进行了为期两年的大田试验结果表明,间作系统的土地当量比(LER)和净效应(NE)在施氮量为150 kg ha-1时达到两年来的最高值(LER两年平均为1.04,NE分别为0.347 Mg ha-1谷子是间作系统中的优势作物(谷子与花生的种间相对竞争能力(Amp>0竞争比率(CRmp>1),单作在施氮量为225 kg ha-1,间作为150 kg ha-1时谷子产量最高。不同种植模式的氮利用效率(NUE)两年均在施氮量为150 kg ha-1时达到最高。间作结合施氮150 kg ha-1净收益最高,两年平均2791 $ ha-1,效益成本比为1.56因此,从经济和农业可持续发展的角度来看,150 kg N ha-1施氮量的谷子/花生间作似乎是替代谷子或花生单作的一个有推广价值的选择。


Cereal and legume intercropping has been widely adopted to increase crop productivity in sustainable farming systems worldwide.  Among different intercropping combinations, millet and peanut intercropping can be adapted to most water-limited areas.  However, there are few studies on the differences in yield characteristics and nitrogen use efficiency between millet/peanut intercropping and monocultures under different nitrogen (N) application rates.  The objective of this study was to determine the yield advantages and economic benefits, as well as the appropriate N application rate, of millet/peanut intercropping.  A two-year field experiment was conducted with three cropping patterns (monoculture millet, monoculture peanut and millet/peanut intercropping) and four N rates (0, 75, 150 and 225 kg ha−1).  The results showed that the land equivalent ratio (LER) and net effect (NE) of the intercropping system reached their highest levels at the N input of 150 kg ha−1 in 2018 and 2019 (1.04 for LER, 0.347 Mg ha−1 for NE, averaged across two years).  Millet was the dominant crop in the intercropping system (aggressivity of millet and peanut (Amp)>0, competitive ratio of millet and peanut (CRmp)>1), and millet yields achieved their highest values at N inputs of 225 kg ha−1 for monoculture and 150 kg ha−1 for intercropping.  NUE reached its highest levels with N inputs of 150 kg ha−1 for all planting patterns over the two years.  Intercropping combined with an N input of 150 kg ha−1 achieved the highest net income of 2 791 USD ha−1, with a benefit-cost ratio of 1.56, averaged over the two years.  From the perspective of economics and agricultural sustainable development, millet/peanut intercropping at 150 kg N ha−1 seems to be a promising alternative to millet or peanut monoculture.

Keywords:  millet       peanut       intercropping       N input       yield       economics  
Received: 08 November 2021   Accepted: 24 January 2022

This work was supported by the National Key Research and Development Program of China (2020YFD1000905) and the Natural Science Foundation of Shandong Province, China (ZR2020MC094). 

About author:  LIU Zhu, E-mail:; #Correspondence ZHANG Zheng, Tel: +86-531-66657802, E-mail:; MENG Wei-wei, Tel: +86-531-66659645, E-mail:

Cite this article: 

LIU Zhu, NAN Zhen-wu, LIN Song-ming, YU Hai-qiu, XIE Li-yong, MENG Wei-wei, ZHANG Zheng, WAN Shu-bo. 2023. Millet/peanut intercropping at a moderate N rate increases crop productivity and N use efficiency, as well as economic benefits, under rain-fed conditions. Journal of Integrative Agriculture, 22(3): 738-751.

Alain R, Paula F, Jacques A, Robert H. 2012. Plant species diversity for sustainable management of crop pests and diseases in agroecosystems: A review. Agronomy for Sustainable Development, 32, 273–303.
Anas M, Liao F, Verma K K, Sarwar M A, Mahmood A, Chen Z, Li Q, Zeng X, Liu Y, Li Y. 2020. Fate of nitrogen in agriculture and environment: Agronomic, eco-physiological and molecular approaches to improve nitrogen use efficiency. Biological Research, 53, 47.
Andersen M K, Hauggaard-Nielsen H, Ambus P, Jensen E S. 2004. Biomass production, symbiotic nitrogen fixation and inorganic N use in dual and tri-component annual intercrops. Plant and Soil, 226, 273–287.
Anil L, Park J, Phipps R H, Miller F A. 1998. Temperate intercropping of cereals for forage: A review of the potential for growth and uitilization with particular reference to the UK. Grass and Forage Science, 53, 301–317.
Bedoussac L, Justes E. 2010. The efficiency of a durum wheat-winter pea intercrop to improve yield and wheat grain protein concentration depends on N availability during early growth. Plant and Soil, 330, 19–35.
Chi B, Zhang Y, Zhang D, Zhang X, Dai J, Dong H. 2019. Wide-strip intercropping of cotton and peanut combined with strip rotation increases crop productivity and economic returns. Field Crops Research, 243, 107617 
Chowdhury M K, Rosario E L. 1994. Comparison of nitrogen, phosphorus and potassium utilization efficiency in maize/mungbean intercropping. Journal of Agricultural Science, 122, 193–199.
Corre-Hellou G, Fustec J, Crozat Y. 2006. Interspecific competition for soil N and its interaction with N2 fixation, leaf expansion and crop growth in pea–barley intercrops. Plant and Soil, 282, 195–208.
Cowden R J, Shah A N, Lehmann L M, Kiaer L P, Henriksen C B, Ghaley B B. 2020. Nitrogen fertilizer effects on pea–barley intercrop productivity compared to sole crops in Denmark. Sustainability, 12, 9335.
Delaquis E, de Haan S, Wyckhuys K A G. 2018. On-farm diversity offsets environmental pressures in tropical agro-ecosystems: A synthetic review for cassava-based systems. Agriculture Ecosystems & Environment, 251, 226–235.
Desai R M, Bhatia C R. 1978. Nitrogen uptake and nitrogen harvest index in durum wheat cultivars varying in their grain protein concentration. Euphytica, 27, 561–566.
Du J B, Han T F Gai J Y, Yong T W, Sun X, Wang X C, Yang F, Liu J, Shu K, Liu W G, Yang W Y. 2018. Maize–soybean strip intercropping: Achieved a balance between high productivity and sustainability. Journal of Integrative Agriculture, 17, 747–754.
Du Q, Zhou L, Chen P, Liu X, Song C, Yang F, Wang X, Liu W, Sun X, Du J, Liu J, Shu K, Yang W, Yong T. 2020. Relay-intercropping soybean with maize maintains soil fertility and increases nitrogen recovery efficiency by reducing nitrogen input. The Crop Journal, 8, 140–152.
Duan Y, Xu M, Gao S, Yang X, Huang S, Liu H, Wang B. 2014. Nitrogen use efficiency in a wheat–corn cropping system from 15 years of manure and fertilizer applications. Field Crops Research, 157, 47–56.
Fan Y, Wang Z, Liao D, Raza M A, Wang B, Zhang J, Chen J, Feng L, Wu X, Yang W, Yang F. 2020. Uptake and utilization of nitrogen, phosphorus and potassium as related to yield advantage in maize–soybean intercropping under different row configurations. Scientific Reports, 10, 9504.
Feng C, Sun Z, Zhang L, Feng L, Zheng J, Bai W, Gu C, Wang Q, Xu Z, van der Werf W. 2021. Maize/peanut intercropping increases land productivity: A meta-analysis. Field Crops Research, 270, 108208.
Feng L, Sun Z, Zheng J. 2013. Water-fertilizer coupling effects and efficient utilization under peanut–millet interplanting conditions. Advanced Materials Research, 742, 272–277.
Fixen P, Brentrup F, Bruulsema T W, Garcia F, and R N, Zingore S. 2015. Nutrient/fertilizer use efficiency: Measurement, current situation and trends. In: Drechsel P, Heffer P, Magen H, Mikkelsen R, Wichelns D, eds., Managing Water and Fertilizer for Sustainable Agricultural Intensification. International Fertilizer Industry Association (IFA), International Water Management Institute (IWMI), International Plant Nutrition Institute (IPNI) and International Potash Institute (IPI), Paris, France. pp. 8–38.
Gan Y, Chai Q, Feng F, Zhao C, Yu A, Mu Y, Zhang Y. 2016. Boosting system productivity through the improved coordination of interspecific competition in maize/pea strip intercropping. Field Crops Research, 198, 50–60.
Gao H, Meng W, Zhang C, van der Werf W, Zhang Z, Wan S, Zhang F. 2020. Yield and nitrogen uptake of sole and intercropped maize and peanut in response to N fertilizer input. Food and Energy Security, 9, e187.
Gerland P, Raftery A E, Sevcikova H, Li N, Gu D, Spoorenberg T, Alkema L, Fosdick B K, Chunn J, Lalic N, Bay G, Buettner T, Heilig G K, Wilmoth J. 2014. World population stabilization unlikely this century. Science, 346, 234–237.
Gong X, Dang K, Liu L, Zhao G, Lv S, Tian L, Jin F, Feng Y, Zhao Y, Feng B. 2021a. Intercropping combined with nitrogen input promotes proso millet (Panicum miliaceum L.) growth and resource use efficiency to increase grain yield on the Loess plateau of China. Agricultural Water Management, 243, 106434.
Gong X, Dang K, Lv S, Zhao G, Wang H, Feng B. 2021b. Interspecific competition and nitrogen application alter soil ecoenzymatic stoichiometry, microbial nutrient status, and improve grain yield in broomcorn millet/mung bean intercropping systems. Field Crops Research, 270, 108227.
Guo H, Yang L, Li X, Yang P, Wan S. 2010. Characteristics of production and quality of peanut in Huang–Huai–Hai region. Chinese Jouranl of Eco-Agricultural, 18, 1233–1238. (in Chinese)
Guo J, Liu X, Zhang Y, Shen J, Han W, Zhang W, Christie P, Goulding K W T, Vitousek P M, Zhang F. 2010. Significant acidification in major Chinese croplands. Science, 327, 1008–1010. 
Hauggaard-Nielsen H, Ambus P, Jensen E S. 2003. The comparison of nitrogen use and leaching in sole cropped versus intercropped pea and barley. Nutrient Cycling in Agroecosystems, 65, 289–300.
Hauggaard-Nielsen H, Gooding M, Ambus P, Corre-Hellou G, Crozat Y, Dahlmann C, Dibet A, von Fragstein P, Pristeri A, Monti M, Jensen E S. 2009. Pea–barley intercropping for efficient symbiotic N2 fixation, soil N acquisition and use of other nutrients in European organic cropping systems. Field Crops Research, 113, 64–71.
Hauggaard-Nielsena H, Jensena E S. 2001. Evaluating pea and barley cultivars for complementarity in intercropping at different levels of soil N availability. Field Crops Research, 72, 185–196.
He H, Liu L, Munir S, Bashir N H, Wang Y, Yang J, Li C. 2019. Crop diversity and pest management in susctainable agriculture. Journal of Integrative Agriculture, 18, 1945–1952.
Jensen E S. 1996. Grain yield, symbiotic N2 fixation and interspecific competition for inorganic N in pea–barley intercrops. Plant and Soil, 182, 25–38.
Latati M, Blavet D, Alkama N, Laoufi H, Drevon J J, Gerard F, Pansu M, Ounane S M. 2014. The intercropping cowpea–maize improves soil phosphorus availability and maize yields in an alkaline soil. Plant and Soil, 385, 181–191.
Layek J, Shivakumar B G, Rana D S, Munda S, Lakshman K, Das A, Ramkrushna G I. 2014. Soybean–cereal intercropping systems as influenced by nitrogen nutrition. Agronomy Journal, 106, 1933–1946.
Li C, Hoffland E, Kuyper T W, Yu Y, Li H, Zhang C, Zhang F, Wopke V D W. 2020a. Yield gain, complementarity and competitive dominance in intercropping in China: A meta-analysis of drivers of yield gain using additive partitioning. European Journal of Agronomy, 113, 125987. 
Li C, Hoffland E, Kuyper T W, Yu Y, Zhang C, Li H, Zhang F, Werf W V D. 2020b. Syndromes of production in intercropping impact yield gains. Nature Plants, 6, 653–660.
Li L, Sun J, Zhang F, Li X, Yang S, Rengel Z. 2001. Wheat/maize or wheat/soybean strip intercropping I. Yield advantage and interspecific interactions on nutrients. Field Crops Research, 71, 123–137.
Li L, Yang S, Li X, Zhang F, Christie P. 1999. Interspecific complementary and competitive interactions between intercropped maize and faba bean. Plant and Soil, 212, 105–144.
Li Q, Sun J, Wei X, Christie P, Zhang F, Li L. 2011. Overyielding and interspecific interactions mediated by nitrogen fertilization in strip intercropping of maize with faba bean, wheat and barley. Plant and Soil, 339, 147–161.
Li X F, Wang C B, Zhang W P, Wang L H, Tian X L, Yang S C, Jiang W L, van Ruijven J, Li L. 2018. The role of complementarity and selection effects in P acquisition of intercropping systems. Plant and Soil, 422, 479–493.
Li Y, Ma L, Wu P, Zhao X, Chen X, Gao X. 2020c. Yield, yield attributes and photosynthetic physiological characteristics of dryland wheat (Triticum aestivum L.)/maize (Zea mays L.) strip intercropping. Field Crops Research, 248, 107656. 
Li Y, Yu C, Cheng X, Li C, Sun J, Zhang F, Lambers H, Li L. 2009. Intercropping alleviates the inhibitory effect of N fertilization on nodulation and symbiotic N2 fixation of faba bean. Plant and Soil, 323, 295–308.
Liu X, Rahman T, Song C, Yang F, Su B, Cui L, Bu W, Yang W. 2018. Relationships among light distribution, radiation use efficiency and land equivalent ratio in maize–soybean strip intercropping. Field Crops Research, 224, 91–101. 
Liu Z, Gao J, Gao F, Liu P, Zhao B, Zhang J. 2018. Photosynthetic characteristics and chloroplast ultrastructure of summer maize response to different nitrogen supplies. Frontiers in Plant Science, 9, 756.
Loreau M, Hector A. 2001. Partitioning selection and complementarity in biodiversity experiments. Nature, 412, 72–76.
Luo S, Yu L, Liu Y, Zhang Y, Yang W, Li Z, Wang J. 2016. Effects of reduced nitrogen input on productivity and N2O emissions in a sugarcane/soybean intercropping system. European Journal of Agronomy, 81, 78–85.
Mao L, Zhang L, Li W, van der Werf W, Sun J, Spiertz H, Li L. 2012. Yield advantage and water saving in maize/pea intercrop. Field Crops Research, 138, 11–20.
Martin-Guay M O, Paquette A, Dupras J, Rivest D. 2018. The new green revolution: Sustainable intensification of agriculture by intercropping. Science of the Total Environment, 615, 767–772.
Mead R, Willey R W. 1980. The concept of a ‘land equivalent ratio’ and advantages in yields from intercropping. Experimental Agriculture, 16, 217–228.
Neugschwandtner R W, Kaul H P. 2015. Nitrogen uptake, use and utilization efficiency by oat–pea intercrops. Field Crops Research, 179, 113–119.
Rodriguez C, Carlsson G, Englund J E, Flohr A, Pelzer E, Jeuffroy M H, Makowski D, Jensen E S. 2020. Grain legume-cereal intercropping enhances the use of soil-derived and biologically fixed nitrogen in temperate agroecosystems. A meta-analysis. European Journal of Agronomy, 118, 126077. 
Rusinamhodzi L, Corbeels M, Nyamangara J, Giller K E. 2012. Maize-grain legume intercropping is an attractive option for ecological intensification that reduces climatic risk for smallholder farmers in central Mozambique. Field Crops Research, 136, 12–22.
Salvagiotti F, Cassman K G, Specht J E, Walters D T, Weiss A, Dobermann A. 2008. Nitrogen uptake, fixation and response to fertilizer N in soybeans: A review. Field Crops Research, 108, 1–13.
Thilakarathna M S, McElroy M S, Chapagain T, Papadopoulos Y A, Raizada M N. 2016. Belowground nitrogen transfer from legumes to non-legumes under managed herbaceous cropping systems. A review. Agronomy for Sustainable Development, 36, 1–16.
Tilman D, Cassman K G, Matson P A, Naylor R, Polasky S. 2002. Agricultural sustainability and intensive production practices. Nature, 418, 671–677.
Trenbath B R. 1993. Intercropping for the management of pests and diseases. Field Crops Research, 34, 381–405.
Vandermeer J H. 1989. Introduction: Intercrops and ecology. In: The Ecology of Intercropping, Cambridge University Press.
Vitousek P M, Naylor R, Crews T, David M B, Drinkwater L E, Holland E, Johnes P J, Katzenberger J, Martinelli L A, Matson P A, Nziguheba G, Ojima D, Palm C A, Robertson G P, Sanchez P A, Townsend A R, Zhang F S. 2009. Nutrient imbalances in agricultural development. Science, 324, 1519–1520.
Wang X, Feng Y, Yu L, Shu Y, Tan F, Gou Y, Luo S, Yang W, Li Z, Wang J. 2020. Sugarcane/soybean intercropping with reduced nitrogen input improves crop productivity and reduces carbon footprint in China. Science of the Total Environment, 719, 137517.
Wang Y B, Huang R D, Zhou Y F. 2021. Effects of shading stress during the reproductive stages on photosynthetic physiology and yield characteristics of peanut (Arachis hypogaea Linn.). Journal of Integrative Agriculture, 20, 1250–1265.
Williams L J, Paquette A, Cavender-Bares J, Messier C, Reich P B. 2017. Spatial complementarity in tree crowns explains overyielding in species mixtures. Nature Ecology & Evolution, 1, 1–7.
Xiao J X, Zhu Y A, Bai W I, Liu Z Y, Tang L, Zheng Y. 2021. Yield performance and optimal nitrogen and phosphorus application rates in wheat and faba bean intercropping. Journal of Integrative Agriculture, 20, 3012–3025.
Xing Y, Jiang W, He X, Fiaz S, Ahmad S, Lei X, Wang W, Wang Y, Wang X. 2019. A review of nitrogen translocation and nitrogen-use efficiency. Journal of Plant Nutrition, 42, 2624–2641.
Xu Z, Li C, Zhang C, Yu Y, van der Werf W, Zhang F. 2020. Intercropping maize and soybean increases efficiency of land and fertilizer nitrogen use: A meta-analysis. Field Crops Research, 246, 107661.
Yang C, Fan Z, Chai Q. 2018. Agronomic and economic benefits of pea/maize intercropping systems in relation to N fertilizer and maize density. Agronomy, 8, 52.
Yang H, Zhang W, Li L. 2021. Intercropping: feed more people and build more sustainable agroecosystems. Frontiers of Agricultural Science and Engineering, 8, 373–386.
Yu H, Heerink N, Jin S, Berentsen P, Zhang L, van der Werf W. 2017. Intercropping and agroforestry in China - Current state and trends. Agriculture Ecosystems & Environment, 244, 52–61.
Yu Y, Stomph T J, Makowski D, Werf W V D. 2015. Temporal niche differentiation increases the land equivalent ratio of annual intercrops: A meta-analysis. Field Crops Research, 184, 133–144.
Zhang D, Sun Z, Feng L, Bai W, Yang N, Zhang Z, Du G, Feng C, Cai Q, Wang Q, Zhang Y, Wang R, Arshad A, Hao X, Sun M, Gao Z, Zhang L. 2020. Maize plant density affects yield, growth and source–sink relationship of crops in maize/peanut intercropping. Field Crops Research, 257, 107926.
Zhang F, Wang J, Zhang W, Cui Z, Ma W, Chen X, Jiang R. 2008. Nutrient use efficiencies of major cereal crops in China and measures for improvement. Acta Pedologica Sinca, 45, 915–924. (in Chinese)
Zhang R, Meng L, Li Y, Wang X, Ogundeji A O, Li X, Sang P, Mu Y, Wu H, Li S. 2021. Yield and nutrient uptake dissected through complementarity and selection effects in the maize/soybean intercropping. Food and Energy Security, 10, 379–393.
Zhang W P, Gao S N, Li Z X, Xu H S, Yang H, Yang X, Fan H X, Su Y, Fornara D, Li L. 2021. Shifts from complementarity to selection effects maintain high productivity in maize/legume intercropping systems. Journal of Applied Ecology, 58, 2603–2613. 
Zhu Z L, Chen D L. 2002. Nitrogen fertilizer use in China-contributions to food production, impacts on the environment and best management strategies. Nutrient Cycling in Agroecosystems, 63, 117–127.
Zou X, Li H, Sun Z, Sun W, Yang N, Niu S, Liu H, Xu J, Tan L. 2019. Interspecific facilitation between intercropped millets and peanuts: insights from root proteomics analysis. Archives of Agronomy and Soil Science, 65, 612–624.
Zou X, Liu Z, Niu S, Yang N, Feng L. 2018. Interspecific root interactions enhance biomass and nutrient acquisition of millet (Setaria itlica) and mungbean (Vigna radiata) in intercropping system. International Journal of Agricultural Biology, 20, 1181–1187.

[1] ZHANG Sheng-zhong, HU Xiao-hui, WANG Fei-fei, CHU Ye, YANG Wei-qiang, XU Sheng, WANG Song, WU Lan-rong, YU Hao-liang, MIAO Hua-rong, FU Chun, CHEN Jing. A stable and major QTL region on chromosome 2 conditions pod shape in cultivated peanut (Arachis hyopgaea L.)[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2323-2334.
[2] WEI Huan-he, GE Jia-lin, ZHANG Xu-bin, ZHU Wang, DENG Fei, REN Wan-jun, CHEN Ying-long, MENG Tian-yao, DAI Qi-gen. Decreased panicle N application alleviates the negative effects of shading on rice grain yield and grain quality[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2041-2053.
[3] GAO Peng, ZHANG Tuo, LEI Xing-yu, CUI Xin-wei, LU Yao-xiong, FAN Peng-fei, LONG Shi-ping, HUANG Jing, GAO Ju-sheng, ZHANG Zhen-hua, ZHANG Hui-min. Improvement of soil fertility and rice yield after long-term application of cow manure combined with inorganic fertilizers[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2221-2232.
[4] DING Yong-gang, ZHANG Xin-bo, MA Quan, LI Fu-jian, TAO Rong-rong, ZHU Min, Li Chun-yan, ZHU Xin-kai, GUO Wen-shan, DING Jin-feng. Tiller fertility is critical for improving grain yield, photosynthesis and nitrogen efficiency in wheat[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2054-2066.
[5] LIU Dan, ZHAO De-hui, ZENG Jian-qi, Rabiu Sani SHAWAI, TONG Jing-yang, LI Ming, LI Fa-ji, ZHOU Shuo, HU Wen-li, XIA Xian-chun, TIAN Yu-bing, ZHU Qian, WANG Chun-ping, WANG De-sen, HE Zhong-hu, LIU Jin-dong, ZHANG Yong. Identification of genetic loci for grain yield‑related traits in the wheat population Zhongmai 578/Jimai 22[J]. >Journal of Integrative Agriculture, 2023, 22(7): 1985-1999.
[6] ZHANG Chong, WANG Dan-dan, ZHAO Yong-jian, XIAO Yu-lin, CHEN Huan-xuan, LIU He-pu, FENG Li-yuan, YU Chang-hao, JU Xiao-tang. Significant reduction of ammonia emissions while increasing crop yields using the 4R nutrient stewardship in an intensive cropping system[J]. >Journal of Integrative Agriculture, 2023, 22(6): 1883-1895.
[7] LI Qian-chuan, XU Shi-wei, ZHUANG Jia-yu, LIU Jia-jia, ZHOU Yi, ZHANG Ze-xi. Ensemble learning prediction of soybean yields in China based on meteorological data[J]. >Journal of Integrative Agriculture, 2023, 22(6): 1909-1927.
[8] ZHAO Xiao-dong, QIN Xiao-rui, LI Ting-liang, CAO Han-bing, XIE Ying-he. Effects of planting patterns plastic film mulching on soil temperature, moisture, functional bacteria and yield of winter wheat in the Loess Plateau of China[J]. >Journal of Integrative Agriculture, 2023, 22(5): 1560-1573.
[9] ZHANG Zhen-zhen, CHENG Shuang, FAN Peng, ZHOU Nian-bing, XING Zhi-peng, HU Ya-jie, XU Fang-fu, GUO Bao-wei, WEI Hai-yan, ZHANG Hong-cheng. Effects of sowing date and ecological points on yield and the temperature and radiation resources of semi-winter wheat[J]. >Journal of Integrative Agriculture, 2023, 22(5): 1366-1380.
[10] LI Min, ZHU Da-wei, JIANG Ming-jin, LUO De-qiang, JIANG Xue-hai, JI Guang-mei, LI Li-jiang, ZHOU Wei-jia. Dry matter production and panicle characteristics of high yield and good taste indica hybrid rice varieties[J]. >Journal of Integrative Agriculture, 2023, 22(5): 1338-1350.
[11] ZHAO Shu-ping, DENG Kang-ming, ZHU Ya-mei, JIANG Tao, WU Peng, FENG Kai, LI Liang-jun.

Optimization of slow-release fertilizer application improves lotus rhizome quality by affecting the physicochemical properties of starch [J]. >Journal of Integrative Agriculture, 2023, 22(4): 1045-1057.

[12] WANG Xin-yu, YANG Guo-dong, XU Le, XIANG Hong-shun, YANG Chen, WANG Fei, PENG Shao-bing. Grain yield and nitrogen use efficiency of an ultrashort-duration variety grown under different nitrogen and seeding rates in direct-seeded and double-season rice in Central China[J]. >Journal of Integrative Agriculture, 2023, 22(4): 1009-1020.
[13] ZHANG Bing-chao, HU Han, GUO Zheng-yu, GONG Shuai, SHEN Si, LIAO Shu-hua, WANG Xin, ZHOU Shun-li, ZHANG Zhong-dong. Plastic-film-side seeding, as an alternative to traditional film mulching, improves yield stability and income in maize production in semi-arid regions[J]. >Journal of Integrative Agriculture, 2023, 22(4): 1021-1034.
[14] SHI Wen-xuan, ZHANG Qian, LI Lan-tao, TAN Jin-fang, XIE Ruo-han, WANG Yi-lun. Hole fertilization in the root zone facilitates maize yield and nitrogen utilization by mitigating potential N loss and improving mineral N accumulation[J]. >Journal of Integrative Agriculture, 2023, 22(4): 1184-1198.
[15] Sunusi Amin ABUBAKAR, Abdoul Kader Mounkaila HAMANI, WANG Guang-shuai, LIU Hao, Faisal MEHMOOD, Abubakar Sadiq ABDULLAHI, GAO Yang, DUAN Ai-wang. Growth and nitrogen productivity of drip-irrigated winter wheat under different nitrogen fertigation strategies in the North China Plain[J]. >Journal of Integrative Agriculture, 2023, 22(3): 908-922.
No Suggested Reading articles found!