Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Identification of oil content QTL on Arahy12 and Arahy16 and development of KASP markers in cultivated peanut (Arachis hypogaea L.)
HUANG Bing-yan1, LIU Hua1, FANG Yuan-jin1, 2, MIAO Li-juan1, QIN Li1, SUN Zi-qi1, QI Fei-yan1, CHEN Lei3, ZHANG Feng-ye3, LI Shuan-zhu4, ZHENG Qing-huan4, SHI Lei1, WU Ji-hua3, DONG Wen-zhao1, ZHANG Xin-you1#

1 Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Science/Shengnong Laboratory/Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture/Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou 450002, P.R.China2 Agricultural College, Nanjing Agricultural University, Nanjing 210095, P.R.China

3 Shangqiu Academy of Agriculture and Forestry, Shangqiu 476000, P.R.China

4 Nanyang Academy of Agricultural Sciences, Nanyang 473008, P.R.China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

高油高油酸花生品种因其富含营养、货架期长及有益于身体健康而备受消费者、加工企业和农民喜爱。花生含油量和脂肪酸含量性状由多基因控制,在不同遗传背景下鉴定其QTL将有助于分子标记辅助选择或基因组选择,提高花生品质育种效率。我们利用来源于含油量中高及油酸含量差异大的双亲、含有521个家系的RIL群体构建的高密度遗传图谱,以及25个环境的花生籽仁品质性状的表型数据,最终定位到两个稳定的含油量性状QTLqOCAh12.1qOCAh16.1),并开发了KASP标记在自然群体中得到了验证。QTL区域的单倍型分析表明,qOCAh16.1的高含油量优势单倍型仅存在于少数国外资源。此外,本研究鉴定到的qAh09qAh19区间含有已知的脂肪酸合成关键酶FAD2基因位点,可同时影响所有7种脂肪酸含量,包括棕榈酸、硬脂酸、油酸、亚油酸、花生酸、花生烯酸和山嵛酸,并鉴定到位于第7染色体的蛋白质和长链饱和脂肪酸含量的主效QTL位点,PVE大于10%。本研究结果将有助于花生含油量的标记辅助选择育种,并为花生籽仁脂肪酸含量变异的遗传基础提供了新的认识。



Abstract  

Peanut kernels rich in oil, particularly those with oleic acid as their primary fatty acid, are sought after by consumers, the food industry, and farmers due to their superior nutritional content, extended shelf life, and health benefits.  The oil content and fatty acid composition are governed by multiple genetic factors.  Identifying the quantitative trait loci (QTL) related to these attributes would facilitate marker-assisted selection or genomic selection, thus enhancing the quality-focused peanut breeding program.  For this purpose, we developed a population of 521 recombinant inbred lines (RIL) and tested their kernel quality traits across five different environments. We identified two major and stable QTLs for oil content (qOCAh12.1 and qOCAh16.1).  The markers linked to these QTLs were designed by competitive allele-specific PCR (KASP) and were subsequently validated.  Moreover, we found that the superior haplotype of oil content in the qOCAh16.1 region was conserved within the PI germplasm cluster, as evidenced by a diverse peanut accession panel.  In addition, we determined that qAh09 and qAh19.1, which harbor the key gene encoding fatty acid desaturase 2 (FAD2), influence all seven fatty acids, including palmitic, stearic, oleic, linoleic, arachidic, gadoleic, and behenic acids.  As for protein content and the long-chain saturated fatty acid behenic acid, qAh07 emerged as the major and stable QTLs, accounting for over 10% of the phenotypic variation explained (PVE).  These findings would enhance marker-assisted selection in peanut breeding, aiming to improve oil content, and deepen our understanding of the genetic mechanisms that shape fatty acid composition. 

Keywords:  peanut              QTL              oil content              fatty acid composition              molecular markers  
Online: 10 November 2023  
Fund: This work was supported by the National Key R & D Program of China (2022YFD 1200400), the China Agriculture Research System (CARS-13), the Major Science and Technology Projects of Henan Province, China (221100110300), and the Henan Provincial R&D Program of Interregional Cooperation for Local Scientific and Technological Development Guided by Central Government, China (YDZX20214100004191).
About author:  HUANG Bing-yan, E-mail: huangbingyan@aliyun.com; #Correspondence ZHANG Xin-you, E-mail: haasz@126.com

Cite this article: 

HUANG Bing-yan, LIU Hua, FANG Yuan-jin, MIAO Li-juan, QIN Li, SUN Zi-qi, QI Fei-yan, CHEN Lei, ZHANG Feng-ye, LI Shuan-zhu, ZHENG Qing-huan, SHI Lei, WU Ji-hua, DONG Wen-zhao, ZHANG Xin-you. 2023. Identification of oil content QTL on Arahy12 and Arahy16 and development of KASP markers in cultivated peanut (Arachis hypogaea L.). Journal of Integrative Agriculture, Doi:10.1016/j.jia.2023.11.010

Baring M R, Wilson J N, Burrow M D, Simpson C E, Aters J L, Cason J M. 2013. Variability of total oil content in peanut across the state of Texas. Journal of Crop Improvement27, 125-136.

Bertioli D J, Cannon S B, Froenicke L, Huang G, Farmer A D, Cannon E K S, Liu X, Gao D, Clevenger J, Dash S, Ren L, Moretzsohn M C, Shirasawa K, Huang W, Vidigal B, Abernathy B, Chu Y, Niederhuth A E, Umale P, Araújo A C G, et al. 2016. The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut, Nature Genetics48, 438- 446.

Bertioli D J, Jenkins J, Clevenger J, Dudchenko O, Gao D, Seijo G, Leal-Bertioli S C M, Ren L, Farmer A D, Pandey M K, Samoluk S S, Abernathy B, Agarwal G, Ballén-Taborda C, Cameron C, Campbell J, Chavarro C, Chitikineni A, Chu Y, Dash S, et al. 2019. The genome sequence of segmental allotetraploid peanut Arachis hypogaea. Nature Genetics, 5, 1877-1884.

Cater N B, Denke M A . 2001. Behenic acid is a cholesterol-raising saturated fatty acid in humans. American Journal of Clinical Nutrition, 73, 41-44.

Chen X, Lu Q, Liu H, Zhang J, Hong Y, Lan H, Li H, Wang J, Liu H, Li S, Pandey M K, Zhang Z, Zhou G, Yu J, Zhang G, Yuan J, Li X, Wen S, Meng F, Yu S, et al. 2019. Sequencing of cultivated peanut, Arachis hypogaea, yields insights into genome evolution and oil improvement. Molecular Plant, 12, 920-934.

Cingolani P, Platts A, Wang L, Coon M, Nguyen T, Wang L, Land S J, Lu X, Ruden D M. 2012. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff. Fly, 6, 80-92.

Dean L L, Hendrix K W, Holbrook C C, Sanders T H. 2009. The control of some nutrient in the core of the core of peanut germplasm collection. Peanut Science, 36, 104-120.

Eskandari M, Cober E R, Rajcan I. 2013. Genetic control of soybean seed oil: I. QTL and genes associated with oil concentration in RIL populations derived from crossing moderately high oil parents. Theoretical and Applied Genetics, 126, 483- 495.

Guo J, Liu N, Li W, Wu B, Chen W, Huang L, Chen W, Luo H, Zhou X, Jiang H. 2021. Identification of two major loci and linked marker for oil content in peanut (Arachis hypogaea L.). Euphytica, 217, 29.

Hu X H, Zhang S Z, Miao H R, Cui F G, Shen Y, Yang W Q, Xu T T, Chen N, Chi X Y, Zhang Z M, Chen J. 2018. High-density genetic map construction and identification of QTL controlling oleic and linoleic acid in peanut using SLAFseq and SSRs. Scientific Reports, 8, 5479.

Huang B, Qi F, Sun Z, Miao L, Zhang Z, Liu H, Fang Y, Dong W, Tang F, Zheng Z, Zhang X. 2019. Marker-assisted backcrossing to improve seed oleic acid content in four elite and popular peanut (Arachis hypogaea L.) cultivars with high oil content. Breeding Science, 69, 234- 243.

Huang L, He H, Chen W, Ren X, Chen Y, Zhou X , Xia Y, Wang X, Jiang X, Liao B, Jiang H. 2015. Quantitative trait locus analysis of agronomic and quality related traits in cultivated peanut (Arachis hypogaea L.). Theoretical and Applied Genetics, 128, 1103-1115.

Jadhav M P, Gangurde S S, Hake A A, Yadawad A, Mahadevaiah S S, Pattanashetti S K, Gowda M V C, Shirasawa K, Varshney R K, Pandey M K, Bhat R S. 2021. Genotyping-by-sequencing based genetic mapping identified major and consistent genomic regions for productivity and kernel quality traits in peanut. Frontiers in Plant Science, 12, 668020.

Jung S, Powell G, Moore K, Abbott A. 2000a. The high oleate trait in the cultivated peanut [Arachis hypogaea L.]. II. molecular basis and genetics of the trait. Molecular and General Genetics, 263, 806-811.

Jung S, Swift D, Sengoku E, Patel M, Teulé F, Powell G, Moore K, Abbott A. 2000b. The high oleate trait in the cultivated peanut [Arachis hypogaea L.] I. Isolation and characterization of two genes encoding microsomal oleoyl-PC desaturases. Molecular and General Genetics, 263, 796-805.

Kris-Eterton M P, Pearson A T, Wan Y, Hargrove R L, Moriarty K, Fishell V, Etherton D T. 1999. High monounsaturated fatty acid diets lower both plasma cholesterol and triacylglycerol concentrations. American Journal of Clinical Nutrition, 70, 1009-1015.

Li H H, Ye G, Wang J K. 2007. A modified algorithm for the improvement of composite interval mapping. Genetics, 175, 361- 374.

Liu N, Chen H, Huai D, Xia F, Huang L, Chen W, Wu B, Ren X, Luo H, Zhou X, Chen Y, Lei Y, Liao B, Jiang H. 2019. Four QTL clusters containing major and stable QTLs for saturated fatty acid contents in a dense genetic map of cultivated peanut (Arachis hypogaea L.). Molecular Breeding, 39, 23.

Liu N, Guo J B, Zhou X J, Wu B, Huang L, Luo H Y, Chen Y N, Chen W G, Lei Y, Huang Y, Liao B S, Jiang H F. 2020. High-resolution mapping of a major and consensus quantitative trait locus for oil content to a ~0.8-Mb region on chromosome A08 in peanut (Arachis hypogaea L.). Theoretical and Applied Genetics, 133, 37-49.

Meng L, Li H, Zhang L, Wang J. 2015. QTL IciMapping: Integrated software for genetic linkage map construction and quantitative trait locus mapping in bi-parental populations. The Crop Journal, 3, 169-173.

Norden A J, Gorbet D W, Knauft A, Young C T. 1987. Variability in oil quality among peanut genotypes in the Florida breeding program. Peanut Science, 14, 7-11.

O’Byne D J, Knauft D A, Shireman R B. 1997. Low fat monounsaturated rich diets containing high-oleic peanuts improve serum lipoprotein profiles. Lipids, 32, 687-695.

Ohlrogge J, Browse J. 1995. Lipid biosynthesis. Plant Cell, 7, 957-970.

O’Keefe S F, Wiley V A, Knauft D A. 1993. Comparison of oxidative stability of high and normal-oleic peanut oils. Journal of the American Oil Chemists Society, 70, 489-492.

Van Ooijen J W. 2018. JoinMap® Software for the calculation of genetic linkage maps in experimental populations of diploid species. Kyazma B.V., Wageningen.

Pandey M K, Gautami B, Jayakumar T, Sriswathi M, Upadhyaya H D, Gowda M V C, Radhakrishnan T, Bertioli D J, Knapp S J, Cook D R, Varshney R K. 2012. Highly informative genic and genomic SSR markers to facilitate molecular breeding in cultivated groundnut (Arachis hypogaea). Plant Breeding, 131, 139-147.

Pandey M K, Wang M L, Qiao L X, Feng S P, Khera P, Wang H, Tonnis B, Barkley N A, Wang J P, Holbrook C C, Culbreath A K, Varshney R K, Guo B. 2014a. Identification of QTL associated with oil content and mapping FAD2 genes and their relative contribution to oil quality in peanut (Arachis hypogaea L.). BMC Genetics, 15, 133. 

Pandey M K, Ypadhyaya H D, Rathore A, Vadez V, Shehshayee M S, Sriswathi M, Govil M, Kumar A, Gowda M V C, Shama S, Hamidou F, Kumar V A, Khera P, Bhat R, Khan A W, Singh S, Li H, Monyo E, Nadaf H L, Mukri G, et al. 2014b. Genome-wide association studies for 50 agronomic traits in peanut using the ‘reference set’ comprising 300 genotypes from 48 countries of semi-arid tropics of the world. PLoS ONE, 9, e0105228.

Qi F, Sun Z, Liu H, Zheng Z, Qin L, Shi L, Chen Q, Liu H, Lin X, Miao L, Tian M, Wang X, Huang B, Dong W, Zhang X. 2022. QTL identification, fine mapping, and marker development for breeding peanut (Arachis hypogaea L.) resistant to bacterial wilt. Theoretical and Applied Genetics, 135, 1319-1330.

Sarvamangala C, Gowda M V C, Varshney R K. 2011. Identification of QTL for protein content, oil content and oil quality for groundnut. Field Crop Research, 122, 49- 59. 

Shasidhar Y, Vishwakarma M K, Pandey M K, Janila P, Variath M T, Manohar S S, Nigam S N B, Varshney R K. 2017. Molecular mapping of oil content and fatty acids using dense genetic maps in groundnut (Arachis hypogaea L.). Frontiers in Plant Science, 8, 794.

Sun Z, Qi F, Liu H, Qin L, Xu J, Shi L, Zhang Z, Miao L, Huang B, Dong W, Wang X, Tian M, Geng J, Zhao R, Zhang X, Zheng Z. 2022. QTL mapping of quality traits in peanut using whole-genome resequencing. The Crop Journal, 10, 177- 184.

Wang J, Long C, Zhang H, Zhang Y, Wang H, Yue H, Wang X, Wu S, Qi G. 2016. Genetic variant in Flavin-containing monooxygenase 3 alters lipid metabolism in laying hens in a diet-specific manner. International Journal of Biological Sciences, 12, 1382-1393.

Wang M L, Chen C Y, Tonnis B, Barkley N A, Pinnow D L, Pittman R N, Davis J, Holbrook C C, Stalker H T, Pederson G A. 2013. Oil, fatty acid, flavonoid, and resveratrol content variability and FAD2A functional SNP genotypes in the U.S. peanut mini-core collection. Journal of Agricultural and Food Chemistry, 61, 2875-2882.

Wang M L, Khera P, Pandey M K, Wang H, Qiao L, Feng S, Tonnis B, Barkley N A, Pinnow D, Holbrook C C, Culbreath A K, Varshney R K, Guo B. 2015. Genetic mapping of QTLs controlling fatty acids provided insights into the genetic control of fatty acid synthesis pathway in peanut (Arachis hypogaea L.). PLoS ONE, 10, e0119454.

Wilson J N, Chopra R, Baring M R, Selvaraj M G, Simpson C E, Chagoya I, Burow M D. 2017. Advanced backcross quantitative trait loci (QTL) analysis of oil concentration and oil quality traits in peanut (Arachis hypogaea L.). Tropical Plant Biology, 10, 1-17. 

Yang Y, Li Y, Cheng Z, Su Q, Jin X, Song Y, Wang J. 2023. Genetic analysis and exploration of major effect QTLs underlying oil content in peanut. Theoretical and Applied Genetics, 136, 97.

Zhang R, Jia G, Diao X. 2023. GeneHapR: An R package for gene haplotypic statistics and visualization. BMC Bioinformatics, 24, 199.

Zhuang W, Chen H, Yang M, Wang J, Pandey M K, Zhang C, Chang W C, Zhang L, Zhang X, Tang R, Garg V, Wang X, Tang H, Chow C N, Wang J, Deng Y, Wang D, Khan A W, Yang Q, Cai T, et al. 2019. The genome of cultivated peanut provides insight into legume karyotypes, polyploid evolution and crop domestication. Nature Genetics, 51, 865–876. 

No related articles found!
No Suggested Reading articles found!