Please wait a minute...
Journal of Integrative Agriculture  2024, Vol. 23 Issue (10): 3419-3436    DOI: 10.1016/j.jia.2024.03.029
Section 2: Cotton biotechnology Advanced Online Publication | Current Issue | Archive | Adv Search |
Optimizing the Bacillus thuringiensis (Bt) protein concentration in cotton: Coordinated application of exogenous amino acids and EDTA to reduce spatiotemporal variability in boll and leaf toxins
Zhenyu Liu1, Shu Dong1, Yuting Liu1, Hanjia Li1, Fuqin Zhou1, Junfeng Ding1, Zixu Zhao1, Yinglong Chen2, Xiang Zhang1, Yuan Chen1, Dehua Chen1#
1 Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
2 The UWA Institute of Agriculture, School of Agriculture and Environment, The University of Western Australia, Perth 6009, WA, Australia
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  
结铃期棉铃杀虫蛋白表达量最低、不同器官抗虫性的显著差异给防治棉铃虫带来了挑战。为此,2020-2021年棉花生长期,设计了蛋白质合成增强和降解减弱的协同调节试验研究。以两个陆地棉品种(Bt棉抗虫杂交种泗抗3号和常规种泗抗1号)为试验材料,设置了于盛花期喷施的3个处理:CK(对照,清水)、T1(氨基酸)和T2(氨基酸和EDTA)。结果表明,与CK相比,T1和T2处理显著增加了棉铃及其对位叶Bt蛋白含量,棉铃最大增幅达67.5%,叶片达21.7%。此外,棉铃与其对位叶间Bt蛋白含量差异减少了31.2%。相关分析推断与蛋白质合成提高、蛋白质分解减弱从而增强Bt蛋白含量的主要生理机制与Bt基因表达水平无关。逐步回归和通径分析揭示了:提高的可溶性蛋白含量和转氨酶活性、降低的蛋白质分解酶活性是Bt蛋白含量提高的主要原因。因此,氨基酸和EDTA的协同应用可成为能够提高Bt棉花整株抗虫性并降低棉铃和叶片间Bt毒素表达时空差异的一种调节手段。


Abstract  
During the boll formation stage, cotton bolls exhibit the lowest expression of Bacillus thuringiensis (Bt) insecticidal proteins.  Resistance to insects varies notably among different organs, which poses challenges for controlling cotton bollworms.  Consequently, an experimental strategy was designed in the 2020–2021 cotton growing season to coordinate the enhancement of protein synthesis and the attenuation of degradation.  Two Bt cultivars of Gossypium hirsutum, namely the hybrid Sikang 3 and the conventional Sikang 1, were used as test materials.  Three treatments were applied at the peak flowering period: CK (the control), T1 (amino acids), and T2 (amino acids and EDTA).  The results show that, in comparison to the CK group, the Bt protein contents were significantly increased in both cotton bolls and their subtending leaves under the T1 and T2 treatments.  The maximum levels of increase observed were 67.5% in cotton bolls and 21.7% in leaves.  Moreover, the disparity in Bt protein content between cotton bolls and their subtending leaves notably decreased by 31.2%.  Correlation analysis suggested that the primary physiological mechanisms for augmenting Bt protein content involve increased protein synthesis and reduced protein catabolism, which are independent of Bt gene expression levels.  Stepwise regression and path analysis revealed that elevating the soluble protein content and transaminase activity, while reducing the catabolic enzyme activities, are instrumental in enhancing the Bt protein content.  Consequently, the coordinated application of amino acids and EDTA emerges as a strategy that can improve the overall resistance of Bt cotton and mitigate the spatiotemporal variations in Bt toxin concentrations in both cotton bolls and leaves.


Keywords:  Gossypium hirsutum       Bt cotton       insecticidal protein       bolls and their subtending leaves       nitrogen metabolism  
Received: 13 November 2023   Accepted: 23 January 2024
Fund: 
This work was supported by the National Natural Science Foundation of China (31901462 and 31671613), the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (22KJA210005), the China Scholarship Council (202308320440), and the Postgraduate Research & Practice Innovation Program of Jiangsu Province, China (KYCX22_3508).
About author:  Zhenyu Liu, Tel: +86-514-87979357, E-mail: 1127317278@qq.com; #Correspondence Dehua Chen, Tel: +86-514-87979357, E-mail: cdh@yzu.edu.cn

Cite this article: 

Zhenyu Liu, Shu Dong, Yuting Liu, Hanjia Li, Fuqin Zhou, Junfeng Ding, Zixu Zhao, Yinglong Chen, Xiang Zhang, Yuan Chen, Dehua Chen. 2024. Optimizing the Bacillus thuringiensis (Bt) protein concentration in cotton: Coordinated application of exogenous amino acids and EDTA to reduce spatiotemporal variability in boll and leaf toxins. Journal of Integrative Agriculture, 23(10): 3419-3436.

Abidallha E H M A, Li Y, Hen L, Chen Y, Tambel L I M, Hu D P, Chen Y, Zhang X, Chen D H. 2017. Amino acid composition and level affect Bt protein concentration in Bt cotton. Plant Growth Regulation82, 439–446.

Adamczyk J J, Meredith W R. 2004. Genetic basis for the variability of Cry1Ac expression among commercial transgenic Bacillus thuringiensis (Bt) cotton cultivars in the United States. Journal of Cotton Science8, 17–23.

Chen D H, Ye G Y, Yang C Q, Chen Y, Wu Y K. 2005a. Effect of introducing Bacillus thuringiensis gene on nitrogen metabolism in cotton. Field Crops Research92, 1–9.

Chen D H, Ye G Y, Yang C Q, Chen Y, Wu Y K. 2005b. The effect of the high temperature on the insecticidal properties of the cotton. Environmental and Experimental Botany53, 333–342.

Chen S, Wu J Y, He X L, Huang J Q, Zhou B L, Zhang R X. 1997. Quantification using ELISA of Bacillus thuringiensis insecticidal protein expressed in the tissue of transgenic insect-resistant cotton. Jiangsu Journal of Agricultural Sciences3, 154–156. (in Chinese)

Chen Y, Chen Y, Wen Y J, Zhang X, Chen D H. 2012a. The effects of the relative humidity on the insecticidal expression level of Bt cotton during bolling period under high temperature. Field Crops Research137, 141–147.

Chen Y, Li Y, Zhou M Y, Cai Z Z, Tambel L I M, Zhang X, Chen Y, Chen D H. 2019. Nitrogen deficit decreases seed Cry1Ac endotoxin expression in Bt transgenic cotton. Plant Physiology and Biochemistry141, 114–121.

Chen Y, Li Y B, Chen Y, Abidallha E H M A, Hu D P, Li Y, Zhang X, Chen D H. 2017. Planting density and leaf-square regulation affected square size and number contributing to altered insecticidal protein content in Bt cotton. Field Crops Research205, 14–22.

Chen Y, Li Y B, Zhou M Y, Rui Q Z, Cai Z Z, Zhang X, Chen Y, Chen D H. 2018. Nitrogen (N) application gradually enhances boll development and decreases boll shell insecticidal protein content in N-deficient cotton. Frontiers in Plant Science9, 51.

Chen Y, Liu Z Y, Dai Y Y, Yue Y, Liu Y T, Li H J, He R, Zhang X, Chen D H. 2023. Low temperature decreased insecticidal protein contents of cotton and its physiological mechanism. Frontiers in Plant Science13, 1082926.

Chen Y, Liu Z Y, Tambel L I M, Zhang X, Chen Y, Chen D H. 2021. Reduced square Bacillus thuringiensis insecticidal protein content of transgenic cotton under N deficit. Journal of Integrative Agriculture20, 100–108.

Chen Y, Wen Y J, Chen Y, Cothren J T, Zhang X, Wang Y H, Payne W A, Chen D H. 2012b. Effects of extreme air temperature and humidity on the insecticidal expression level of Bt cotton. Journal of Integrative Agriculture11, 1836–1844.

Dong H Z, Li W J. 2007. Variability of endotoxin expression in Bt transgenic cotton. Journal of Agronomy and Crop Science193, 21–29.

Gasser C S, Fraley R T. 1989. Genetically engineering plants for crop improvement. Science244, 1293–1299.

Glenn D S. 2011. Field versus farm warangal: Bt cotton, higher yields, and larger questions. World Development3, 387–398.

Gourkhede P H, Patil V D, Pathrikar D T. 2017. Effect of foliar feeding of gluconate and EDTA chelated plant nutrients on yield, plant pigments and enzyme activity of Bt cotton under rainfed ecosystem. Journal of Agriculture Research and Technology43, 313–322.

Hu W, Zhao W Q, Yang J S, Oosterhuis D M, Loka D A, Zhou Z G. 2016. Relationship between potassium fertilization and nitrogen metabolism in the leaf subtending the cotton (Gossypium hirsutum L.) boll during the boll development stage. Plant Physiology and Biochemistry101, 113–123.

ISAAA (International Service for the Acquisition of Agri-biotech Applications). 2018. Global Status of Commercialized Biotech/GM Crops in 2018: Biotech Crops Continue to Help Meet the Challenges of Increased Population and Climate Change. ISAAA Brief. No. 54. ISAAA (International Agricultural Biotechnology Application Service Organization), Ithaca, NY.

Kelidari A, Mohamadi G N, Vafaie-Tabar M, Madani H, Sharifabad H H. 2017. Effect of NAA. and Zn-EDTA application on yield and fiber quality of cotton cultivars. Crop Resarch (Hisar), 52, 89–98

Kranthi K R, Naidu S, Dhawad C S, Tatwawadi A, Mate K, Patil E, Bharose A A, Behere G T, Wadaskar R M, Kranthi S. 2005. Temporal and intra-plant variability of Cry1Ac expression in Bt-cotton and its influence on the survival of the cotton bollworm, Helicoverpa armigera (Hübner) (Noctuidae: Lepidoptera). Current Science89, 291–298.

Li Y J, Lv H Q. 2022. Effect of agricultural meteorological disasters on the production corn in the Northeast China. Acta Agronomica Sinica48, 1537–1545. (in Chinese)

Liu C X, Li Y H, Gao Y L, Ning C M, Wu K M. 2010. Cotton bollworm resistance to Bt transgenic cotton: A case analysis. Science China (Life Sciences), 53, 934–941.

Liu Y T, Li H J, Chen Y, Tambel L I M, Liu Z Y, Wu S J, Sun S Q, Zhang X, Chen D H. 2024. Inhibition of protein degradation increased Bt protein concentration in Bt cotton. Journal of Integrative Agriculture23, 1897–1909.

Liu Z Y, Abidallha E H M A, Wu H M, Zhou M Y, Zhang X, Chen Y, Chen D H. 2019. Bt insecticidal efficacy variation and agronomic regulation in Bt cotton. Journal of Cotton Research2, 23.

Liu Z Y, Ji M Y, He R, Dai Y Y, Liu Y T, Mou N N, Du J N, Zhang X, Chen D H, Chen Y. 2023a Effect of low temperature on insecticidal protein contents of cotton (Gossypium herbaceum L.) in the boll shell and its physiological mechanism. Plants12, 1767.

Liu Z Y, Li Y Y, Tambel L I M, Liu Y T, Dai Y Y, Xu Z, Leng X H, Zhang X, Chen D H, Chen Y. 2023b. Enhancing boll protein synthesis and carbohydrate conversion by the application of exogenous amino acids at the peak flowering stage increased the boll Bt toxin concentration and lint yield in cotton. Journal of Integrative Agriculture22, 1684–1694.

Liu Z Y, Wang G X, Zhang Z N, Zhang C X, Li H J, Wu T F, Zhang X, Chen D H. 2022. Recovery Characteristics of Cry1Ac endotoxin expression and related physiological mechanisms in bt transgenic cotton squares after high-temperature stress termination. Agronomy12, 668.

Lu Y H, Wu K M, Jiang Y Y, Guo Y Y, Nicolas D. 2012. Widespread adoption of Bt cotton and insecticide decrease promotes biocontrol services. Nature487, 362–365.

Ma H A, Zhao M, Xia X M, Wang H Y, Dong H Z. 2012. Effects of Bt transgenic cotton on occurrence of cotton spider mites in relation to the secondary metabolites in cotton. Cotton Science24, 481–487. (in Chinese)

Ma K, Wang Z H, Li H Q, Wang T Y, Chen R. 2022. Effects of nitrogen application and brackish water irrigation on yield and quality of cotton. Agricultural Water Management264, 107512.

Mahmoud M W S, Hussein E M A, Ashour K R. 2020. Sequential path analysis for determining the interrelationships between yield and its components in peanut. Egyptian Journal of Agronomy42, 79–91.

Maike S, Joseph N M M, Jan M K. 1997. The silence of genes in transgenic plants. Annals of Botany79, 3–12.

Patricia S, Calva G, Twyman R M, Albajes R, Gatehouse A M R, Christou P. 2020. The impact of environmental stress on Bt crop performance. Trends in Plant Science25, 264–278.

Pettigrew W T, Adamczyk J J. 2006. Nitrogen fertility and planting date effects on lint yield and Cry1Ac (Bt) endotoxin production. Agronomy Journal98, 691–697.

Shen P, Lin K J, Zhang Y J, Wu K M, Guo Y Y. 2010. Seasonal expression of Bacillius thuingiensis insecticidal protein and control to cotton bollworm in different varieties of transgenic cotton. Cotton Science22, 393–397.

Tambel L I M, Zhou M Y, Chen Y, Zhang X, Chen Y, Chen D H. 2019. Amino acids application enhances flowers insecticidal protein content in Bt cotton. Journal of Cotton Research2, 38–43.

Thomas H. 1975. Regulation of alanine aminotransferase in leaves of Lolium temulentum during senescence. Zeitschrift fur Pflanzenphysiologie74, 208–218. (in German)

Tian Y, Tian L W, Wang F Y, Shi X J, Shi F, Hao X Z, Li N N, Chenu K, Luo H H, Yang G Z. 2023. Optimizing nitrogen application improves its efficiency by higher allocation in bolls of cotton under drip fertigation. Field Crops Research298, 108968.

Tonhazy N E, White N G, Umbriet W W. 1950. Colorimetric assay of glutamic-pyruvic transaminase. Archives of Biochemistry and Biophysics28, 36–38.

Wang L, Liu Y, Wen M, Li M H, Dong Z Q, Cui J, Ma F Y. 2022. Growth and yield responses to simulated hail damage in drip-irrigated cotton. Journal of Integrative Agriculture21, 2241–2252.

Wang Y H, Ye G Y, Luan N, Xiao J, Chen Y, Chen D H. 2009. Boll size affects the insecticidal protein content in Bacillius thuringiensis (Bt) cotton. Field Crops Research110, 106–110.

Weeda S M, Kumar G N M, Knowles N R. 2011. Protein mobilization from potato tubers during long-term storage and daughter tuber formation. International Journal of Plant Sciences172, 459–470.

Wu K M, Lu Y H, Feng H Q, Jiang Y Y, Zhao J Z. 2008. Suppression of cotton bollworm in multiple crops in China in areas with Bt toxin-containing cotton. Science321, 1676–1678.

Yemm E W, Cocking E C, Ricketts R E. 1955. The determination of amino-acids with ninhydrin. Analyst80, 209–214.

Yunus F U N, Raza G, Makhdoom R, Zaheer H. 2019. Genetic improvement of Bacillus thuringiensis against the cotton bollworm, Earias vitella (Fab.) (Lepidoptera: Noctuidae), to improve the cotton yield in Pakistan. Egyptian Journal of Biological Pest Control29, 72.

Zhang X, Lu C H, Chen Y, Wang G X, Chen Y, Chen D H. 2014. Relationship between leaf C/N ratio and insecticidal protein expression in Bt cotton as affected by high temperature and N rate. Journal of Integrative Agriculture13, 82–88.

Zhang X, Tian Q F, Zhao Z X, Dong Z D, Chen Y, Chen D H. 2021. Analysis of differentially expressed proteins affecting insecticidal protein content in Bt cotton under high temperature and water deficit stress using label-free quantitation, Journal of Agronomy and Crop Science207, 1–11.

Zhang X, Wang J, Peng S, Li Y, Zhang L Y, Chen Y, Chen D H. 2017. Effects of soil water deficit on insecticidal protein expression in boll shells of transgenic Bt cotton and the mechanism. Frontiers in Plant Science8, 2017.

Zhang X, Zhang L, Ye G Y, Wang Y H, Chen Y, Chen D H. 2007. The impact of introducing the Bacillus thuringiensis gene into cotton on boll nitrogen metabolism. Environmental and Experimental Botany61, 175–180.

Zhao P, He J G, Xiong S P, Ma X M. 2010. Studies on the effects of different nitrogen forms on enzyme activity in flag leaves in wheat and protein and yield of grain for specialized end-uses. Journal of China Agricultural University15, 29–34. (in Chinese)

Zhou M Y, Chen C, Tambel L I M, Chen Y, Chen D H. 2021a. Increasing plant density increases Bt toxin concentration of boll wall in cotton by decreasing boll setting speed. Journal of Cotton Research4, 12.

Zhou M Y, Li Y B, Cui Q, Abidallha E H M A, Chen Y, Chen D H. 2019. Square insecticidal protein concentration relate to its biomass in Bt cotton. Agronomy Journal111, 467–472.

Zhou M Y, Liu Z Y, Li L N, Chen Y, Zhang X, Chen Y, Chen D H. 2021b. Effect of urea spray on boll shell insecticidal protein content in Bt cotton. Frontiers in Plant Science12, 623504.

Zou Q. 2000. Experimental Instruct of Plant Physiology. China Agriculture Press, Beijing. pp. 127–130. (in Chinese)

[1] Yuting Liu, Hanjia Li, Yuan Chen, Tambel Leila. I. M., Zhenyu Liu, Shujuan Wu, Siqi Sun, Xiang Zhang, Dehua Chen.

Inhibition of protein degradation increases the Bt protein concentration in Bt cotton [J]. >Journal of Integrative Agriculture, 2024, 23(6): 1897-1909.

[2] LIU Zhen-yu, LI Yi-yang, Leila. I. M. TAMBEL, LIU Yu-ting, DAI Yu-yang, XU Ze, LENG Xin-hua, ZHANG Xiang, CHEN De-hua, CHEN Yuan. Enhancing boll protein synthesis and carbohydrate conversion by the application of exogenous amino acids at the peak flowering stage increased the boll Bt toxin concentration and lint yield in cotton[J]. >Journal of Integrative Agriculture, 2023, 22(6): 1684-1694.
[3] XU Hui, HOU Kuo-yang, FANG Hao, LIU Qian-qian, WU Qiu, LIN Fei-fei, DENG Rui, ZHANG Lin-jie, CHEN Xiang, LI Jin-cai. Twice-split phosphorus application alleviates low-temperature impacts on wheat by improved spikelet development and setting[J]. >Journal of Integrative Agriculture, 2023, 22(12): 3667-3680.
[4] HAN Rui-cai, LI Chen-yan, Adnan Rasheed, PAN Xiao-hua, SHI Qing-hua, WU Zi-ming. Reducing phosphorylation of nitrate reductase improves nitrate assimilation in rice[J]. >Journal of Integrative Agriculture, 2022, 21(1): 15-25.
[5] CHEN Yuan, LIU Zhen-yu, HENG Li, Leila I. M. TAMBEL, CHEN De-hua. High plant density increases seed Bt endotoxin content in Bt transgenic cotton[J]. >Journal of Integrative Agriculture, 2021, 20(7): 1796-1806.
[6] ZHANG Xiang, ZHOU Ming-yuan, LI Ya-bing, LIU Zhen-yu, CHEN Yuan, CHEN De-hua. Nitrogen spraying affects seed Bt toxin concentration and yield in Bt cotton[J]. >Journal of Integrative Agriculture, 2021, 20(5): 1229-1238.
[7] CHEN Yuan, LIU Zhen-yu, Leila I. M. TAMBEL, ZHANG Xiang, CHEN Yuan, CHEN De-hua . Reduced square Bacillus thuringiensis insecticidal protein content of transgenic cotton under N deficit[J]. >Journal of Integrative Agriculture, 2021, 20(1): 100-108.
[8] YUAN Xi-sen, YU Zi-peng, LIU Lin, XU Yang, ZHANG Lei, HAN De-guo, ZHANG Shi-zhong.
Genome-wide identification and expression analysis of asparagine synthetase family in apple
[J]. >Journal of Integrative Agriculture, 2020, 19(5): 1261-1273.
[9] YANG Huan, GU Xiao-tian, DING Meng-qiu, LU Wei-ping, LU Da-lei. Weakened carbon and nitrogen metabolisms under post-silking heat stress reduce the yield and dry matter accumulation in waxy maize[J]. >Journal of Integrative Agriculture, 2020, 19(1): 78-88.
[10] BIAN Zhong-hua, LEI Bo, CHENG Rui-feng, WANG Yu, LI Tao, YANG Qi-chang. Selenium distribution and nitrate metabolism in hydroponic lettuce (Lactuca sativa L.): Effects of selenium forms and light spectra[J]. >Journal of Integrative Agriculture, 2020, 19(1): 133-144.
[11] NIE Jun-jun, YUAN Yan-chao, QIN Du-lin, LIU Yan-hui, WANG Shuang-lei, LI Jin-pu, ZHANG Mei-ling, ZHAO Na, GUO Wen-jun, QI Jie, MAO Li-li, SONG Xian-liang, SUN Xue-zhen . Spatial distribution of bolls affects yield formation in different genotypes of Bt cotton varieties[J]. >Journal of Integrative Agriculture, 2019, 18(11): 2492-2504.
[12] ZHANG Xiang, RUI Qiu-zhi, LIANG Pan-pan, WEI Chen-hua, DENG Guo-qiang, CHEN Yuan, CHEN Yuan, DONG Zhao-di, CHEN De-hua. Dynamics of Bt cotton Cry1Ac protein content under an alternating high temperature regime and effects on nitrogen metabolism[J]. >Journal of Integrative Agriculture, 2018, 17(09): 1991-1998.
[13] LEI Bo, BIAN Zhong-hua, YANG Qi-chang, WANG Jun, CHENG Rui-feng, LI Kun, LIU Wen-ke, ZHANG Yi, FANG Hui, TONG Yun-xin. The positive function of selenium supplementation on reducing nitrate accumulation in hydroponic lettuce (Lactuca sativa L.)[J]. >Journal of Integrative Agriculture, 2018, 17(04): 837-846.
[14] QIAO Fang-bin, HUANG Ji-kun, WANG Shu-kun, LI Qiang. The impact of Bt cotton adoption on the stability of pesticide use[J]. >Journal of Integrative Agriculture, 2017, 16(10): 2346-2356.
[15] LUO Jun-yu, ZHANG Shuai, ZHU Xiang-zhen, LU Li-min, WANG Chun-yi, LI Chun-hua, CUI Jin-jie, ZHOU Zhi-guo . Effects of soil salinity on rhizosphere soil microbes in transgenic Bt cotton fields[J]. >Journal of Integrative Agriculture, 2017, 16(07): 1624-1633.
No Suggested Reading articles found!