Álvarez B, Biosca E G, López M M. 2010. On the life of Ralstonia solanacearum, a destructive bacterial plant pathogen. Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology, 1, 267–279.
Baggs E, Dagdas G, Krasileva K V. 2017. NLR diversity, helpers and integrated domains: Making sense of the NLR IDentity. Current Opinion in Plant Biology, 38, 59–67.
Cai H, Wang W, Rui L, Han L, Luo M, Liu N, Tang D. 2021. The TIR-NBS protein TN13 associates with the CC-NBS-LRR resistance protein RPS5 and contributes to RPS5-triggered immunity in Arabidopsis. Plant Journal, 107, 775–786.
Cao P, Chen J L, Li N N, Zhang S X, Wang R B, Li B J, Liu P Q, An Y Y, Zhang M X. 2023. Seedling Petri-dish inoculation method: A robust, easy-to-use and reliable assay for studying plant-Ralstonia solanacearum interactions. Journal of Integrative Agriculture, 22, 3709-3719.
Chen T, Yang W, Zhang H, Zhu B, Zeng R, Wang X, Wang S, Wang L, Qi H, Lan Y, Zhang L. 2020. Early detection of bacterial wilt in peanut plants through leaf-level hyperspectral and unmanned aerial vehicle data. Computers and Electronics in Agriculture, 177, 105708.
Chen Y, Ren X, Zhou X, Huang L, Yan L, Lei Y, Liao B, Huang J, Huang S, Wei W, Jiang H. 2014. Dynamics in the resistant and susceptible peanut (Arachis hypogaea L.) root transcriptome on infection with the Ralstonia solanacearum. BMC Genomics, 15, 1–16.
Collier S M, Hamel L P, Moffett P. 2011. Cell death mediated by the N-terminal domains of a unique and highly conserved class of NB-LRR protein. Molecular Plant-Microbe Interactions, 24, 918–931.
Dazy M, Masfaraud J F, Férard J F. 2009. Induction of oxidative stress biomarkers associated with heavy metal stress in Fontinalis antipyretica Hedw. Chemosphere, 75, 297–302.
Deslandes L, Olivier J, Peeters N, Feng D X, Khounlotham M, Boucher C, Somssich I, Genin S, Marco Y. 2003. Physical interaction between RRS1-R, a protein conferring resistance to bacterial wilt, and PopP2, a type III effector targeted to the plant nucleus. Proceedings of the National Academy of Sciences of the United States of America, 100, 8024–8029.
Dong Z, Ma C, Tian X, Zhu C, Wang G, Lv Y, Friebe B, Li H, Liu W. 2020. Genome-wide impacts of alien chromatin introgression on wheat gene transcriptions. Scientific Reports, 10, 1–12.
Elsayed T R, Jacquiod S, Nour E H, Sørensen S J, Smalla K. 2020. Biocontrol of bacterial wilt disease through complex interaction between tomato plant, Antagonists, the Indigenous Rhizosphere Microbiota, and Ralstonia solanacearum. Frontiers in Microbiology, 10, 1–15.
FAO (Food and Agriculture Organization). 2021. Online statistical database: Food balance. FAOSTAT. [2022-11-09]. https://www.fao.org/faostat/zh/#data/QCL
Gao H, Narayanan N N, Ellison L, Bhattacharyya M K. 2005. Two classes of highly similar coiled coil-nucleotide binding-leucine rich repeat genes isolated from the Rps1-k locus encode Phytophthora resistance in soybean. Molecular Plant-Microbe Interactions 18, 1035–1045.
Godiard L, Sauviac L, Torii K U, Grenon O, Mangin B, Grimsley N H, Marco Y. 2003. ERECTA, an LRR receptor-like kinase protein controlling development pleiotropically affects resistance to bacterial wilt. Plant Journal, 36, 353–365.
Griebel T, Maekawa T, Parker J E. 2014. NOD-like receptor cooperativity in effector-triggered immunity. Trends in Immunology, 35, 562–570.
Gururani M A, Venkatesh J, Upadhyaya C P, Nookaraju A, Pandey S K, Park S W. 2012. Plant disease resistance genes: Current status and future directions. Physiological and Molecular Plant Pathology, 78, 51–65.
Hammond-Kosack K E, Parker J E. 2003. Deciphering plant-pathogen communication: Fresh perspectives for molecular resistance breeding. Current Opinion in Biotechnology, 14, 177-193.
He M, Cui S, Yang X, Mu G, Chen H, Liu L. 2017. Selection of suitable reference genes for abiotic stress-responsive gene expression studies in peanut by real-time quantitative PCR. Electronic Journal of Biotechnology, 28, 76–86.
Jiang G, Wei Z, Xu J, Chen H, Zhang Y, She X, Macho A P, Ding W, Liao B. 2017. Bacterial wilt in China: History, current status, and future perspectives. Frontiers in Plant Science, 8, 1–10.
Kourelis J, Sakai T, Adachi H, Kamoun S. 2021. RefPlantNLR is a comprehensive collection of experimentally validated plant disease resistance proteins from the NLR family. PLoS Biology, 19, 1–26.
Lee S K, Song M Y, Seo Y S, Kim H K, Ko S, Cao P J, Suh J P, Yi G, Roh J H, Lee S, An G, Hahn T R, Wang G L, Ronald P, Jeon J S. 2009. Rice Pi5-mediated resistance to Magnaporthe oryzae requires the presence of two coiled-coil-nucleotide-binding-leucine-rich repeat genes. Genetics, 181, 1627–1638.
Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 25, 402–408.
Lowe-Power T M, Khokhani D, Allen C. 2018. How Ralstonia solanacearum exploits and thrives in the flowing plant xylem environment. Trends in Microbiology, 26, 929–942.
Luo H, Pandey M K, Khan A W, Wu B, Guo J, Ren X, Zhou X, Chen Y, Chen W, Huang L, Liu N, Lei Y, Liao B, Varshney R K. 2019. Next-generation sequencing identified genomic region and diagnostic markers for resistance to bacterial wilt on chromosome B02 in peanut (Arachis hypogaea L .). Plant Biotechnology Journal, 17, 2356-2369.
Macho A P, Zipfel C. 2015. Targeting of plant pattern recognition receptor-triggered immunity by bacterial type-III secretion system effectors. Current Opinion in Microbiology, 23, 14–22.
Maruta N, Burdett H, Lim B Y J, Hu X, Desa S, Manik M K, Kobe B. 2022. Structural basis of NLR activation and innate immune signalling in plants. Immunogenetics, 74, 5–26.
Mestre P, Baulcombe D C. 2006. Elicitor-mediated oligomerization of the tobacco N disease resistance protein. Plant Cell, 18, 491–501.
Meyers B C, Kozik A, Griego A, Kuang H, Michelmore R W. 2003. Genome-wide analysis of NBS-LRR-encoding genes in Arabidopsis. Plant Cell, 15, 809-834.
Nishimura M T, Anderson R G, Cherkis K A, Law T F, Liu Q L, Machius M, Nimchuk Z L, Yang L, Chung E H, El Kasmi F, Hyunh M, Nishimura E O, Sondek J E, Dangl J L. 2017. TIR-only protein RBA1 recognizes a pathogen effector to regulate cell death in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 114, E2053–E2062.
Parry D A D, Fraser R D B, Squire J M. 2008. Fifty years of coiled-coils and α-helical bundles: A close relationship between sequence and structure. Journal of Structural Biology, 163, 258–269.
Pieterse C M J, Van Der Does D, Zamioudis C, Leon-Reyes A, Van Wees S C M. 2012. Hormonal modulation of plant immunity. Annual Review of Cell and Developmental Biology, 28, 489–521.
Peng W F, Jiang H F, Ren X P, Lv J W, Zhao X Y, Huang L. 2010. Construction of peanut AFLP genetic map and QTL analysis of bacterial wilt resistance. North China Agricultural Journal, 25, 81-86.
Ren X P, Zhang X J, Liao B S, Lei Y, Huang J Q, Chen Y N, Jiang H F. 2010, Genetic diversity analysis of ICRISAT peanut microcore germplasm resources using SSR markers. Chinese Agricultural Science, 43, 2848-2858.
Rairdan G J, Collier S M, Sacco M A, Baldwin T T, Boettrich T, Moffett P. 2008. The coiled-coil and nucleotide binding domains of the potato Rx disease resistance protein function in pathogen recognition and signaling. Plant Cell, 20, 739–751.
Robert-Seilaniantz A, Grant M, Jones J D G. 2011. Hormone crosstalk in plant disease and defense: More than just JASMONATE-SALICYLATE antagonism. Annual Review of Phytopathology, 49, 317–343.
Schreiber K J, Bentham A, Williams S J, Kobe B, Staskawicz B J. 2016. Multiple domain associations within the Arabidopsis immune receptor RPP1 regulate the activation of programmed cell death. Plos Pathogens, 12, 1–26.
Sheng Y T, Yu X L, Mao T T, Zhang J, Guo X T, Song Z Z, Zhang H X. 2022. Genome sequence data of Leptosphaerulina arachidicola, a causal agent of peanut scorch spot in China. Plant Disease, 106, 748–750.
Takken F L, Albrecht M, Tameling W I L. 2006. Resistance proteins: Molecular switches of plant defence. Current Opinion in Plant Biology, 9, 383–390.
Takken F L W, Goverse A. 2012. How to build a pathogen detector: Structural basis of NB-LRR function. Current Opinion in Plant Biology, 15, 375–384.
Tameling W I L, Baulcombe D C. 2007. Physical association of the NB-LRR resistance protein Rx with a Ran GTPase-activating protein is required for extreme resistance to potato virus X. Plant Cell, 19, 1682-1694.
Wang L, Zhou X, Ren X, Huang L, Luo H, Chen Y, Chen W, Liu N, Liao B, Lei Y, Yan L, Shen J, Jiang H. 2018. A major and stable QTL for bacterial wilt resistance on chromosome B02 identified using a high-density SNP-based genetic linkage map in cultivated peanut Yuanza 9102 derived population. Frontiers in Genetics, 9, 1–13.
Xiao S, Ellwood S, Calis O, Patrick E, Li T, Coleman M, Turner J G. 2001. Broad-spectrum mildew resistance in Arabidopsis thaliana mediated by RPW8. Science, 291, 118–120.
Yu G, Xian L, Xue H, Yu W, Rufian J S, Sang Y, Morcillo R J L, Wang Y, Macho A P. 2020. A bacterial effector protein prevents mapk-mediated phosphorylation of sgt1 to suppress plant immunity. Plos Pathogens, 16, 1–30.
Yin J J, Xiong J, Xu L T, Chen X W, Li W T. 2022. Recent advances in plant immunity with cell death: A review. Journal of Integrative Agriculture, 21, 610-620.
Zhang C. 2010. Study on molecular basis of resistence to Ralstonia solanacearum in peanut. MSc thesis, Fujian Agriculture and Forestry University, Fujian, China. (in Chinese).
Zhang C, Chen H, Cai T, Deng Y, Zhuang R, Zhang N, Zeng Y, Zheng Y, Tang R, Pan R, Zhuang W. 2017. Overexpression of a novel peanut NBS-LRR gene AhRRS5 enhances disease resistance to Ralstonia solanacearum in tobacco. Plant Biotechnology Journal, 15, 39–55.
Zhang D D, Guo X J, Wang Y J, Gao T G, Zhu B C. 2017. Novel screening strategy reveals a potent Bacillus antagonist capable of mitigating wheat take-all disease caused by Gaeumannomyces graminis var. tritici. Letters in Applied Microbiology, 65, 512–519.
Zhao K, Ren R, Ma X L, Zhao K K, Qu C X, Cao D, Ma Q, Ma Y Y, Gong F P, Li Z F, Zhang X G, Yin D M. 2022. Genome-wide investigation of defensin genes in peanut (Arachis hypogaea L.) reveals AhDef2.2 conferring resistance to bacterial wilt. The Crop Journal, 10, 809-819.
Zhao Y, Zhang C, Chen H, Yuan M, Nipper R, Prakash C S, Zhuang W, He G. 2016. QTL mapping for bacterial wilt resistance in peanut (Arachis hypogaea L.). Molecular Breeding, 36, 1–11.
Zhou T, Wang Y, Chen J Q, Araki H, Jing Z, Jiang K, Shen J, Tian D. 2004. Genome-wide identification of NBS genes in japonica rice reveals significant expansion of divergent non-TIR NBS-LRR genes. Molecular Genetics and Genomics, 271, 402–415.
Zhuang W J, Zhang C, Chen H, Zhuang R R, Chen Y T, Deng Y, Cai T C, Wang S Y, Liu Q Z, Tang R H, Shan S H, Pan R L, Chen L S, Dietz K J. 2019. Overexpression of the peanut CLAVATA1-like leucine-rich repeat receptor-like kinase AhRLK1 confers increased resistance to bacterial wilt in tobacco. Journal of Experimental Botany, 70, 5407–5421.
|