Please wait a minute...
Journal of Integrative Agriculture  2023, Vol. 22 Issue (12): 3667-3680    DOI: 10.1016/j.jia.2023.09.013
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
Twice-split phosphorus application alleviates low-temperature impacts on wheat by improved spikelet development and setting

XU Hui1, HOU Kuo-yang1, FANG Hao1, LIU Qian-qian1, WU Qiu1, LIN Fei-fei1, DENG Rui1, ZHANG Lin-jie1, CHEN Xiang1, LI Jin-cai1, 2#

1 School of Agronomy, Anhui Agricultural University, Hefei 230036, P.R.China

2 Jiangsu Collaborative Innovation Centre for Modern Crop Production, Nanjing 210095, P.R.China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

随着气候变化的加剧,极端低温事件频发重发。在我国黄淮海麦区,拔节孕穗期(药隔期)发生的倒春寒对冬小麦造成了显著的产量损失。为探索一种经济、可行、高效的小麦低温抗性高产栽培技术本研究以烟农19为试验材料,探讨了次施磷对药隔期低温处理下小麦抗氧化特性和碳氮代谢生理的影响。处理包括传统施磷和分次施磷,然后在药隔期进行-4℃低温处理和自然温度处理。结果表明,与传统施磷相比,分次施磷提高了叶片的净光合速率(Pn)、气孔导度(Gs)和蒸腾速率(Tr),降低了叶片胞间二氧化碳浓度(Ci)。同时,分次施磷处理提高了小麦幼穗碳氮代谢相关酶活性,促进了可溶性糖(SSC)、蔗糖(SUC)、可溶性蛋白(SP)和脯氨酸(Pro)在幼穗中的积累,降低了丙二醛(MDA)的毒性。由于分次施磷增加了生殖发育所需的有机营养,小麦幼穗对低温胁迫的抗性增强,每穗不育小穗数(SSN)传统施磷降低11.8%,小穗结实率(SSR)和最终产量比传统施磷分别提高6.0%8.4%。随着低温处理结束时间的延长分次施磷改善作用更加明显。



Abstract  Extreme low-temperature incidents have become more frequent and severe as climate change intensifies.  In Huang-Huai-Hai wheat growing area of China, the late spring coldness occurring at the jointing-booting stage (the anther interval stage) has resulted in significant yield losses of winter wheat.  This study attempts to develop an economical, feasible, and efficient cultivation technique for improving the low-temperature (LT) resistance of wheat by exploring the effects of twice-split phosphorus application (TSPA) on wheat antioxidant characteristics and carbon and nitrogen metabolism physiology under LT treatment at the anther interval stage using Yannong 19 as the experimental material.  The treatments consisted of traditional phosphorus application and TSPA, followed by a –4°C LT treatment and natural temperature (NT) control at the anther interval stage.  Our analyses showed that, compared with the traditional application, the TSPA increased the net photosynthetic rate (Pn), stomatal conductance (Gs), and transpiration rate (Tr) of leaves and reduced the intercellular carbon dioxide concentration (Ci).  The activity of carbon and nitrogen metabolism enzymes in the young wheat spikes was also increased by the TSPA, which promoted the accumulation of soluble sugar (SS), sucrose (SUC), soluble protein (SP), and proline (Pro) in young wheat spike and reduced the toxicity of malondialdehyde (MDA).  Due to the improved organic nutrition for reproductive development, the young wheat spikes exhibited enhanced LT resistance, which reduced the sterile spikelet number (SSN) per spike by 11.8% and increased the spikelet setting rate (SSR) and final yield by 6.0 and 8.4%, respectively, compared to the traditional application.  The positive effects of split phosphorus application became more pronounced when the LT treatment was prolonged.  
Keywords:  optimizing phosphorus application       low temperature stress       carbon-nitrogen metabolism       young spike development       wheat  
Received: 24 April 2023   Accepted: 28 July 2023
Fund: This work was supported by the Major Science and Technology Projects in Anhui Province, China (202003b06020021), the Natural Science Foundation of Anhui Province, China (2008085QC122), the Postgraduate Quality Engineering Project in Anhui Province, China (2022cxcysj066), and the Special Fund for Anhui Agriculture Research System, China.
About author:  #Correspondence LI Jin-cai, E-mail: ljc5122423@126.com

Cite this article: 

XU Hui, HOU Kuo-yang, FANG Hao, LIU Qian-qian, WU Qiu, LIN Fei-fei, DENG Rui, ZHANG Lin-jie, CHEN Xiang, LI Jin-cai. 2023. Twice-split phosphorus application alleviates low-temperature impacts on wheat by improved spikelet development and setting. Journal of Integrative Agriculture, 22(12): 3667-3680.

Allen D J, Ort D R. 2001. Impacts of chilling temperatures on photosynthesis in warm-climate plants. Trends in Plant Science6, 36–42.

Amtmann A, Armengaud P. 2009. Effects of N, P, K and S on metabolism: new knowledge gained from multi-level analysis. Current Opinion in Plant Biology12, 275–283.

Asai H, Rabenarivo M, Andriamananjara A, Tsujimoto Y, Nishigaki T, Takai T, Rakotoson T, Rakotoarisoa N M, Razafimbelo T. 2021. Farmyard manure application increases spikelet fertility and grain yield of lowland rice on phosphorus-deficient and cool-climate conditions in madagascar highlands. Plant Production Science24, 481–489.

Bamagoos A, Alharby H, Fahad S. 2021. Biochar coupling with phosphorus fertilization modifies antioxidant activity, osmolyte accumulation and reactive oxygen species synthesis in the leaves and xylem sap of rice cultivars under high-temperature stress. Physiology and Molecular Biology of Plants27, 2083–2100.

Bao A, Liang Z, Zhao Z, Cai H. 2015. Overexpressing of OsAMT1-3, a high affinity ammonium transporter gene, modifies rice growth and carbon–nitrogen metabolic status. International Journal of Molecular Sciences16, 9037–9063.

Baslam M, Mitsui T, Sueyoshi K, Ohyama T. 2020. Recent advances in carbon and nitrogen metabolism in C3 plants. International Journal of Molecular Sciences22, 318.

Cong W, Suriyagoda L D, Lambers H. 2020. Tightening the phosphorus cycle through phosphorus-efficient crop genotypes. Trends in Plant Science25, 967–975.

Ding W, Cong W, Lambers H. 2021. Plant phosphorus-acquisition and -use strategies affect soil carbon cycling. Trends in Ecology and Evolution36, 899–906.

Dubey R S, Srivastava R K, Pessarakli M. 2021. Physiological mechanisms of nitrogen absorption and assimilation in plants under stressful conditions In: Handbook of Plant and Crop Physiology. CRC Press, Boca Raton, USA. pp. 579–616.

Erdal S. 2019. Melatonin promotes plant growth by maintaining integration and coordination between carbon and nitrogen metabolisms. Plant Cell Reports38, 1001–1012.

Erenstein O, Chamberlin J, Sonder K. 2021. Estimating the global number and distribution of maize and wheat farms. Global Food Security30, 100558.

Farhangi-Abriz S, Torabian S. 2017. Antioxidant enzyme and osmotic adjustment changes in bean seedlings as affected by biochar under salt stress. Ecotoxicology and Environmental Safety137, 64–70.

Gong H, Xiang Y, Wu J, Nkebiwe P M, Feng G, Jiao X, Zhang F. 2022. Using knowledge-based management for sustainable phosphorus use in China. Science of the Total Environment814, 152739.

Halford N G, Curtis T Y, Muttucumaru N, Postles J, Mottram D S. 2011. Sugars in crop plants. Annals of Applied Biology158, 1–25.

Han Q, Kang G, Guo T. 2013. Proteomic analysis of spring freeze-stress responsive proteins in leaves of bread wheat (Triticum aestivum L.). Plant Physiology and Biochemistry63, 236–244.

Hassan M A, Chen X, Farooq M, Noor M, Zhang Y, Xu H, Ke Y, Attiogbe B K, Zhang L, Li J. 2021. Cold stress in wheat: plant acclimation responses and management strategies. Frontiers in Plant Science12, 676884.

He J, Shi Y, Yu Z. 2019. Subsoiling improves soil physical and microbial properties, and increases yield of winter wheat in the Huang-Huai-Hai Plain of China. Soil Tillage Research187, 182–193.

Huang Y, Nie Y, Wan Y, Chen S, Sun Y, Wang X, Bai J. 2013. Exogenous glucose regulates activities of antioxidant enzyme, soluble acid invertase and neutral invertase and alleviates dehydration stress of cucumber seedlings. Scientia Horticulturae162, 20–30.

Janmohammadi M, Zolla L, Rinalducci S. 2015. Low temperature tolerance in plants: Changes at the protein level. Phytochemistry117, 76–89.

Jeong K, Baten A, Waters D L, Pantoja O, Julia C C, Wissuwa M, Heuer S, Kretzschmar T, Rose T J. 2017. Phosphorus remobilization from rice flag leaves during grain filling: An RNA-seq study. Plant Biotechnology Journal15, 15–26.

Ji H, Xiao L, Xia Y, Song H, Liu B, Tang L, Cao W, Zhu Y, Liu L. 2017. Effects of jointing and booting low temperature stresses on grain yield and yield components in wheat. Agricultural and Forest Meteorology243, 33–42.

Jiang G, Hassan M A, Muhammad N, Arshad M, Chen X, Xu Y, Xu H, Ni Q, Liu B, Yang W. 2022. Comparative physiology and transcriptome analysis of young spikes in response to late spring coldness in wheat (Triticum aestivum L.). Frontiers in Plant Science13, 811884.

Jiang S, Hua H, Sheng H, Jarvie H P, Liu X, Zhang Y, Yuan Z, Zhang L, Liu X. 2019. Phosphorus footprint in China over the 1961–2050 period: Historical perspective and future prospect. Science of the Total Environment650, 687–695.

Li G, Cheng G, Lu W, Lu D. 2021. Differences of yield and nitrogen use efficiency under different applications of slow release fertilizer in spring maize. Journal of Integrative Agriculture20, 554–564.

Li S, Tian Y, Wu K, Ye Y, Yu J, Zhang J, Liu Q, Hu M, Li H, Tong Y. 2018. Modulating plant growth-metabolism coordination for sustainable agriculture. Nature560, 595–600.

Li X, Pu H, Liu F, Zhou Q, Cai J, Dai T, Cao W, Jiang D. 2015. Winter wheat photosynthesis and grain yield responses to spring freeze. Agronomy Journal107, 1002–1010.

Liang Z, Luo J, Wei B, Liao Y, Liu Y. 2021. Trehalose can alleviate decreases in grain number per spike caused by low-temperature stress at the booting stage by promoting floret fertility in wheat. Journal of Agronomy and Crop Science207, 717–732.

Liu D, Liu M, Liu X, Cheng X, Liang Z. 2018. Silicon priming created an enhanced tolerance in alfalfa (Medicago sativa L.) seedlings in response to high alkaline stress. Frontiers in Plant Science9, 716.

Liu L, Song H, Shi K, Liu B, Zhang Y, Tang L, Cao W, Zhu Y. 2019. Response of wheat grain quality to low temperature during jointing and booting stages - on the importance of considering canopy temperature. Agricultural and Forest Meteorology278, 107658.

Lv X, Han J, Liao Y, Liu Y. 2017. Effect of phosphorus and potassium foliage application post-anthesis on grain filling and hormonal changes of wheat. Field Crops Research214, 83–93.

Ma Q, Zhang Y, Tao Y, Su S, Li C, Ding J, Zhu M, Zhu X, Guo W. 2022. Effects of low temperature at different stages in spring on photosynthetic characteristics and grain weight formation of wheat. Journal of Triticeae Crops42, 226–235. (in Chinese)

Macdonald G K, Bennett E M, Potter P A, Ramankutty N. 2011. Agronomic phosphorus imbalances across the world’s croplands. Proceedings of the National Academy of Sciences of the United States of America108, 3086–3091.

Mahajan S, Tuteja N. 2005. Cold, salinity and drought stresses: An overview. Archives of Biochemistry and Biophysics444, 139–158.

Nedelciu C E, Ragnarsdottir K V, Schlyter P, Stjernquist I. 2020. Global phosphorus supply chain dynamics: assessing regional impact to 2050. Global Food Security26, 100426.

Nie Z, Li S, Hu C, Sun X, Tan Q, Liu H. 2015. Effects of molybdenum and phosphorus fertilizers on cold resistance in winter wheat. Journal of Plant Nutrition38, 808–820.

Rady M M, El-Shewy A A, El-Yazal M A S, Abdelaal K E. 2018. Response of salt-stressed common bean plant performances to foliar application of phosphorus (MAP). International Letters of Natural Sciences72, 7–20.

Saddhe A A, Manuka R, Penna S. 2021. Plant sugars: Homeostasis and transport under abiotic stress in plants. Physiologia Plantarum171, 739–755.

Sahandi M S, Mehrafarin A, Badi H N, Khalighi-Sigaroodi F, Sharifi M. 2019. Improving growth, phytochemical, and antioxidant characteristics of peppermint by phosphate-solubilizing bacteria along with reducing phosphorus fertilizer use. Industrial Crops and Products141, 111777.

Schrader S, Sauter J J. 2002. Seasonal changes of sucrose-phosphate synthase and sucrose synthase activities in poplar wood (Populus×canadensis Moench ‘robusta’) and their possible role in carbohydrate metabolism. Journal of Plant Physiology159, 833–843.

Sharma A, Kumar V, Shahzad B, Ramakrishnan M, Singh Sidhu G P, Bali A S, Handa N, Kapoor D, Yadav P, Khanna K. 2020. Photosynthetic response of plants under different abiotic stresses: A review. Journal of Plant Growth Regulation39, 509–531.

Shen J, Yuan L, Zhang J, Li H, Bai Z, Chen X, Zhang W, Zhang F. 2011. Phosphorus dynamics: From soil to plant. Plant Physiology156, 997–1005.

Soetan K O, Olaiya C O, Oyewole O E. 2010. The importance of mineral elements for humans, domestic animals and plants: A review. African Journal of Food Science4, 200–222.

Song L, Liu Z, Tong J, Xiao L, Ma H, Zhang H. 2015. Comparative proteomics analysis reveals the mechanism of fertility alternation of thermosensitive genic male sterile rice lines under low temperature inducement. Proteomics15, 1884–1905.

Sun X, Tan Q, Hu C, Gan Q, Yi C. 2006. Effects of molybdenum on antioxidative enzymes in winter wheat under low temperature stress. Scientia Agricultura Sinica39, 952–959. (in Chinese)

Tariq A, Pan K, Olatunji O A, Graciano C, Li Z, Li N, Song D, Sun F, Wu X, Dakhil M A. 2019. Impact of phosphorus application on drought resistant responses of eucalyptus grandis seedlings. Physiologia Plantarum166, 894–908.

Taylor N L, Day D A, Millar A H. 2004. Targets of stress-induced oxidative damage in plant mitochondria and their impact on cell carbon/nitrogen metabolism. Journal of Experimental Botany55, 1–10.

Venzhik Y, Titov A, Talanova V, Frolova S, Talanov A, Nazarkina Y. 2011. Influence of lowered temperature on the resistance and functional activity of the photosynthetic apparatus of wheat plants. Biology Bulletin38, 132–137.

Wang W, Wang X, Lv Z, Khanzada A, Huang M, Cai J, Zhou Q, Huo Z, Jiang D. 2022. Effects of cold and salicylic acid priming on free proline and sucrose accumulation in winter wheat under freezing stress. Journal of Plant Growth Regulation41, 2171–2184.

Wang X, Wu Z, Zhou Q, Wang X, Song S, Dong S. 2022. Physiological response of soybean plants to water deficit. Frontiers in Plant Science12, 809692.

Wang Y, Chen Y F, Wu W H. 2021. Potassium and phosphorus transport and signaling in plants. Journal of Integrative Plant Biology63, 34–52.

Wang Y, Wang S, Sun L, Sun Z, Li D. 2020. Screening of a chlorella-bacteria consortium and research on piggery wastewater purification. Algal Research47, 101840.

Wang Z, Zhang W, Yang J. 2018. Physiological mechanism underlying spikelet degeneration in rice. Journal of Integrative Agriculture17, 1475–1481.

Waraich E A, Ahmad R, Ashraf M Y. 2011. Role of mineral nutrition in alleviation of drought stress in plants. Australian Journal of Crop Science5, 764–777.

Xu H, Hassan M A, Sun D, Wu Z, Jiang G, Liu B, Ni Q, Yang W, Fang H, Li J. 2022a. Effects of low temperature stress on source–sink organs in wheat and phosphorus mitigation strategies. Frontiers in Plant Science13, 807844.

Xu H, Wu Z, Xu B, Sun D, Hassan M A, Cai H, Wu Y, Yu M, Chen A, Li J. 2022b. Optimized phosphorus application alleviated adverse effects of short-term low-temperature stress in winter wheat by enhancing photosynthesis and improved accumulation and partitioning of dry matter. Agronomy12, 1700.

Yamori W, Hikosaka K, Way D A. 2014. Temperature response of photosynthesis in C3, C4, and CAM plants: temperature acclimation and temperature adaptation. Photosynthesis Research119, 101–117.

Yan Y, Hou P, Duan F, Niu L, Dai T, Wang K, Zhao M, Li S, Zhou W. 2021. Improving photosynthesis to increase grain yield potential: An analysis of maize hybrids released in different years in China. Photosynthesis Research150, 295–311.

Yang M, Yang H. 2021. Utilization of soil residual phosphorus and internal reuse of phosphorus by crops. PeerJ9, e11704.

Yao M, Ge W, Zhou Q, Zhou X, Luo M, Zhao Y, Wei B, Ji S. 2021. Exogenous glutathione alleviates chilling injury in postharvest bell pepper by modulating the ascorbate-glutathione (ASA–GSH) cycle. Food Chemistry352, 129458.

Ye T, Liu B, Wang X, Zhou J, Liu L, Tang L, Cao W, Zhu Y. 2022. Effects of water-nitrogen interactions on the fate of nitrogen fertilizer in a wheat–soil system. European Journal of Agronomy136, 126507.

Yu X, Jiang Y, Yao H, Ran L, Zang Y, Xiong F. 2022. Cytological and molecular characteristics of delayed spike development in wheat under low temperature in early spring. Crop Journal10, 840–852.

Zhang W, Wang J, Huang Z, Mi L, Xu K, Wu J, Fan Y, Ma S, Jiang D. 2019. Effects of low temperature at booting stage on sucrose metabolism and endogenous hormone contents in winter wheat spikelet. Frontiers in Plant Science10, 498.

Zhang Y, Liu L, Chen X, Li J. 2022. Effects of low-temperature stress during the anther differentiation period on winter wheat photosynthetic performance and spike-setting characteristics. Plants11, 389.

Zhang Z, Liu X, Lv Y, Li N, Xu K. 2021. Grafting resulting in alleviating tomato plant oxidative damage caused by high levels of ofloxacin. Environmental Pollution286, 117331.

Zhao S, Cang J. 2016. Experimental Guide of Plant Physiology and Biochemistry. China Agriculture Presss, Beijing. (in Chinese)

Zhao Y, Zhou M, Xu K, Li J, Li S, Zhang S, Yang X. 2019. Integrated transcriptomics and metabolomics analyses provide insights into cold stress response in wheat. Crop Journal7, 857–866.

Zuccarini P, Asensio D, Ogaya R, Sardans J, Peñuelas J. 2020. Effects of seasonal and decadal warming on soil enzymatic activity in a P-deficient mediterranean shrubland. Global Change Biology26, 3698–3714.

[1] Qiuyan Yan, Linjia Wu, Fei Dong, Shuangdui Yan, Feng Li, Yaqin Jia, Jiancheng Zhang, Ruifu Zhang, Xiao Huang.

Subsoil tillage enhances wheat productivity, soil organic carbon and available nutrient status in dryland fields [J]. >Journal of Integrative Agriculture, 2024, 23(1): 251-266.

[2] ZHANG Sha, YANG Shan-shan, WANG Jing-wen, WU Xi-fang, Malak HENCHIRI, Tehseen JAVED, ZHANG Jia-hua, BAI Yun. Integrating a novel irrigation approximation method with a process-based remote sensing model to estimate multi-years' winter wheat yield over the North China Plain[J]. >Journal of Integrative Agriculture, 2023, 22(9): 2865-2881.
[3] YAN Sheng-nan, YU Zhao-yu, GAO Wei, WANG Xu-yang, CAO Jia-jia, LU Jie, MA Chuan-xi, CHANG Cheng, ZHANG Hai-ping. Dissecting the genetic basis of grain color and pre-harvest sprouting resistance in common wheat by association analysis[J]. >Journal of Integrative Agriculture, 2023, 22(9): 2617-2631.
[4] CHU Jin-peng, GUO Xin-hu, ZHENG Fei-na, ZHANG Xiu, DAI Xing-long, HE Ming-rong. Effect of delayed sowing on grain number, grain weight, and protein concentration of wheat grains at specific positions within spikes[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2359-2369.
[5] FAN Ting-lu, LI Shang-zhong, ZHAO Gang, WANG Shu-ying, ZHANG Jian-jun, WANG Lei, DANG Yi, CHENG Wan-li. Response of dryland crops to climate change and drought-resistant and water-suitable planting technology: A case of spring maize[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2067-2079.
[6] DU Xiang-bei, XI Min, WEI Zhi, CHEN Xiao-fei, WU Wen-ge, KONG Ling-cong. Raised bed planting promotes grain number per spike in wheat grown after rice by improving spike differentiation and enhancing photosynthetic capacity[J]. >Journal of Integrative Agriculture, 2023, 22(6): 1631-1644.
[7] WU Xian-xin, ZANG Chao-qun, ZHANG Ya-zhao, XU Yi-wei, WANG Shu, LI Tian-ya, GAO Li.

Characterization of wheat monogenic lines with known Sr genes and wheat cultivars for resistance to three new races of Puccinia graminis f. sp. tritici in China [J]. >Journal of Integrative Agriculture, 2023, 22(6): 1740-1749.

[8] ZHANG Chong, WANG Dan-dan, ZHAO Yong-jian, XIAO Yu-lin, CHEN Huan-xuan, LIU He-pu, FENG Li-yuan, YU Chang-hao, JU Xiao-tang. Significant reduction of ammonia emissions while increasing crop yields using the 4R nutrient stewardship in an intensive cropping system[J]. >Journal of Integrative Agriculture, 2023, 22(6): 1883-1895.
[9] ZHAO Xiao-dong, QIN Xiao-rui, LI Ting-liang, CAO Han-bing, XIE Ying-he. Effects of planting patterns plastic film mulching on soil temperature, moisture, functional bacteria and yield of winter wheat in the Loess Plateau of China[J]. >Journal of Integrative Agriculture, 2023, 22(5): 1560-1573.
[10] ZHANG Zhen-zhen, CHENG Shuang, FAN Peng, ZHOU Nian-bing, XING Zhi-peng, HU Ya-jie, XU Fang-fu, GUO Bao-wei, WEI Hai-yan, ZHANG Hong-cheng. Effects of sowing date and ecological points on yield and the temperature and radiation resources of semi-winter wheat[J]. >Journal of Integrative Agriculture, 2023, 22(5): 1366-1380.
[11] LI Jiao-jiao, ZHAO Li, LÜ Bo-ya, FU Yu, ZHANG Shu-fa, LIU Shu-hui, YANG Qun-hui, WU Jun, LI Jia-chuang, CHEN Xin-hong. Development and characterization of a novel common wheat–Mexico Rye T1DL·1RS translocation line with stripe rust and powdery mildew resistance[J]. >Journal of Integrative Agriculture, 2023, 22(5): 1291-1307.
[12] DONG Xiu-chun, QIAN Tai-feng, CHU Jin-peng, ZHANG Xiu, LIU Yun-jing, DAI Xing-long, HE Ming-rong. Late sowing enhances lodging resistance of wheat plants by improving the biosynthesis and accumulation of lignin and cellulose[J]. >Journal of Integrative Agriculture, 2023, 22(5): 1351-1365.
[13] JIANG Yun, WANG De-li, HAO Ming, ZHANG Jie, LIU Deng-cai.

Development and characterization of wheat–Aegilops kotschyi 1Uk(1A) substitution line with positive dough quality parameters [J]. >Journal of Integrative Agriculture, 2023, 22(4): 999-1008.

[14] Sunusi Amin ABUBAKAR, Abdoul Kader Mounkaila HAMANI, WANG Guang-shuai, LIU Hao, Faisal MEHMOOD, Abubakar Sadiq ABDULLAHI, GAO Yang, DUAN Ai-wang. Growth and nitrogen productivity of drip-irrigated winter wheat under different nitrogen fertigation strategies in the North China Plain[J]. >Journal of Integrative Agriculture, 2023, 22(3): 908-922.
[15] TU Ke-ling, YIN Yu-lin, YANG Li-ming, WANG Jian-hua, SUN Qun. Discrimination of individual seed viability by using the oxygen consumption technique and headspace-gas chromatography-ion mobility spectrometry[J]. >Journal of Integrative Agriculture, 2023, 22(3): 727-737.
No Suggested Reading articles found!