Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (1): 339-352    DOI: 10.1016/j.jia.2024.11.037
Food Science Advanced Online Publication | Current Issue | Archive | Adv Search |
Characterization and correlation of engineering properties with microstructure in peanuts: A microscopic to macroscopic analysis

Fei Xiang1, Zhenyuan Li1, Yichen Zheng1, Caixia Ding2, Benu Adhikari3, Xiaojie Ma1, Xuebing Xu2#, Jinjin Zhu1, Bello Zaki Abubakar6, Aimin Shi1, 4#, Hui Hu1#, Qiang Wang1, 4, 5#

1 Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China

2 Wilmar (Shanghai) Biotechnology Research & Development Center Co., Ltd., Shanghai 200137, China

3 School of Science, RMIT University, Melbourne 3083, VIC, Australia

4 School of Food Science and Engineering, Nanjing University of Finance and Economics/Jiangsu Modern Food Circulation and Safety Collaborative Innovation Center, Nanjing 210023, China

5 College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi 830052, China

6 Department of Agricultural Extension and Rural Development, Faculty of Agriculture, Usmanu Danfodiyo University, Sokoto 840101, Nigeria

 Highlights 
The surface and cross-section microstructure of peanut showed a dense “blocky” and distinct cellular structure.
The peanut could be undergoing five different stages of thermal degradation from 30 to 500°C.
The area and circumference of single-cells mainly ranged between 1,000–4,500 mm2 and 125–275 mm. 
The size of single-cells of peanut was positively correlated with fracturability of peanut.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

全球花生品种多样,花生的特性和营养决定了产品品质。然而,全球花生籽仁的关键品质指标的比较分析和统计学分析相对薄弱,阻碍了全球花生品质评价和花生产业发展。本研究以主要花生生产国的10个不同花生品种为研究对象,对花生籽仁的表观形态、微观结构、单细胞结构、工程特性和质构特性以及主要营养成分含量进行对比分析。花生籽仁的表面和截面微观结构均呈致密的“块状”形貌,细胞结构明显。细胞内脂滴呈球形,均匀分布在细胞内。10个花生品种籽仁的单细胞结构表现出不同的形态和尺寸,并发现这与质构和工程特性相关。此外,花生籽仁的质量损失随温度变化呈5个不同的阶段,分别为水分流失、挥发性损失、蛋白质变性和各种生物大分子的降解等的过程。不同花生品种间脂肪、蛋白质、蔗糖含量以及质构、堆积密度、真实密度、孔隙率、几何平均直径、圆度和球形度均存在差异。本研究建立了主要花生加工国家常见花生品种的微观结构、工程性能和营养成分之间的关联和相关性。研究结果为全球花生品质评价和花生产业提供了有价值数据和见解



Abstract  

Peanut varieties are diverse globally, with their characters and nutrition determining the product quality.  However, the comparative analysis and statistical analysis of key quality indicators for peanut kernels across the world remains relatively limited, impeding the comprehensive evaluation of peanut quality and hindering the industry development on a global scale.  This study aimed to compare and analyze the apparent morphology, microstructure, single-cell structure, engineering and mechanical properties, as well as major nutrient contents of peanut kernels from 10 different cultivars representing major peanut-producing countries.  The surface and cross-section microstructure of the peanut kernels exhibited a dense “blocky” appearance with a distinct cellular structure.  The lipid droplets were predominantly spherical with a regular distribution within the cells.  The single-cell structure of the kernels from these 10 peanut cultivars demonstrated varying morphologies and dimensions, which exhibited correlations with their mechanical and engineering properties.  Furthermore, the mass loss versus temperature profiles of the peanut kernels revealed five distinct stages, corresponding to moisture loss, volatile loss, protein denaturation, and the degradation of various biomacromolecules.  Variations were also observed in the lipid, protein, and sucrose contents, texture, bulk density, true density, porosity, geometric mean diameter, and sphericity among the different peanut varieties.  This study establishes relationships and correlations among microstructure, engineering properties, and nutritional composition of commonly grown peanut varieties in major peanut-processing countries.  The findings provide valuable insights into peanut quality evaluation, empowering the peanut industry to enhance their processing and product development efforts.

Keywords:  peanut kernels       apparent morphology        microstructure        engineering properties        mechanical properties  
Received: 19 June 2024   Accepted: 18 October 2024
Fund: 

This project is jointly supported by the National Key R&D Program of China (2021YFD2100400, 2023YFE0104900), Xinjiang Agriculture Research System-Oil Crop Research System, China (XJARS-05), Taishan Industrial Experts Programme, China (tscx202306075), the Scientific and Technological Assistance Projects to Developing Countries, China (KY202201003), the Agricultural Science and Technology Innovation Program, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS-ASTIP-2024-IFST).  The authors are grateful for the financial support from the Arawana Charity Foundation, China.  

About author:  Fei Xiang, E-mail: 82101221137@caas.cn; #Correspondence Aimin Shi, Tel/Fax: +86-10-62815837, E-mail: shiaimin@caas.cn; Xuebing Xu, Tel/Fax: +86-21-31153372, E-mail: xuxuebing@cn.wilmar-intl.com; Hui Hu, Tel/Fax: +86-10-62815837, E-mail: huhui@caas.cn; Qiang Wang, Tel/Fax: +86-10-62815837, E-mail: wangqiang06@caas.cn

Cite this article: 

Fei Xiang, Zhenyuan Li, Yichen Zheng, Caixia Ding, Benu Adhikari, Xiaojie Ma, Xuebing Xu, Jinjin Zhu, Bello Zaki Abubakar, Aimin Shi, Hui Hu, Qiang Wang. 2025. Characterization and correlation of engineering properties with microstructure in peanuts: A microscopic to macroscopic analysis. Journal of Integrative Agriculture, 24(1): 339-352.

Aydin C. 2007. Some engineering properties of peanut and kernel. Journal of Food Engineering79, 810–816.

Bagheri H, Kashaninejad M, Ziaiifar A M, Aalami M. 2019. Textural, color and sensory attributes of peanut kernels as affected by infrared roasting method. Information Processing in Agriculture6, 255–264.

Bodoira R, Cecilia Cittadini M, Velez A, Rossi Y, Montenegro M, Martínez M, Maestri D. 2022. An overview on extraction, composition, bioactivity and food applications of peanut phenolics. Food Chemistry381, 132250.

Davis P J, Williams S C. 1998. Protein modification by thermal processing. Allergy53, 102–105.

Eker T, Cabaroglu T, Darıcı M, Selli S. 2023. Impact of kernel size and texture on the in vivo and in vitro aroma compounds of roasted peanut and peanut paste. Journal of Food Composition and Analysis119, 105260.

Engel J B, Luchese C L, Tessaro I C. 2022. Characterization techniques comparison towards a better understanding of different cork-based stoppers types. Journal of Food Engineering328, 111063.

Faisal S, Zhang J, Meng S, Shi A, Li L, Wang Q, Maleki S J, Adhikari B. 2022. Effect of high-moisture extrusion and addition of transglutaminase on major peanut allergens content extracted by three step sequential method. Food Chemistry385, 132569.

Fang Y, Zhang X, Liu H, Wu J, Qi F, Sun Z, Zheng Z, Dong W, Huang B. 2023. Identification of quantitative trait loci and development of diagnostic markers for growth habit traits in peanut (Arachis hypogaea L.). Theoretical and Applied Genetics136, 105.

Francisco M L L D, Resurreccion A V A. 2009. Total phenolics and antioxidant capacity of heat-treated peanut skins. Journal of Food Composition and Analysis22, 16–24.

He X H, Liu H Z, Liu L, Zhao G L, Wang Q, Chen Q L. 2014. Effects of high pressure on the physicochemical and functional properties of peanut protein isolates. Food Hydrocolloids36, 123–129.

Krishnakumar T. 2021. Engineering Properties of Agricultural Materials. ICAR-Central Tuber Crops Research Institute, India.

Li T, Guo Q, Qu Y, Li Y, Liu H, Liu L, Zhang Y, Jiang Y, Wang Q. 2022. Solubility and physicochemical properties of resveratrol in peanut oil. Food Chemistry368, 130687.

Li T, Qu Y, Hu X, Liang M, Guo Q, Wang Q. 2023. Green synthesis and structure characterization of resveratrol conjugated linoleate. Food Chemistry422, 136151.

Liu X, Fu J, Wen M, Gu H, Ji P, Yue X, Tang X, Liang M, Zhou Y, Zhang Q, Li P. 2023. Study on geographical distribution of Aspergillus flavus in peanut harvest period. Oil Crop Science8, 127–132.

Liu Z, Shi A, Wu C, Hei X, Li S, Liu H, Jiao B, Adhikari B, Wang Q. 2022. Natural amphiphilic shellac nanoparticle-stabilized novel pickering emulsions with droplets and bi-continuous structures. ACS Applied Materials & Interfaces14, 57350–57361.

Lou H, Yuan H, Ma B, Ren D, Ji M, Oka S. 2004. Polyphenols from peanut skins and their free radical-scavenging effects. Phytochemistry65, 2391–2399.

Lu J, Liu Y, Zou X, Zhang X, Yu X, Wang Y, Si T. 2024. Rotational strip peanut/cotton intercropping improves agricultural production through modulating plant growth, root exudates, and soil microbial communities. AgricultureEcosystems & Environment359, 108767.

Ma F, Wang D, Yin Y, Yin H, Song C, Xu X, Sun Y, Xue Y, Zhao L. 2023. Determining peanut moisture content by scattering coefficient. Journal of Food Engineering344, 111398.

Ma T, Zhu H, Wang J, Wang Q, Yu L, Sun B. 2017. Influence of extraction and solubilizing treatments on the molecular structure and functional properties of peanut protein. LWT-Food Science and Technology79, 197–204.

Maleki S J, Teuber S S, Mustafa S S. 2021. Adult peanut allergy: What we know and what we need to learn. Journal of Allergy and Clinical Immunology147, 2069–2072.

Masood H, Trujillo F J. 2016. Engineering properties of foods. [2024-1-10]. https://doi.org/10.1016/B978-0-08-100596-5.03418-1

Palmero F, Carcedo A J P, Haro R J, Bigatton E D, Salvagiotti F, Ciampitti I A. 2022. Modeling drought stress impacts under current and future climate for peanut in the semiarid pampas region of Argentina. Field Crops Research286, 108615.

Sobolev V S, Cole R J. 2004. Note on utilisation of peanut seed testa. Journal of the Science of Food and Agriculture84, 105–111.

Song Y, Rowland D L, Tillman B L, Wilson C H, Sarnoski P J, Zurweller B A. 2022. Impact of seed maturity on season-long physiological performance and offspring seed quality in peanut (Arachis hypogaea L.). Field Crops Research288, 108674.

Stalker H T. 2013. 9-Peanut. In Singh M, Upadhyaya H D, Bisht I S, eds., Genetic and Genomic Resources of Grain Legume Improvement. Elsevier, Oxford. pp. 203–235.

Stalker H T, Tallury S P, Seijo G R, Leal-Bertioli S C. 2016. Chapter 2-BiologySpeciation, and Utilization of Peanut Species. AOCS (American Oil Chemists’ Society) Press, American. pp. 27–66.

Wang Q. 2013. Peanut Processsing Quality. Academic Press, China.

Wang Q. 2016. Peanuts: Processing Technology and Product Development. Academic Press, China. pp. xiii–xv.

Wang Q. 2018. Overview of peanut processing quality. In: Peanut Processing Characteristics and Quality Evaluation. Springer, Germany. pp. 1–67.

Xiang F, Ding C, Wang M, Hu H, Ma X, Xu X, Zaki Abubakar B, Pignitter M, Wei K, Shi A, Wang Q. 2023. Vegetable oils: Classification, quality analysis, nutritional value and lipidomics applications. Food Chemistry439, 138059.

Xiang F, Xia Y, Wang Y, Wang Y, Wu K, Ni X. 2021. Preparation of konjac glucomannan based films reinforced with nanoparticles and its effect on cherry tomatoes preservation. Food Packaging and Shelf Life29, 100701.

Xie Y, Lin Y, Li X, Yang H, Han J, Shang C, Li A, Xiao H, Lu F. 2022. Peanut drying: Effects of various drying methods on drying kinetic models, physicochemical properties, germination characteristics, and microstructure. Information Processing in Agriculture4, 447–458.

Yan H, Fu J, Tang X, Wang D, Zhang Q, Li P. 2022. Sensitivity enhancement of paper-based sandwich immunosensor via nanobody immobilization instead of IgG antibody, taking aflatoxingenetic fungi as an analyte example. Sensors and Actuators (Chemical), 373, 132760.

Young C T, Pattee H E, Schadel W E, Sanders T H. 2004. Microstructure of peanut (Arachis hypogaea L. cv. ‘NC 7’) cotyledons during development. LWT-Food Science and Technology37, 439–445.

Yu H, Erasmus S W, Wang Q, Liu H, van Ruth S M. 2023. Rapid classification of peanut varieties for their processing into peanut butters based on near-infrared spectroscopy combined with machine learning. Journal of Food Composition and Analysis120, 105348.

Yu H, Liu H, Erasmus S W, Zhao S, Wang Q, van Ruth S M. 2020a. Rapid high-throughput determination of major components and amino acids in a single peanut kernel based on portable near-infrared spectroscopy combined with chemometrics. Industrial Crops and Products158, 112956.

Yu H, Liu H, Wang Q, van Ruth S. 2020b. Evaluation of portable and benchtop NIR for classification of high oleic acid peanuts and fatty acid quantitation. LWT-Food Science and Technology128, 109398.

Zhang D, Shen D, Cao Y, Duan X, Sun H. 2023. Widely targeted metabolomic approach reveals dynamic changes in non-volatile and volatile metabolites of peanuts during roasting. Food Chemistry412, 135577.

Zhang M, Zeng Q, Liu H, Qi F, Sun Z, Miao L, Li X, Li C, Liu D, Guo J, Zhang M, Xu J, Shi L, Tian M, Dong W, Huang B, Zhang X. 2022. Identification of a stable major QTL for fresh-seed germination on chromosome Arahy.04 in cultivated peanut (Arachis hypogaea L.). The Crop Journal10, 1767–1773.

Zhou H, Wu Z, Chang X, Tang Y, Yuan J, Li X, Yang A, Tong P, Chen H. 2021. The effect of roasting on peanut allergens’ digestibility, allergenicity, and structure. Food Bioscience44, 101454.

No related articles found!
No Suggested Reading articles found!