Please wait a minute...
Journal of Integrative Agriculture  2014, Vol. 13 Issue (12): 2656-2668    DOI: 10.1016/S2095-3119(14)60915-1
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |
An Inner Membrane Protein (Imp) of Xanthomonas oryzae pv. oryzicola Functions in Carbon Acquisition, EPS Production, Bacterial Motility and Virulence in Rice
 CAI Lu-lu, ZOU Li-fang, GE Ling, XUE Xiao-bo, ZOU Hua-song , CHEN Gong-you
School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  Xanthomonas oryzae pv. oryzicola (Xoc) causes bacterial leaf streak, a devastating disease in rice-growing regions worldwide. A Tn5-insertion mutant in Xoc_3248, encoding an inner membrane protein (Imp), showed reduced virulence in rice. To explore the potential function of this gene in virulence, a deletion mutant RΔimp was constructed in the wild-type RS105. The RΔimp mutant was significantly impaired for bacterial virulence and growth in planta. The mutation in imp made the pathogen insufficiently utilize glucose, fructose, mannose or pyruvate as a sole carbon source, leading to less extracellular polysaccharide (EPS) production and reduced motility. The deficiencies noted for the mutant were restored to wild-type levels when imp was introduced in trans. Transcription of imp was significantly declined when hrpG and hrpX was mutated and the expression of hrpG and hrpX was also significantly declined when imp was deleted. Cell sublocalization in planta showed Imp membrane-binding feature. These results suggest that Imp is a virulence factor with roles in the catabolism of sugars, EPS production, and bacterial motility.

Abstract  Xanthomonas oryzae pv. oryzicola (Xoc) causes bacterial leaf streak, a devastating disease in rice-growing regions worldwide. A Tn5-insertion mutant in Xoc_3248, encoding an inner membrane protein (Imp), showed reduced virulence in rice. To explore the potential function of this gene in virulence, a deletion mutant RΔimp was constructed in the wild-type RS105. The RΔimp mutant was significantly impaired for bacterial virulence and growth in planta. The mutation in imp made the pathogen insufficiently utilize glucose, fructose, mannose or pyruvate as a sole carbon source, leading to less extracellular polysaccharide (EPS) production and reduced motility. The deficiencies noted for the mutant were restored to wild-type levels when imp was introduced in trans. Transcription of imp was significantly declined when hrpG and hrpX was mutated and the expression of hrpG and hrpX was also significantly declined when imp was deleted. Cell sublocalization in planta showed Imp membrane-binding feature. These results suggest that Imp is a virulence factor with roles in the catabolism of sugars, EPS production, and bacterial motility.
Keywords:  Xanthomonas oryzae pv. oryzicola       inner membrane protein       extracellular polysaccharide       motility       virulence  
Received: 26 December 2013   Accepted:
Fund: 

Acknowledgements This work was supported by the Ministry of Agriculture of China (201303015), the Key Basic Research Project of Shanghai Committee of Science and Technology, China (11JC1406300), and the Ph D Programs Foundation of Ministry of Education of China (20100073110045).

Corresponding Authors:  CHEN Gong-you, Tel/Fax: +86-21-34205873, E-mail: gyouchen@sjtu.edu.cn     E-mail:  gyouchen@sjtu.edu.cn
About author:  CAI Lu-lu, E-mail: cailulusjtu@gmail.com

Cite this article: 

CAI Lu-lu, ZOU Li-fang, GE Ling, XUE Xiao-bo, ZOU Hua-song , CHEN Gong-you. 2014. An Inner Membrane Protein (Imp) of Xanthomonas oryzae pv. oryzicola Functions in Carbon Acquisition, EPS Production, Bacterial Motility and Virulence in Rice. Journal of Integrative Agriculture, 13(12): 2656-2668.

Bogdanove A J, Koebnik R, Lu H, Furutani A, Angiuoli SV, Patil P B, Van Sluys M A, Ryan R P, Meyer D F,Han S W, Aparna G, Rajaram M, Delcher A L, PhillippyA M, Puiu D, Schatz M C, Shumway M, Sommer D D,Trapnell C, Benahmed F, et al. 2011. Two new completegenome sequences offer insight into host and tissuespecificity of plant pathogenic Xanthomonas spp. Journalof Bacteriology, 193, 5450-5464

Chiba S, Ito K, Akiyama Y. 2006. The Escherichia coli plasmamembrane contains two PHB prohibitin homology domainprotein complexes of opposite orientations. MolecularMicrobiology, 60, 448-456

Dalbey R E, Wang P, Kuhn A. 2011. Assembly of bacterialinner membrane proteins. Annual Review Biochemisty,80, 161-87

Das A, Rangaraj N, Sonti R V. 2009. Multiple adhesin-likefunctions of Xanthomonas oryzae pv. oryzae are involvedin promoting leaf attachment, entry, and virulence on rice.Molecular Plant-Microbe Interactions, 22, 73-85

Dimmer K S, Jakobs S, Vogel F, Altmann K, Westermann B.2005. Mdm31 and Mdm32 are inner membrane proteinsrequired for maintenance of mitochondrial shape andstability of mitochondrial DNA nucleoids in yeast. Journalof Cell Biology, 168, 103-115

Furutani A, Nakayama T, Ochiai H, Kaku H, Kubo Y, TsugeS. 2006. Identification of novel HrpXo regulons precededby two cis-acting elements, a plant-inducible promoter boxand a -10 box-like sequence, from the genome databaseof Xanthomonas oryzae pv oryzae. FEMS MicrobiologyLetters, 259, 133-141

Furutani A, Takaoka M, Sanada H, Noguchi Y, Oku T, TsunoK, Ochiai H, Tsuge S. 2009. Identification of novel typeIII secretion effectors in Xanthomonas oryzae pv. oryzae.Molecular Plant-Microbe Interactions, 22, 96-106

Galvan E M, Ielmini M V, Patel Y N, Biano M I, FranceshiniE A, Schneider J C, Ielpi L. 2013. Xanthan chainlength is modulated by increasing the availability of thepolysaccharide copolymerase protein GumC and theouter membrane polysaccharide export protein GumB.Glycobiology, 23, 259-272

Guo W, Cai L L, Zou H S, Ma W X, Liu X L, Zou L F, Li YR, Chen X B, Chen G Y. 2012a. Ketoglutarate transportprotein KgtP is secreted through the type III secretionsystem and contributes to virulence in Xanthomonasoryzae pv. oryzae. Applied Environmental Microbiology,78, 5672-5681

Guo W, Cui Y P, Li Y R, Che Y Z, Yuan L, Zou L F, Zou HS, Chen G Y. 2012b. Identification of seven Xanthomonasoryzae pv. oryzicola genes potentially involved inpathogenesis in rice. Microbiology (Reading, England),158, 505-518

Guo W, Zou L F, Li Y R, Cui Y P, Ji Z Y, Cai L L, Zou HS, William C H, Yang C H, Chen G Y. 2012c. Fructosebisphophatealdolase exhibits functional roles betweencarbon metabolism and the hrp system in rice pathogen Xanthomonas oryzae pv. oryzicola. PLoS ONE, 7, e31855.He S Y, Nomura K, Whittam T S. 2004. Type III proteinsecretion mechanism in mammalian and plant pathogens.Biochimica et Biophysica Acta, 1694, 181-206

Hueck C J. 1998. Type III protein secretion systems inbacterial pathogens of animals and plant. Microbiologyand Molecular Biology Review, 62, 379-433

Jansson P, Kenne L, Lindberg B. 1975. Structure ofextracellular polysaccharide from Xanthomonascampestris. Carbohydrate Research, 45, 275-282

Katzen F, Ferreiro D U, Oddo C G, Ielmini M V, Becker A,Puhler A, Ielpi L. 1998. Xanthomonas campestris pv.campestris gum mutants: effects on xanthan biosynthesisand plant virulence. Journal of Bacteriology, 180, 1607-1617

Kim S Y, Lee B M, Cho J Y. 2010. Relationship betweenglucose catabolism and xanthan production in Xanthomonasoryzae pv. oryzae. Biotechnology Letters, 32, 527-531

Koebnik R, Krüger A, Thieme F, Urban A, Bonas U. 2006.Specific binding of the Xanthomonas campestris pv.vesicatoria AraC-type transcriptional activator HrpX toplant-inducible promoter boxes. Journal of Bacteriology,188, 7652-7660

Lee B M, Park Y J, Park D S, Kang H W, Kim J G, Song E S,Park I C, Yoon U H, Hahn J H, Koo B S, Lee G B, Kim H,Park H S, Yoon K O, Kim J H, Jung C H, Koh N H, SeoJ S, Go S J. 2005. The genome sequence of Xanthomonasoryzae pathovar oryzae KACC10331, the bacterial blightpathogen of rice. Nucleic Acids Research, 33, 577-586

Li Y R, Xiao Y L, Zou L F, Zou H S, Chen G Y. 2011a.Identification of HrpX regulon genes in Xanthomonasoryzae pv. oryzicola using a GFP visualization technique.Archives of Microbiology, 194, 281-291

Li Y R, Zou H S, Che Y Z, Cui Y P, Guo W, Zou L F,Subhadeep C, Eulandria M B, Yang C H, Chen G Y. 2011b.A novel regulatory role of HrpD6 in regulating hrp-hrc-hpagenes in Xanthomonas oryzae pv. oryzicola. MolecularPlant-Microbe Interactions, 24, 1086-1101

Luirink J, Yu Z, Wagner S, de Gier J W. 2012. Biogenesis ofinner membrane proteins in Escherichia coli. Biochimicaet Biophysica Acta, 1817, 965-976

Nikaido H. 2003. Molecular basis of bacterial outer membranepermeability revisited. Microbiology and MolecularBiology Reviews, 67, 593-656

Niño-Liu D O, Ronald P C, Bogdanove A J. 2006. Xanthomonasoryzae pathovars: model pathogens of a model crop.Molecular Plant Pathology, 7, 303-324

Ochiai H, Inoue Y, Takeya M, Kaku H. 2005. Genomesequence of Xanthomonas oryzae pv. oryzae suggestscontribution of large numbers of effector genes andinsertion sequences to its race diversity. Japan AgriculturalResearch quarterly, 39, 275-287

Ou S H. 1985. Rice Diseases. Commonwealth AgriculturalBureau, Kew, Surrey.Pradhan B B, Ranjan M, Chatterjee S. 2012. XadM, a noveladhesin of Xanthomonas oryzae pv. oryzae, exhibitssimilarity to Rhs family proteins and is required foroptimum attachment, biofilm formation, and virulence.Molecular Plant-Microbe Interactions, 25, 1157-1170

Ray S K, Rajeshwari R, Sonti R V. 2000. Mutants ofXanthomonas oryzae pv. oryzae deficient in generalsecretory pathway are virulence deficient and unable tosecrete xylanase. Molecular Plant-Microbe Interactions,13, 394-401

Reddy P R, Ou S H. 1974. Differentiation of Xanthomonastranslucens f.sp. oryzicola (Fang et al.) Bradbury, theleaf-streak pathogen, from Xanthomonas oryzae (Uyedaand Ishiyama) Dowson, the blight pathogen of rice, byenzymatic tests. International Journal of SystematicBacteriol, 24, 450-452

Salzberg S L, Sommer D D, Schatz M C, Phillippy A M,Rabinowicz P D, Tsuge S, Furutani A, Ochiai H, Delcher AL, Kelley D, Madupu R, Puiu D, Radune D, Shumway M,Trapnell C, Aparna G, Jha G, Pandey A, Patil P B, IshiharaH, et al. 2008. Genome sequence and rapid evolution of therice pathogen Xanthomonas oryzae pv. oryzae PXO99A.BMC Genomics, 9, 204.

Sambrook J, Fritsch E F, Maniatis T. 1989. Molecular Cloning:A Laboratory Manual. Cold Spring Harbor LaboratoryPress, Cold Spring Harbor, NY.

Shen Y P, Zou L F, Li Y R, Zou H S, Liu X L, Chen G Y.2012. Xoryp_08180 of Xanthomonas oryzae pv. oryzicola,encoding a hypothetical protein, is regulated by HrpG andHrpX and required for full virulence in rice. Journal ofIntegrative Agriculture, 11, 600-610

Shen Y, Chern M, Silva F G, Ronald P. 2001. Isolation of aXanthomonas oryzae pv. oryzae flagellar operon regionand molecular characterization of flhF. Molecular Plant-Microbe Interactions, 14, 204-213

Shen Y, Ronald P. 2002. Molecular determinants of diseaseand resistance in interactions of Xanthomonas oryzae pv.oryzae and rice. Microbes and Infection, 4, 1361-1367

Silhavy T J, Kahne D, Walker S. 2010. The bacterial cellenvelope. Cold Spring Harb Perspect Biology, 2, a000414.Sparkes I A, Runions J, Kearns A, Hawes C. 2006. Rapid,transient expression of fluorescent fusion proteins intobacco plants and generation of stably transformed plants.Nature Protocols, 1, 2019-2025

Swings J, Van den Mooter M, Vauterin L, Hoste B, Gillis M,Mew T W, Kersters K. 1990. Reclassification of the causalagents of bacterial blight (Xanthomonas campestris pv.oryzae) and bacterial leaf streak (Xanthomonas campestrispv. oryzicola) of rice as pathovars of Xanthomonas orzae(ex Ishiyama 1922) sp. nov., nom. rev. InternationalJournal of Systematic Bacteriol, 40, 309-311

Tsuge S, Terashima S, Furutani A, Ochiai H, Oku T, TsunoK, Kaku H, Kubo Y. 2005. Effects on promoter activityof base substitutions in the cis-acting regulatory elementof HrpXo regulons in Xanthomonas oryzae pv. oryzae.Journal of Bacteriology, 187, 2308-2314

Van A O, Whelan J, Van B. 2010. Prohibitins: Mitochondrialpartners in development and stress response. Trends in Plant Science, 15, 275-282

Wang L, Makino S, Subedee A, Bogdanove A J. 2007. Novelcandidate virulence factors in rice pathogen Xanthomonasoryzae pv. oryzicola as revealed by mutational analysis.Applied and Environmental Microbiology, 73, 8023-8027

Wengelnik K, Bonas U. 1996. HrpXv, an AraC-type regulator,activates expression of five of the six loci in the hrp clusterof Xanthomonas campestris pv. vesicatoria. Journal ofBacteriology, 178, 3462-3469

Wengelnik K, Rossier O, Bonas U.1999. Mutations in theregulatory gene hrpG of Xanthomonas campestris pv.vesicatoria result in constitutive expression of all hrpgenes. Journal of Bacteriology, 181, 6828-6831

Wengelnik K, van den Ackerveken G, Bonas U. 1996. HrpG,a key hrp regulatory protein of Xanthomonas campestrispv. vesicatoria is homologous to two-component responseregulators. Molecular Plant-Microbe Interactions, 9,704-712

Yoon K H, Cho J Y. 2007. Transcriptional analysis of the gumgene cluster from Xanthomonas oryzae pathovar oryzae.Biotechnology Letters, 29, 95-103

Zou H S, Yuan L, Guo W, Li Y R, Che Y Z, Zou L F, ChenG Y. 2011. Construction of a Tn5-tagged mutant libraryof Xanthomonas oryzae pv. oryzicola as an invaluableresource for functional genomics. Current Microbiology,62, 908-916

Zou L F, Wang X P, Xiang Y, Zhang B, Li Y R, Xiao Y L,Wang J S, Walmsley A R, Chen G Y. 2006. Elucidationof the hrp clusters of Xanthomonas oryzae pv. oryzicolathat control the hypersensitive response in nonhost tobaccoand pathogenicity in susceptible host rice. Applied andEnvironmental Microbiology, 72, 6212-6224
[1] Ambreen LEGHARI, Shakeel Ahmed LAKHO, Faiz Muhammad KHAND, Khaliq ur Rehman BHUTTO, Sameen Qayoom LONE, Muhammad Tahir ALEEM, Iqra BANO, Muhammad Ali CHANDIO, Jan Muhammad SHAH, LIN Hui-xing, FAN Hong-jie. Molecular epidemiology, characterization of virulence factors and antibiotic-resistance profile of Streptococcus agalactiae isolated from dairy farms in China and Pakistan[J]. >Journal of Integrative Agriculture, 2023, 22(5): 1514-1528.
[2] XU Bin, MA Zhe, ZHOU Hong, LIN Hui-xing, FAN Hong-jie. The vital role of CovS in the establishment of Streptococcus equi subsp. zooepidemicus virulence[J]. >Journal of Integrative Agriculture, 2023, 22(2): 568-584.
[3] WANG Pei-hong, WANG Sai, NIE Wen-han, WU Yan, Iftikhar AHMAD, Ayizekeranmu YIMING, HUANG Jin, CHEN Gong-you, ZHU Bo. A transferred regulator that contributes to Xanthomonas oryzae pv. oryzicola oxidative stress adaptation and virulence by regulating the expression of cytochrome bd oxidase genes[J]. >Journal of Integrative Agriculture, 2022, 21(6): 1673-1682.
[4] YU Wen-ying, LIN Mei, YAN Hui-juan, WANG Jia-jia, ZHANG Sheng-min, LU Guo-dong, WANG Zong-hua, Won-Bo SHIM. The peroxisomal matrix shuttling receptor Pex5 plays a role of FB1 production and virulence in Fusarium verticillioides[J]. >Journal of Integrative Agriculture, 2022, 21(10): 2957-2972.
[5] SHI Dong-ya, REN Wei-chao, WANG Jin, ZHANG Jie, Jane Ifunanya MBADIANYA, MAO Xue-wei, CHEN Chang-jun. The transcription factor FgNsf1 regulates fungal development, virulence and stress responses in Fusarium graminearum[J]. >Journal of Integrative Agriculture, 2021, 20(8): 2156-2169.
[6] TIAN Li, HUANG Cai-min, ZHANG Dan-dan, LI Ran, CHEN Jie-yin, SUN Wei-xia, QIU Nian-wei, DAI Xiao-feng. Extracellular superoxide dismutase VdSOD5 is required for virulence in Verticillium dahliae[J]. >Journal of Integrative Agriculture, 2021, 20(7): 1858-1870.
[7] Bongekile NGOBESE, Oliver Tendayi ZISHIRI, Mohamed Ezzat EL ZOWALATY. Molecular detection of virulence genes in Campylobacter species isolated from livestock production systems in South Africa[J]. >Journal of Integrative Agriculture, 2020, 19(6): 1656-1670.
[8] CHEN Bin, TIAN Yan-li, ZHAO Yu-qiang, WANG Yuan-jie, CHUAN Jia-cheng, LI Xiang, HU Bai-shi. Genomic characteristics of Dickeya fangzhongdai isolates from pear and the function of type IV pili in the chromosome[J]. >Journal of Integrative Agriculture, 2020, 19(4): 906-920.
[9] QIN Jia-xing, LI Bao-hua, ZHOU Shan-yue. A novel glycoside hydrolase 74 xyloglucanase CvGH74A is a virulence factor in Coniella vitis[J]. >Journal of Integrative Agriculture, 2020, 19(11): 2725-2735.
[10] YUAN Long-yu, HAO Yuan-hao, CHEN Qiao-kui, PANG Rui, ZHANG Wen-qing. Pancreatic triglyceride lipase is involved in the virulence of the brown planthopper to rice plants[J]. >Journal of Integrative Agriculture, 2020, 19(11): 2758-2766.
[11] ZHANG Hang, YANG Feng, LI Xin-pu, LUO Jin-yin, WANG Ling, ZHOU Yu-long, YAN Yong, WANG Xu-rong, LI Hong-sheng. Detection of antimicrobial resistance and virulence-related genes in Streptococcus uberis and Streptococcus parauberis isolated from clinical bovine mastitis cases in northwestern China[J]. >Journal of Integrative Agriculture, 2020, 19(11): 2784-2791.
[12] WANG Qian-nan, HUANG Pan-pan, ZHOU Shan-yue. Functional characterization of the catalytic and bromodomain of FgGCN5 in development, DON production and virulence of Fusarium graminearum[J]. >Journal of Integrative Agriculture, 2020, 19(10): 2477-2487.
[13] ZHENG Na, ZHANG Liu-ping, GE Feng-yong, HUANG Wen-kun, KONG Ling-an, PENG De-liang, LIU Shi-ming. Conidia of one Fusarium solani isolate from a soybean-production field enable to be virulent to soybean and make soybean seedlings wilted[J]. >Journal of Integrative Agriculture, 2018, 17(09): 2042-2053.
[14] LIU Tai-guo, GE Run-jing, MA Yu-tong, LIU Bo, GAO Li, CHEN Wan-quan. Population genetic structure of Chinese Puccinia triticina races based on multi-locus sequences[J]. >Journal of Integrative Agriculture, 2018, 17(08): 1779-1789.
[15] WANG Bao-hua, Daniel J. Ebbole, WANG Zong-hua. The arms race between Magnaporthe oryzae and rice: Diversity and interaction of Avr and R genes[J]. >Journal of Integrative Agriculture, 2017, 16(12): 2746-2760.
No Suggested Reading articles found!