An Y Y, Chen J L, Xu Z Y, Ouyang X, Cao P, Wang R B, Liu P Q, Zhang M X. 2022. Three amino acid residues are required for the recognition of Ralstonia solanacearum RipTPS in Nicotiana tabacum. Frontiers in Plant Science, 13, 1040826.
Boller T, Felix G. 2009. A renaissance of elicitors: Perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annual Review of Plant Biology, 60, 379–406.
Cao H, Glazebrook J, Clarke J D, Volko S, Dong X N. 1997. The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. Cell, 88, 57–63.
Conrath U, Beckers G J M, Langenbach C J G, Jaskiewicz M R. 2015. Priming for enhanced defense. Annual Review of Phytopathology, 53, 97–119.
Cruz A P Z, Ferreira V, Pianzzola M J, Siri M I, Coll N S, Valls M. 2014. A novel, sensitive method to evaluate potato germplasm for bacterial wilt resistance using a luminescent Ralstonia solanacearum reporter strain. Molecular Plant-Microbe Interactions, 27, 277–285.
Delaney T P, Uknes S, Vernooij B, Friedrich L, Weymann K, Negrotto D, Gaffney T, Gut-Rella M, Kessmann H, Ward E, Ryals J. 1994. A central role of salicylic acid in plant disease resistance. Science, 266, 1247–1250.
Ding Y L, Sun T J, Ao K, Peng Y J, Zhang Y X, Li X, Zhang Y L. 2018. Opposite roles of salicylic acid receptors NPR1 and NPR3/NPR4 in transcriptional regulation of plant immunity. Cell, 173, 1454–1467.
Fu Z Q, Yan S P, Saleh A, Wang W, Ruble J, Oka N, Mohan R, Spoel S H, Tada Y, Zheng N, Dong X N. 2012. NPR3 and NPR4 are receptors for the immune signal salicylic acid in plants. Nature, 486, 228–232.
Galan J E, Lara-Tejero M, Marlovits T C, Wagner S. 2014. Bacterial type III secretion systems: specialized nanomachines for protein delivery into target cells. Annual Review of Microbiology, 68, 415–438.
Genin S. 2010. Molecular traits controlling host range and adaptation to plants in Ralstonia solanacearum. New Phytologist, 187, 920–928.
Genin S, Denny T P. 2012. Pathogenomics of the Ralstonia solanacearum species complex. Annual Review of Phytopathology, 50, 67–89.
Gong B Q, Guo J H, Zhang N N, Yao X R, Wang H B, Li J F. 2019. Cross-microbial protection via priming a conserved immune co-receptor through juxtamembrane phosphorylation in plants. Cell Host & Microbe, 26, 810–822.
Huet G. 2014. Breeding for resistances to Ralstonia solanacearum. Frontiers in Plant Science, 5, 715.
Jacobs J M, Babujee L, Meng F H, Milling A, Allen C. 2012. The in planta transcriptome of Ralstonia solanacearum: conserved physiological and virulence strategies during bacterial wilt of tomato. mBio, 3, e00104–e00116.
Jones J D G, Dangl J L. 2006. The plant immune system. Nature, 444, 323–329.
Landry D, Gonzalez-Fuente M, Deslandes L, Peeters N. 2020. The large, diverse, and robust arsenal of Ralstonia solanacearum type III effectors and their in planta functions. Molecular Plant Pathology, 21, 1377–1388.
Liu Y, Tang Y M, Qin X Y, Yang L, Jiang G F, Li S L, Ding W. 2017. Genome sequencing of Ralstonia solanacearum CQPS-1, a phylotype I strain collected from a highland area with continuous cropping of tobacco. Frontiers in Microbiology, 8, 974.
Lu H B, Lema A S, Planas-Marques M, Alonso-Diaz A, Valls M, Coll N S. 2018. Type III secretion-dependent and -independent phenotypes caused by Ralstonia solanacearum in Arabidopsis roots. Molecular Plant-Microbe Interactions, 31, 175–184.
Macho A P, Guidot A, Barberis P, Beuzon C R, Genin S. 2010. A competitive index assay identifies several Ralstonia solanacearum type III effector mutant strains with reduced fitness in host plants. Molecular Plant-Microbe Interactions, 23, 1197–1205.
Majhi B B, Sobol G, Gachie S, Sreeramulu S, Sessa G. 2021. BRASSINOSTEROID-SIGNALLING KINASES 7 and 8 associate with the FLS2 immune receptor and are required for flg22-induced PTI responses. Molecular Plant Pathology, 22, 786–799.
Mansfield J, Genin S, Magori S, Citovsky V, Sriariyanum M, Ronald P, Dow M, Verdier V, Beer S V, Machado M A, Toth I, Salmond G, Foster G D. 2012. Top 10 plant pathogenic bacteria in molecular plant pathology. Molecular Plant Pathology, 13, 614–629.
Mauch-Mani B, Baccelli I, Luna E, Flors V. 2017. Defense priming: An adaptive part of induced resistance. Annual Review of Plant Biology, 68, 485–512.
Monteiro F, Sole M, van Dijk I, Valls M. 2012. A chromosomal insertion toolbox for promoter probing, mutant complementation, and pathogenicity studies in Ralstonia solanacearum. Molecular Plant-Microbe Interactions, 25, 557–568.
Ngou B P M, Ahn H K, Ding P T, Jones J D G. 2021. Mutual potentiation of plant immunity by cell-surface and intracellular receptors. Nature, 592, 110–115.
Qi P P, Huang M L, Hu X H, Zhang Y, Wang Y, Li P Y, Chen S Y, Zhang D, Cao S, Zhu W T, Xie J T, Cheng J S, Fu Y P, Jiang D H, Yu X, Li B. 2022. A Ralstonia solanacearum effector targets TGA transcription factors to subvert salicylic acid signaling. Plant Cell, 34, 1666–1683.
Qian Y L, Chen J, Dong J J, Wu Z C, Liu Y H, Xue B Y, Shao F W, Sun X Y. 2016. Genetic analyses of the major and minor locus groups of bacterial wilt resistance in tobacco using a diallel cross design. Genetics and Molecular Research, 15, 15017223.
Salanoubat M, Genin S, Artiguenave F, Gouzy J, Mangenot S, Arlat M, Billault A, Brottier P, Camus J C, Cattolico L, Chandler M, Choisne N, Claudel-Renard C, Cunnac S, Demange N, Gaspin C, Lavie M, Moisan A, Robert C, Saurin W, et al. 2002. Genome sequence of the plant pathogen Ralstonia solanacearum. Nature, 415, 497–502.
Schreiber K J, Chau-Ly I J, Lewis J D. 2021. What the wild things do: Mechanisms of plant host manipulation by bacterial type III-secreted effector proteins. Microorganisms, 9, 1029.
Shi H Q, Xu P W, Yu W, Cheng Y Z, Ding A M, Wang W F, Wu S X, Sun Y H. 2022. Metabolomic and transcriptomic analysis of roots of tobacco varieties resistant and susceptible to bacterial wilt. Genomics, 114, 110471.
Singh N, Phukan T, Sharma P L, Kabyashree K, Barman A, Kumar R, Sonti R V, Genin S, Ray S K. 2018. An innovative root inoculation method to study Ralstonia solanacearum pathogenicity in tomato seedlings. Phytopathology, 108, 436–442.
Sun Y H, Li P, Deng M Y, Shen D, Dai G Y, Yao N, Lu Y J. 2017. The Ralstonia solanacearum effector RipAK suppresses plant hypersensitive response by inhibiting the activity of host catalases. Cellular Microbiology, 19, 12736.
Thomas N C, Hendrich C G, Gill U S, Allen C, Hutton S F, Schultink A. 2020. The immune receptor Roq1 confers resistance to the bacterial pathogens Xanthomonas, Pseudomonas syringae, and Ralstonia in tomato. Frontiers in Plant Science, 11, 463.
Tsuda K, Katagiri F. 2010. Comparing signaling mechanisms engaged in pattern-triggered and effector-triggered immunity. Current Opinion in Plant Biology, 13, 459–465.
Vailleau F, Sartorel E, Jardinaud M F, Chardon F, Genin S, Huguet T, Gentzbittel L, Petitprez M. 2007. Characterization of the interaction between the bacterial wilt pathogen Ralstonia solanacearum and the model legume plant Medicago truncatula. Molecular Plant-Microbe Interactions, 20, 159–167.
Valls M, Genin S, Boucher C. 2006. Integrated regulation of the type III secretion system and other virulence determinants in Ralstonia solanacearum. PLoS Pathogens, 2, 798–807.
Vincelli P. 2016. Genetic engineering and sustainable crop disease management: Opportunities for case-by-case decision-making. Sustainability, 8, 495.
Wang H J, Hu J X, Lu Y, Zhang M C, Qin N, Zhang R Z, He Y Z, Wang D D, Chen Y, Zhao C Z, Coll N S, Valls M, Chen Q, Lu H B. 2019. A quick and efficient hydroponic potato infection method for evaluating potato resistance and Ralstonia solanacearum virulence. Plant Methods, 15, 145.
Xu C H, Zhong L K, Huang Z M, Li C Y, Lian J Z, Zheng X F, Liang Y. 2022. Real-time monitoring of Ralstonia solanacearum infection progress in tomato and Arabidopsis using bioluminescence imaging technology. Plant Methods, 18, 7.
Yu G, Xian L, Xue H, Yu W J, Rufian J S, Sang Y Y, Morcillo R J L, Wang Y R, Macho A P. 2020. A bacterial effector protein prevents MAPK-mediated phosphorylation of SGT1 to suppress plant immunity. PLoS Pathogens, 16, 1008933.
Yuan M H, Jiang Z Y, Bi G Z, Nomura K, Liu M H, Wang Y P, Cai B Y, Zhou J M, He S Y, Xin X F. 2021. Pattern-recognition receptors are required for NLR-mediated plant immunity. Nature, 592, 105–109.
Zhang C, Chen H, Zhuang R R, Chen Y T, Deng Y, Cai T C, Wang S Y, Liu Q Z, Tang R H, Shan S H, Pan R L, Chen L S, Zhuang W J. 2019. Overexpression of the peanut CLAVATA1-like leucine-rich repeat receptor-like kinase AhRLK1 confers increased resistance to bacterial wilt in tobacco. Journal of Experimental Botany, 70, 5407–5421.
|