Please wait a minute...
Journal of Integrative Agriculture  2023, Vol. 22 Issue (12): 3709-3719    DOI: 10.1016/j.jia.2023.05.020
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |
Seedling Petri-dish inoculation method: A robust, easy-to-use and reliable assay for studying plant–Ralstonia solanacearum interactions

CAO Peng1*, CHEN Jia-lan2*, LI Ning-ning2*, ZHANG Shuang-xi1, WANG Rong-bo3, LI Ben-jin3, LIU Pei-qing3, AN Yu-yan1#, ZHANG Mei-xiang1#

1 National Engineering Laboratory for Endangered Medicinal Resource Development in Northwest China/Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry of Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi’an 710119, P.R.China
2 Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, P.R.China
3 Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou 350013, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

茄科劳尔氏菌,简称青枯菌(Ralstonia solanacearum),是一种分布广泛的土传细菌病原菌,该病原菌从根部侵染植物,最终引发青枯病(Bacterial wilt disease)。青枯菌寄主范围广泛,可在200多种植物包括马铃薯、番茄、辣椒、烟草、花生等重要作物上引起毁灭性的植物病害,被列为世界上第二大细菌性植物病原菌,给全世界的农作物生产带来巨大威胁。研究并解析青枯菌与植物互作的分子机制可为青枯病防控策略的建立奠定基础。然而,目前科研中主要采用的青枯菌土壤灌根法接种方法存在实验周期长所需植物培养空间大且条件不容易控制等问题,限制了青枯菌与植物互作研究的开展。因此,亟需一种快速操作简易、结果稳定的青枯菌接种方法。为此,本文建立了一种培养皿内青枯菌接种方法(Petri-dish inoculation method),该方法具备接种后发病稳定、操作简易和实验周期短等特点,可广泛用于青枯菌与植物互作研究。为了证明该方法在青枯菌与植物互作研究中的有效性,本文利用引发植物防御作用的分子模式Pep1,拟南芥感病突变体npr1,以及具有不同毒力水平的青枯菌突变体ΔhrcVΔRipAC,研究了青枯菌皿内接种方法在评估植物抗病性和青枯菌致病性中的适用性和高效性。同时,我们利用皿内接种方法再现了前人对4个烟草品种的抗性评估结果,表明该方法可用于不同植物种质材料的抗性评估和筛选。鉴于此方法具有快速、操作简单、节省空间,人力和财力,以及所需接种量少的优点,该方法可用于快速大规模青枯菌突变体致病性分析以及植物对青枯菌抗性种质材料的筛选和鉴定。青枯菌皿内接种方法也为其他土传病原菌的接种提供参考。



Abstract  

Ralstonia solanacearum causes a lethal bacterial wilt disease in many crops, leading to huge losses in crop production every year.  Understanding of plant–Rsolanacearum interactions will aid to develop efficient strategies to control the disease.  As a soilborne pathogen, Rsolanacearum naturally infects plants via roots.  A huge limitation in studying plant–Rsolanacearum interactions is the large variation of Rsolanacearum infection assay due to the variable soil conditions and uneven inoculum exposure.  Here, we developed a robust and reliable Petri-dish inoculation method which allows consistent and stable infection in young plant seedlings.  This method is easy to use, takes about only 10 days from seed germination to the completion of inoculation assay, and requires less inoculum of bacteria as well as growth chamber space.  We proved the efficacy of the seedling Petri-dish inoculation method by analyzing plant defense primed by molecular patterns, resistance of defense-related plant mutants, and virulence of Rsolanacearum mutants.  Furthermore, we demonstrated that the seedling Petri-dish inoculation method can be applied to other host plants such as tobacco and has great potential for high-throughput screening of resistant plant germplasms to bacterial wilt in the future.

Keywords:  bacterial wilt        Ralstonia solanacearum        Petri-dish inoculation method        virulence        resistance        defense priming  
Received: 01 February 2023   Accepted: 10 April 2023
Fund: 

This work was supported by the National Natural Science Foundation of China (32072399 and 32272641), the Fundamental Research Funds for the Central Universities (GK202201017 and GK202207024), and the Program of Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, China (MIMCP-202203).  

About author:  CAO Peng, E-mail: chaopenn@snnu.edu.cn; CHEN Jia-lan, E-mail: chenjialan05@foxmail.com; LI Ning-ning, E-mail: lnn1047541675@163.com; #Correspondence AN Yu-yan, E-mail: anyuyan@snnu.edu.cn; ZHANG Mei-xiang, E-mail: meixiangzhang@snnu.edu.cn * These authors contributed equally to this study.

Cite this article: 

CAO Peng, CHEN Jia-lan, LI Ning-ning, ZHANG Shuang-xi, WANG Rong-bo, LI Ben-jin, LIU Pei-qing, AN Yu-yan, ZHANG Mei-xiang. 2023. Seedling Petri-dish inoculation method: A robust, easy-to-use and reliable assay for studying plant–Ralstonia solanacearum interactions. Journal of Integrative Agriculture, 22(12): 3709-3719.

An Y Y, Chen J L, Xu Z Y, Ouyang X, Cao P, Wang R B, Liu P Q, Zhang M X. 2022. Three amino acid residues are required for the recognition of Ralstonia solanacearum RipTPS in Nicotiana tabacumFrontiers in Plant Science13, 1040826.

Boller T, Felix G. 2009. A renaissance of elicitors: Perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annual Review of Plant Biology60, 379–406.

Cao H, Glazebrook J, Clarke J D, Volko S, Dong X N. 1997. The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. Cell88, 57–63.

Conrath U, Beckers G J M, Langenbach C J G, Jaskiewicz M R. 2015. Priming for enhanced defense. Annual Review of Phytopathology53, 97–119.

Cruz A P Z, Ferreira V, Pianzzola M J, Siri M I, Coll N S, Valls M. 2014. A novel, sensitive method to evaluate potato germplasm for bacterial wilt resistance using a luminescent Ralstonia solanacearum reporter strain. Molecular Plant-Microbe Interactions27, 277–285.

Delaney T P, Uknes S, Vernooij B, Friedrich L, Weymann K, Negrotto D, Gaffney T, Gut-Rella M, Kessmann H, Ward E, Ryals J. 1994. A central role of salicylic acid in plant disease resistance. Science266, 1247–1250.

Ding Y L, Sun T J, Ao K, Peng Y J, Zhang Y X, Li X, Zhang Y L. 2018. Opposite roles of salicylic acid receptors NPR1 and NPR3/NPR4 in transcriptional regulation of plant immunity. Cell173, 1454–1467.

Fu Z Q, Yan S P, Saleh A, Wang W, Ruble J, Oka N, Mohan R, Spoel S H, Tada Y, Zheng N, Dong X N. 2012. NPR3 and NPR4 are receptors for the immune signal salicylic acid in plants. Nature486, 228–232.

Galan J E, Lara-Tejero M, Marlovits T C, Wagner S. 2014. Bacterial type III secretion systems: specialized nanomachines for protein delivery into target cells. Annual Review of Microbiology68, 415–438.

Genin S. 2010. Molecular traits controlling host range and adaptation to plants in Ralstonia solanacearumNew Phytologist187, 920–928.

Genin S, Denny T P. 2012. Pathogenomics of the Ralstonia solanacearum species complex. Annual Review of Phytopathology, 50, 67–89.

Gong B Q, Guo J H, Zhang N N, Yao X R, Wang H B, Li J F. 2019. Cross-microbial protection via priming a conserved immune co-receptor through juxtamembrane phosphorylation in plants. Cell Host & Microbe26, 810–822.

Huet G. 2014. Breeding for resistances to Ralstonia solanacearumFrontiers in Plant Science5, 715.

Jacobs J M, Babujee L, Meng F H, Milling A, Allen C. 2012. The in planta transcriptome of Ralstonia solanacearum: conserved physiological and virulence strategies during bacterial wilt of tomato. mBio3, e00104–e00116.

Jones J D G, Dangl J L. 2006. The plant immune system. Nature444, 323–329.

Landry D, Gonzalez-Fuente M, Deslandes L, Peeters N. 2020. The large, diverse, and robust arsenal of Ralstonia solanacearum type III effectors and their in planta functions. Molecular Plant Pathology21, 1377–1388.

Liu Y, Tang Y M, Qin X Y, Yang L, Jiang G F, Li S L, Ding W. 2017. Genome sequencing of Ralstonia solanacearum CQPS-1, a phylotype I strain collected from a highland area with continuous cropping of tobacco. Frontiers in Microbiology8, 974.

Lu H B, Lema A S, Planas-Marques M, Alonso-Diaz A, Valls M, Coll N S. 2018. Type III secretion-dependent and -independent phenotypes caused by Ralstonia solanacearum in Arabidopsis roots. Molecular Plant-Microbe Interactions31, 175–184.

Macho A P, Guidot A, Barberis P, Beuzon C R, Genin S. 2010. A competitive index assay identifies several Ralstonia solanacearum type III effector mutant strains with reduced fitness in host plants. Molecular Plant-Microbe Interactions23, 1197–1205.

Majhi B B, Sobol G, Gachie S, Sreeramulu S, Sessa G. 2021. BRASSINOSTEROID-SIGNALLING KINASES 7 and 8 associate with the FLS2 immune receptor and are required for flg22-induced PTI responses. Molecular Plant Pathology22, 786–799.

Mansfield J, Genin S, Magori S, Citovsky V, Sriariyanum M, Ronald P, Dow M, Verdier V, Beer S V, Machado M A, Toth I, Salmond G, Foster G D. 2012. Top 10 plant pathogenic bacteria in molecular plant pathology. Molecular Plant Pathology13, 614–629.

Mauch-Mani B, Baccelli I, Luna E, Flors V. 2017. Defense priming: An adaptive part of induced resistance. Annual Review of Plant Biology, 68, 485–512.

Monteiro F, Sole M, van Dijk I, Valls M. 2012. A chromosomal insertion toolbox for promoter probing, mutant complementation, and pathogenicity studies in Ralstonia solanacearumMolecular Plant-Microbe Interactions25, 557–568.

Ngou B P M, Ahn H K, Ding P T, Jones J D G. 2021. Mutual potentiation of plant immunity by cell-surface and intracellular receptors. Nature592, 110–115.

Qi P P, Huang M L, Hu X H, Zhang Y, Wang Y, Li P Y, Chen S Y, Zhang D, Cao S, Zhu W T, Xie J T, Cheng J S, Fu Y P, Jiang D H, Yu X, Li B. 2022. A Ralstonia solanacearum effector targets TGA transcription factors to subvert salicylic acid signaling. Plant Cell34, 1666–1683.

Qian Y L, Chen J, Dong J J, Wu Z C, Liu Y H, Xue B Y, Shao F W, Sun X Y. 2016. Genetic analyses of the major and minor locus groups of bacterial wilt resistance in tobacco using a diallel cross design. Genetics and Molecular Research15, 15017223.

Salanoubat M, Genin S, Artiguenave F, Gouzy J, Mangenot S, Arlat M, Billault A, Brottier P, Camus J C, Cattolico L, Chandler M, Choisne N, Claudel-Renard C, Cunnac S, Demange N, Gaspin C, Lavie M, Moisan A, Robert C, Saurin W, et al. 2002. Genome sequence of the plant pathogen Ralstonia solanacearumNature415, 497–502.

Schreiber K J, Chau-Ly I J, Lewis J D. 2021. What the wild things do: Mechanisms of plant host manipulation by bacterial type III-secreted effector proteins. Microorganisms9, 1029.

Shi H Q, Xu P W, Yu W, Cheng Y Z, Ding A M, Wang W F, Wu S X, Sun Y H. 2022. Metabolomic and transcriptomic analysis of roots of tobacco varieties resistant and susceptible to bacterial wilt. Genomics114, 110471.

Singh N, Phukan T, Sharma P L, Kabyashree K, Barman A, Kumar R, Sonti R V, Genin S, Ray S K. 2018. An innovative root inoculation method to study Ralstonia solanacearum pathogenicity in tomato seedlings. Phytopathology108, 436–442.

Sun Y H, Li P, Deng M Y, Shen D, Dai G Y, Yao N, Lu Y J. 2017. The Ralstonia solanacearum effector RipAK suppresses plant hypersensitive response by inhibiting the activity of host catalases. Cellular Microbiology19, 12736.

Thomas N C, Hendrich C G, Gill U S, Allen C, Hutton S F, Schultink A. 2020. The immune receptor Roq1 confers resistance to the bacterial pathogens XanthomonasPseudomonas syringae, and Ralstonia in tomato. Frontiers in Plant Science11, 463.

Tsuda K, Katagiri F. 2010. Comparing signaling mechanisms engaged in pattern-triggered and effector-triggered immunity. Current Opinion in Plant Biology13, 459–465.

Vailleau F, Sartorel E, Jardinaud M F, Chardon F, Genin S, Huguet T, Gentzbittel L, Petitprez M. 2007. Characterization of the interaction between the bacterial wilt pathogen Ralstonia solanacearum and the model legume plant Medicago truncatulaMolecular Plant-Microbe Interactions20, 159–167.

Valls M, Genin S, Boucher C. 2006. Integrated regulation of the type III secretion system and other virulence determinants in Ralstonia solanacearumPLoS Pathogens2, 798–807.

Vincelli P. 2016. Genetic engineering and sustainable crop disease management: Opportunities for case-by-case decision-making. Sustainability8, 495.

Wang H J, Hu J X, Lu Y, Zhang M C, Qin N, Zhang R Z, He Y Z, Wang D D, Chen Y, Zhao C Z, Coll N S, Valls M, Chen Q, Lu H B. 2019. A quick and efficient hydroponic potato infection method for evaluating potato resistance and Ralstonia solanacearum virulence. Plant Methods15, 145.

Xu C H, Zhong L K, Huang Z M, Li C Y, Lian J Z, Zheng X F, Liang Y. 2022. Real-time monitoring of Ralstonia solanacearum infection progress in tomato and Arabidopsis using bioluminescence imaging technology. Plant Methods18, 7.

Yu G, Xian L, Xue H, Yu W J, Rufian J S, Sang Y Y, Morcillo R J L, Wang Y R, Macho A P. 2020. A bacterial effector protein prevents MAPK-mediated phosphorylation of SGT1 to suppress plant immunity. PLoS Pathogens16, 1008933.

Yuan M H, Jiang Z Y, Bi G Z, Nomura K, Liu M H, Wang Y P, Cai B Y, Zhou J M, He S Y, Xin X F. 2021. Pattern-recognition receptors are required for NLR-mediated plant immunity. Nature592, 105–109.

Zhang C, Chen H, Zhuang R R, Chen Y T, Deng Y, Cai T C, Wang S Y, Liu Q Z, Tang R H, Shan S H, Pan R L, Chen L S, Zhuang W J. 2019. Overexpression of the peanut CLAVATA1-like leucine-rich repeat receptor-like kinase AhRLK1 confers increased resistance to bacterial wilt in tobacco. Journal of Experimental Botany70, 5407–5421.

No related articles found!
No Suggested Reading articles found!