Please wait a minute...
Journal of Integrative Agriculture  2021, Vol. 20 Issue (8): 2156-2169    DOI: 10.1016/S2095-3119(20)63339-1
Special Issue: 植物病理合辑Plant Protection—Plant Pathology 植物细菌真菌合辑Plant Bacteria/Fungus
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |
The transcription factor FgNsf1 regulates fungal development, virulence and stress responses in Fusarium graminearum
SHI Dong-ya1*, REN Wei-chao2*, WANG Jin1, ZHANG Jie1, Jane Ifunanya MBADIANYA1, MAO Xue-wei1, CHEN Chang-jun1 
1 College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, P.R.China
2 College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

Nsf1(Nutrient and stress factor 1)是典型的C2H2型锌指蛋白,酿酒酵母中Nsf1在非发酵碳源或者盐胁迫的条件下才会表达。进化树分析发现该基因在不同物种间比较保守,然而,Nsf1的功能在丝状真菌中研究得并不是很透彻。为了探索FgNsf1在小麦赤霉病的病原菌禾谷镰孢菌中的功能,我们构建了FgNSF1基因敲除体(ΔFgNsf1)和包含GFP标记的回复体(ΔFgNsf1-C),亚细胞定位表明FgNsf1蛋白集中于细胞核。进一步研究发现,与野生菌株PH-1和回复体ΔFgNsf1-C 相比,敲除体ΔFgNsf1的菌丝体生长速率明显减慢,分生孢子产量及萌发率显著下降,且有畸形孢子产生,子囊壳产量也显著降低。但是红色镰刀菌素和黄色镰刀菌素的产量明显增加,为了验证这一结果,我们利用实时荧光定量PCR技术检测了相关基因(AurJAurFAurOAurR2)的表达量,研究结果发现,相关基因的表达量都显著上调。此外,使用不同浓度的NaCl处理时,野生菌株PH-1中FgNSF1基因的表达量均上调,而在使用不可发酵碳源乙醇、甘油或醋酸盐作为唯一碳源时,FgNSF1基因的表达量都显著下调。另外我们发现敲除体对渗透,细胞壁,氧化和部分金属离子等胁迫因子的敏感性显著下降,只对0.2M镁离子胁迫的敏感性显著提高。药敏性实验发现,敲除体对咯菌腈和抑菌脲的抗药性明显增强,而对戊唑醇和多菌灵的敏感性显著提高。随后,我们在小麦胚芽鞘和麦穗上进行了致病力实验,结果发现ΔFgNsf1的致病力显著减弱,在产毒培养基中DON(脱氧雪腐镰刀烯醇)产量也显著下降,以及DON毒素合成相关基因TRI5和TRI6的基因表达量也显著下调。结论:FgNSF1在禾谷镰孢菌的生长发育,有性和无性生殖,应对外界胁迫,产毒和致病的过程中扮演着重要的角色。创新性:我们首次系统地报道了FgNSF1在禾谷镰孢菌中的功能。




Abstract  
Nutrient and stress factor 1 (Nsf1), a transcription factor containing the classical Cys2-His2 (C2H2) zinc finger motif, is expressed under non-fermentable carbon conditions and in response to salt stress in Saccharomyces cerevisiae.  However, the role of Nsf1 in filamentous fungi is not well understood.  In this study, the orthologue of Nsf1 was investigated in Fusarium graminearum (named FgNsf1), a causal agent of Fusarium head blight (FHB).  The functions of FgNsf1 were evaluated by constructing a FgNSF1 deletion mutant, designated as ΔFgNsf1, and its functional complementation mutant ΔFgNsf1-C.  Gene deletion experiments showed that the mycelial growth rate, asexual and sexual reproduction of ΔFgNsf1 were significantly reduced, but the pigment production of ΔFgNsf1 was remarkably increased compared with the PH-1 and ΔFgNsf1-C.  In addition, the tolerance of ΔFgNsf1 to osmotic pressures, cell wall-damaging agents and oxidative stress increased significantly.  Sensitivity tests to different fungicides revealed that ΔFgNsf1 exhibited increased sensitivity to carbendazim (MBC) and tebuconazole, and enhanced tolerance to fludioxonil and iprodione than PH-1 and ΔFgNsf1-C.  The virulence of ΔFgNsf1 to wheat coleoptiles and flowering wheat heads were dramatically decreased, which was consistent with the decrease in the yield of deoxynivalenol (DON).  All of these defects were restored by target gene complementation.  These results indicated that FgNsf1 plays a crucial role in vegetative growth, asexual and sexual reproduction, stress responses, fungicide sensitivity, and full virulence in F. graminearum.
Keywords:  Fusarium graminearum        nutrient and stress factor 1        stress responses        virulence  
Received: 17 April 2020   Accepted:
Fund: This work was supported by the National Key Research & Development Program of China (2016YED0201007, 2018YFD0201201 and 2018YFD0201000), the National Natural Science Foundation of China (31672065), the Agricultural Science and Technology Projects of Jiangsu Province, China (BE2018378, BA2018039, PZCZ201715, CX(19)3003, and CX(18)2005), and the Postgraduate Research & Practice Innovation Program of Jiangsu Province, China (KYCX18_0670).
Corresponding Authors:  Correspondence CHEN Chang-jun, E-mail: Changjun-chen@njau.edu.cn    
About author:  SHI Dong-ya, E-mail: 2018202051@njau.edu.cn; * These authors contributed equally to this study.

Cite this article: 

SHI Dong-ya, REN Wei-chao, WANG Jin, ZHANG Jie, Jane Ifunanya MBADIANYA, MAO Xue-wei, CHEN Chang-jun. 2021. The transcription factor FgNsf1 regulates fungal development, virulence and stress responses in Fusarium graminearum. Journal of Integrative Agriculture, 20(8): 2156-2169.

Bai G, Shaner G. 2004. Management and resistance in wheat and barley to fusarium head blight. Annual Review of Phytopathology, 42, 135–161.
Bessonov K, Walkey C J, Shelp B J, van Vuuren H J, Chiu D, van der Merwe G. 2013. Functional analyses of NSF1 in wine yeast using interconnected correlation clustering and molecular analyses. PLoS ONE, 8, e77192.
Brown R S, Sander C, Argos P. 1985. The primary structure of transcription factor TFIIIA has 12 consecutive repeats. FEBS Letters, 186, 271–274.
Cao H, Huang P, Zhang L, Shi Y, Sun D, Yan Y, Liu X, Dong B, Chen G, Snyder J H, Lin F, Lu J. 2016. Characterization of 47 Cys2-His2 zinc finger proteins required for the development and pathogenicity of the rice blast fungus Magnaporthe oryzae. New Phytologist, 211, 1035–1051.
Cavinder B, Sikhakolli U, Fellows K M, Trail F. 2012. Sexual development and ascospore discharge in Fusarium graminearum. Journal of Visualized Experiments, 61, e3895.
Chen Y, Zhou M. 2009. Characterization of Fusarium graminearum isolates resistant to both carbendazim and a new fungicide JS399-19. Phytopathology, 99, 441–446.
Cuomo C A, Güldener U, Xu J R, Trail F, Turgeon B G, Di Pietro A, Walton J D, Ma L J, Baker S E, Rep M. 2007. The Fusarium graminearum genome reveals a link between localized polymorphism and pathogen specialization. Science, 317, 1400–1402.
Estruch F. 1991. The yeast putative transcriptional repressor RGM1 is a proline-rich zinc finger protein. Nucleic Acids Research, 19, 4873–4877.
Figueroa M, Hammond-Kosack K E, Solomon P S. 2018. A review of wheat diseases - a field perspective. Molecular Plant Pathology, 19, 1523–1536.
Frandsen R J, Nielsen N J, Maolanon N, Sorensen J C, Olsson S, Nielsen J, Giese H. 2006. The biosynthetic pathway for aurofusarin in Fusarium graminearum reveals a close link between the naphthoquinones and naphthopyrones. Molecular Microbiology, 61, 1069–1080.
Gaillard H, Tous C, Botet J, Gonzalez-Aguilera C, Quintero M J, Viladevall L, Garcia-Rubio M L, Rodriguez-Gil A, Marin A, Arino J, Revuelta J L, Chavez S, Aguilera A. 2009. Genome-wide analysis of factors affecting transcription elongation and DNA repair: A new role for PAF and Ccr4 - not in transcription-coupled repair. PLoS Genetics, 5, e1000364.
Gardiner D M, Kazan K, Manners J M. 2009. Nutrient profiling reveals potent inducers of trichothecene biosynthesis in Fusarium graminearum. Fungal Genetics and Biology, 46, 604–613.
Goswami R S, Kistler H C. 2004. Heading for disaster: Fusarium graminearum on cereal crops. Molecular Plant Pathology, 5, 515–525.
Gu Q, Chen Y, Liu Y, Zhang C, Ma Z. 2015. The transmembrane protein FgSho1 regulates fungal development and pathogenicity via the MAPK module Ste50-Ste11-Ste7 in Fusarium graminearum. New Phytologist, 206, 315–328.
Hlynialuk C, Schierholtz R, Vernooy A, Van G D M. 2008. Nsf1/Ypl230w participates in transcriptional activation during non-fermentative growth and in response to salt stress in Saccharomyces cerevisiae. Microbiology, 154, 2482–2491.
Hou Z, Xue C, Peng Y, Katan T, Kister H C, Xu J. 2002. A mitogen-activated protein kinase gene (MGV1) in Fusarium graminearum is required for female fertility, heterokaryon formation, and plant infection. Molecular Plant Microbe Interactions, 15, 1119–1127.
Hu S, Zhou X, Gu X, Cao S, Wang C, Xu J. 2014. The cAMP-PKA pathway regulates growth, sexual and asexual differentiation, and pathogenesis in Fusarium graminearum. Molecular Plant Microbe Interactions, 27, 557–566.
Jantz D, Amann B T, Gatto G J, Berg J M. 2004. The design of functional DNA-binding proteins based on zinc finger domains. Chemical Reviews, 104, 789–800.
Kazan K, Gardiner D M, Manners J M. 2012. On the trail of a cereal killer: Recent advances in Fusarium graminearum pathogenomics and host resistance. Molecular Plant Pathology, 13, 399–413.
Kojima K, Takano Y, Yoshimi A, Tanaka C, Kikuchi T, Okuno T. 2004. Fungicide activity through activation of a fungal signalling pathway. Molecular Microbiology, 53, 1785–1796.
Laity J H, Lee B M, Wright P E. 2001. Zinc finger proteins: New insights into structural and functional diversity. Current Opinion Structural Biology, 11, 39–46.
Lee S J, Michel S L J. 2014. Structural metal sites in nonclassical zinc finger proteins involved in transcriptional and translational regulation. Accounts of Chemical Research, 47, 2643–2650.
Li B, Zheng Z, Liu X, Cai Y, Mao X, Zhou M. 2016. Genotypes and characters of phenamacril-resistance mutants in Fusarium asiaticum. Plant Disease, 100, 1754–1761.
Liu Y, Liu N, Yin Y, Chen Y, Jiang J, Ma Z. 2016. Histone H3K4 methylation regulates hyphal growth, secondary metabolism and multiple stress responses in Fusarium graminearum. Environment Microbiology, 17, 4615–4630.
Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods, 25, 402–408.
Maret W. 2012. New perspectives of zinc coordination environments in proteins. Journal of Inorganic Biochemistry, 111, 110–116.
Michalek J L, Besold A N, Michel S L J. 2011. Cysteine and histidine shuffling: Mixing and matching cysteine and histidine residues in zinc finger proteins to afford different folds and function. Dalton Transactions, 40, 12619–12632.
Miller J, McLachlan A D, Klug A. 1985. Repetitive zinc-binding domains in the protein transcription factor IIIA from Xenopus oocytes. Embo Journal, 4, 16009–16014.
Pestka J J, Smolinski A T. 2005. Deoxynivalenol: Toxicology and potential effects on humans. Journal of Toxicology and Environmental Health (Part B: Critical Reviews), 8, 39–69.
Pirgozliev S R, Edwards S G, Hare M C, Jenkinson P. 2003. Strategies for the control of Fusarium head blight in cereals. European Journal of Plant Pathology, 109, 731–742.
Proctor R H, Hohn T M, Mccormick S P. 1995. Reduced virulence of Gibberella zeae caused by disruption of a trichothecene toxin biosynthetic gene. Molecular Plant–Microbe Interactions, 8, 593–601.
Ren W, Sang C, Shi D, Song X, Zhou M, Chen C. 2018. Ubiquitin-like activating enzymes BcAtg3 and BcAtg7 participate in development and pathogenesis of Botrytis cinerea. Current Genetics, 64, 919–930.
Ren W, Liu N, Yang Y, Yang Q, Chen C, Gao Q. 2019. The sensor proteins BcSho1 and BcSln1 are involved in, though not essential to, vegetative differentiation, pathogenicity and osmotic stress tolerance in Botrytis cinerea. Frontiers in Microbiology, 10, 328.
Ren W, Shao W, Han X, Zhou M, Chen C. 2016. Molecular and biochemical characterization of laboratory and field mutants of Botrytis cinerea resistant to fludioxonil. Plant Disease, 100, 1414–1423.
Saunders D G O, Aves S J, Talbot N J. 2010a. Cell cycle-mediated regulation of plant infection by the rice blast fungus. The Plant Cell, 22, 497–507.
Saunders D G O, Dagdas Y F, Talbot N J. 2010b. Spatial uncoupling of mitosis and cytokinesis during appressorium-mediated plant infection by the rice blast fungus Magnaporthe oryzae. The Plant Cell Online, 22, 2417–2428.
Segal E, Shapira M, Regev A, Pe’Er D, Botstein D, Koller D, Friedman N. 2003. Module networks: Identifying regulatory modules and their condition-specific regulators from gene expression data. Nature Genetics, 34, 166.
Seong K Y, Pasquali M, Zhou X, Song J, Hilburn K, McCormick S, Dong Y, Xu J, Kistler H C. 2010. Global gene regulation by Fusarium transcription factors Tri6 and Tri10 reveals adaptations for toxin biosynthesis. Molecular Microbiology, 72, 354–367.
Shimberg G D, Pritts J D, Michel S L J. 2018. Iron-sulfur clusters in zinc finger proteins. Methods in Enzymology, 599, 6876–6879.
Son H, Seo Y S, Min K, Park A R, Lee J, Jin J M, Lin Y, Cao P, Hong S Y, Kim E K, Lee S H, Cho A, Lee S, Kim M G, Kim Y, Kim J E, Kim J C, Choi G J, Yun S H, Lim J Y, et al. 2011. A phenome-based functional analysis of transcription factors in the cereal head blight fungus, Fusarium graminearum. PLoS Pathogens, 7, e1002310.
Stephanie W, Paul N, Doohan F M. 2010. Action and reaction of host and pathogen during Fusarium head blight disease. New Phytologist, 185, 54–66.
Talbot N J. 2003. On the trail of a cereal killer: Exploring the biology of Magnaporthe grisea. Annual Review of Microbiology, 57, 177–202.
Tang L, Yu X, Zhang L, Zhang L, Chen L, Zou S, Liang Y, Yu J, Dong H. 2019. Mitochondrial FgEch1 is responsible for conidiation and full virulence in Fusarium graminearum. Current Genetics, 66, 361–371.
Teng P S, Klein-Gebbinck H W, Pinnschmidt H. 1991. An Analysis of the Blast Pathosystem to Guide Modeling and Forecasting. International Rice Research Institute, Manila, pp. 1–30.
Trail F. 2009. For blighted waves of grain: Fusarium graminearum in the postgenomics era. Plant Physiology, 149, 103–110.
Trail F, Xu H, Loranger L, Gadoury D. 2002. Physiological and environmental aspects of ascospore discharge in Gibberella zeae (anamorph Fusarium graminearum). Mycologia, 94, 181–189.
Wolfe S A, Nekludova L, Pabo C O. 2000. DNA recognition by Cys2His2 zinc finger proteins. Annual Review of Biophysics and Biomolecular Structure, 29, 183–212.
Wu A , Li H, Zhao C, Liao Y. 2005. Comparative pathogenicity of Fusarium graminearum isolates from China revealed by wheat coleoptile and floret inoculations. Mycopathologia, 160, 75–83.
Yu J H, Hamari Z, Han K H, Seo J A, Reyes-Domínguez Y, Scazzocchio C. 2004. Double-joint PCR: A PCR-based molecular tool for gene manipulations in filamentous fungi. Fungal Genetics and Biology, 41, 973–981.
Zhang Y, Gao X, Sun M, Liu H, Xu J. 2017. The FgSRP1 SR-protein gene is important for plant infection and pre-mRNA processing in Fusarium graminearum. Environmental Microbiology, 19, 4065–4079.
Zheng D, Zhang S, Zhou X, Wang C, Xiang P, Zheng Q, Xu J. 2012. The FgHOG1 pathway regulates hyphal growth, stress responses, and plant infection in Fusarium graminearum, PLoS ONE, 7, e49495.
Zheng Z, Gao T, Hou Y, Zhou M. 2013. Involvement of the anucleate primary sterigmata protein FgApsB in vegetative differentiation, asexual development, nuclear migration, and virulence in Fusarium graminearum. FEMS Microbiology Letters, 349, 88–98.
Zheng Z, Gao T, Zhang Y, Hou Y, Wang J, Zhou M. 2014. FgFim, a key protein regulating resistance to the fungicide JS399-19, asexual and sexual development, stress responses and virulence in Fusarium graminearum. Molecular Plant Pathology, 15, 488–499.
Zhou Y, Xu J, Zhu Y, Duan Y, Zhou M. 2016. Mechanism of action of the benzimidazole fungicide on Fusarium graminearum: Interfering with polymerization of monomeric tubulin but not polymerized microtubule. Phytopathology, 106, 807–813.
[1] KANG Jin-bo, ZHANG Jie, LIU Yin-kai, SONG Ji-chang, OU Jian-lin, TAO Xian, ZHOU Ming-guo, DUAN Ya-bing. Mitochondrial dynamics caused by QoIs and SDHIs fungicides depended on FgDnm1 in Fusarium graminearum[J]. >Journal of Integrative Agriculture, 2023, 22(2): 481-494.
[2] CHEN A-hai, Tofazzal ISLAM, MA Zhong-hua. An integrated pest management program for managing fusarium head blight disease in cereals[J]. >Journal of Integrative Agriculture, 2022, 21(12): 3434-3444.
[3] TIAN Li, HUANG Cai-min, ZHANG Dan-dan, LI Ran, CHEN Jie-yin, SUN Wei-xia, QIU Nian-wei, DAI Xiao-feng. Extracellular superoxide dismutase VdSOD5 is required for virulence in Verticillium dahliae[J]. >Journal of Integrative Agriculture, 2021, 20(7): 1858-1870.
[4] Lü Wu-yun, YANG Nan, XU Zhe, DAI Han, TANG Shuai, WANG Zheng-yi. FgHAT2 is involved in regulating vegetative growth, conidiation, DNA damage repair, DON production and virulence in Fusarium graminearum[J]. >Journal of Integrative Agriculture, 2020, 19(7): 1813-1824.
[5] Bongekile NGOBESE, Oliver Tendayi ZISHIRI, Mohamed Ezzat EL ZOWALATY. Molecular detection of virulence genes in Campylobacter species isolated from livestock production systems in South Africa[J]. >Journal of Integrative Agriculture, 2020, 19(6): 1656-1670.
[6] CHEN Bin, TIAN Yan-li, ZHAO Yu-qiang, WANG Yuan-jie, CHUAN Jia-cheng, LI Xiang, HU Bai-shi. Genomic characteristics of Dickeya fangzhongdai isolates from pear and the function of type IV pili in the chromosome[J]. >Journal of Integrative Agriculture, 2020, 19(4): 906-920.
[7] QIN Jia-xing, LI Bao-hua, ZHOU Shan-yue. A novel glycoside hydrolase 74 xyloglucanase CvGH74A is a virulence factor in Coniella vitis[J]. >Journal of Integrative Agriculture, 2020, 19(11): 2725-2735.
[8] YUAN Long-yu, HAO Yuan-hao, CHEN Qiao-kui, PANG Rui, ZHANG Wen-qing. Pancreatic triglyceride lipase is involved in the virulence of the brown planthopper to rice plants[J]. >Journal of Integrative Agriculture, 2020, 19(11): 2758-2766.
[9] ZHANG Hang, YANG Feng, LI Xin-pu, LUO Jin-yin, WANG Ling, ZHOU Yu-long, YAN Yong, WANG Xu-rong, LI Hong-sheng. Detection of antimicrobial resistance and virulence-related genes in Streptococcus uberis and Streptococcus parauberis isolated from clinical bovine mastitis cases in northwestern China[J]. >Journal of Integrative Agriculture, 2020, 19(11): 2784-2791.
[10] WANG Qian-nan, HUANG Pan-pan, ZHOU Shan-yue. Functional characterization of the catalytic and bromodomain of FgGCN5 in development, DON production and virulence of Fusarium graminearum[J]. >Journal of Integrative Agriculture, 2020, 19(10): 2477-2487.
[11] HE An-le, LIU Jia, WANG Xin-hua, ZHANG Quan-guo, SONG Wei, CHEN Jie. Soil application of Trichoderma asperellum GDFS1009 granules promotes growth and resistance to Fusarium graminearum in maize[J]. >Journal of Integrative Agriculture, 2019, 18(3): 599-607.
[12] ZHENG Na, ZHANG Liu-ping, GE Feng-yong, HUANG Wen-kun, KONG Ling-an, PENG De-liang, LIU Shi-ming. Conidia of one Fusarium solani isolate from a soybean-production field enable to be virulent to soybean and make soybean seedlings wilted[J]. >Journal of Integrative Agriculture, 2018, 17(09): 2042-2053.
[13] LIU Tai-guo, GE Run-jing, MA Yu-tong, LIU Bo, GAO Li, CHEN Wan-quan. Population genetic structure of Chinese Puccinia triticina races based on multi-locus sequences[J]. >Journal of Integrative Agriculture, 2018, 17(08): 1779-1789.
[14] FAN Hong-jie. Advances in pathogenesis of Streptococcus suis serotype 2[J]. >Journal of Integrative Agriculture, 2017, 16(12): 2834-2847.
[15] YANG Li-ming, WANG Yi-hao, PENG Yu, MIN Jiang-tao, HANG Su-qin, ZHU Wei-yun. Genomic characterization and antimicrobial susceptibility of bovine intrauterine Escherichia coli and its relationship with postpartum uterine infections[J]. >Journal of Integrative Agriculture, 2016, 15(06): 1345-1354.
No Suggested Reading articles found!