Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Revealing inheritance of a Xinjiang isolate BGTB-1 of Puccinia striiformis f. sp. tritici and the shift of pathogenicity from avirulence to virulence at heterozygous AvrYr5 locus
Lin Wang, Fei Liu, Yumeng Bian, Mudi Sun, Zhensheng Kang#, Jie Zhao#

State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling 712100, China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  新疆是中国相对独立的小麦条锈病流行区,新疆的条锈菌群体与其它内陆流行区的条锈菌群体存在巨大的遗传差异。新疆的小麦条锈菌小种通常进化慢于内陆群体。近年来,一些发现新小种,因此,深入了解新疆条锈菌群体毒性进化是十分必要的。本研究通过对新疆小麦条锈菌菌系BGTB-1在转主寄主堆花小檗(Berberis aggregata)进行有性生殖获得65个自交后代群体,在25个Yr单基因系进行表型鉴定,利用19KASP-SNP引物进行基因型测定。结果表明65个自交后代产生了56个不同毒性表型(virulence patterns, VPs), 没有一个后代的毒性与亲本菌系是相同的,表现出100%的毒性变异率。与亲本菌系相比,3960.0%)个自交后代表现毒性增强,18个(27.7%)显示毒性降低。所有的后代在Yr10, Yr15, Yr32YrTr1 四个抗病位点表现无毒性,在其余21个Yr抗病位点表现无毒性/有毒性分离。Yr5, Yr7和 Yr76(A:V≈3:1)位点的无毒性由一个显性基因控制,Yr6, Yr25Yr44 (A:V≈1:3)位点的无毒性由一个隐性基因控制。所有后代在其余的15个位点包括Yr1, Yr2, Yr3, Yr4, Yr8, Yr9, Yr17, Yr26 (=Yr24), Yr28, Yr29, Yr43, YrSp, Yr27, YrAYrExp2表现出不同的无毒性/毒性分离比,推断由现从个基因通过不同的作用方式控制其无毒性,表明亲本菌系复杂的遗传规律。分子标记检测表明所有的65个后代表现出不同的基因型,基于此构建了一个遗传距离为441.0 cM的连锁遗传图谱。有趣的是,本研究发现虽然亲本菌系对Yr5无毒性,但是后代中有17个对基因表现有毒性,表现出在该抗病位点从无毒到有毒性的致病性变化,这是首次报道对Yr5无毒的亲本菌系通过有性生殖产生对该位点有毒性的后代。本研究为深入了解新疆小麦条锈菌的遗传特征、有性生殖与毒性变异提供了科学依据,也为理解该地区条锈菌的毒性进化与阐释条锈菌新疆群体与内陆群体的遗传差异提供了理论基础。此外,需进一步研究明确自然条件下新疆有性生殖发生在新小种产生中的作用,以及对群体遗传多样性的影响。

Abstract  In China, Xinjiang is a relatively independent epidemic region of wheat stripe rust, caused by Puccinia striiformis f. sp. tritici, due to great genetic divergence of Xinjiang with other inland epidemic regions. In this region, race evolution was usually slower than inland populations. However, many new races have recently been found, and there needs to be more understanding of the virulence evolution of the Xinjiang population. So, in this study, a 65 sexual progenies, derived from a Xinjiang single-urediospore isolate BGTB-1 of P. striiformis f. sp. tritici by selfing on alternate host barberry (Berberis aggregata). It was phenotyped on the 25 single Yr lines, and genotyped by 19 kompetitive allele-specific PCR-single nucleotide polymorphism (KASP-SNP) markers. As a result, the 65 progenies were identified as 56 various virulence patterns (VPs), and neither of which was identical to the parental isolate, showed 100% virulence variation. Compared with the parental isolate, of all progenies, 39 (60.0%) had increased virulence, and 18 (27.7%) had decreased virulence. All progenies exhibited avirulence to Yr10, Yr15, Yr32, and YrTr1 loci, and avirulence and virulence segregation at the remaining 21 Yr resistance loci. The results showed avirulence to Yr5, Yr7, and Yr76 (A:V≈3:1) loci is controlled by a single dominant gene, and that to Yr6, Yr25, and Yr44 (A:V≈1:3) loci by a single recessive gene. However, avirulence to the remaining 15 resistant loci including Yr1, Yr2, Yr3, Yr4, Yr8, Yr9, Yr17, Yr26 (=Yr24), Yr28, Yr29, Yr43, YrSp, Yr27, YrA, and YrExp2, with various avirulence and virulence segregation ratios, is controlled by two genes with different gene effects, indicating complex genetic traits of the parental isolate. Totally, 65 dissimilar genotypes detected among progenies using overall molecular markers, by which a linkage map was constructed, with a genetic distance of 441.0 cM. Interestingly, although the parental isolate was avirulent to Yr5, but 17 progenies showed virulence, showing the change of pathogenicity from avirulence to virulence at this resistance locus. It was for the first time to report that progenies with virulence to Yr5 produced sexually from avirulent parental isolate at this resistance locus. To our knowledge, this study offers an insight into inheritance, sexual reproduction and virulence variation of P. striiformis f. sp. tritici in Xinjiang, facilitating us to understand evolution of the rust pathogen in this region and accounting for Xinjiang population distinguished form other inland populations. Additionally, it is necessary to further confirm the roles of sexual reproduction in the emergence of new races and affecting population genetic diversity of P. striiformis f. sp. tritici under natural conditions in Xinjiang.
Keywords:  wheat yellow rust              Puccinia striiformis       f. sp              tritici, sexual reproduction              virulence variation              new race              SNP              Yr5              Xinjiang  
Online: 22 May 2024  
Fund: This work was financially supported by Xinjiang Major Science and Technology Projects (Research, Development, and Demonstration of Key Technologies for the Green Control of Major Pests on Special and Superiority Crops in Xinjiang, 2023A02009).
About author:  Lin Wang, E-mail: 1183660283@qq.com; #Correspondence Jie Zhao, E-mail: jiezhao@nwafu.edu.cn; Zhensheng Kang, E-mail: kangzs@nwafu.edu.cn

Cite this article: 

Lin Wang, Fei Liu, Yumeng Bian, Mudi Sun, Zhensheng Kang, Jie Zhao. 2024. Revealing inheritance of a Xinjiang isolate BGTB-1 of Puccinia striiformis f. sp. tritici and the shift of pathogenicity from avirulence to virulence at heterozygous AvrYr5 locus. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2024.04.023

Aggarwal R, Kulshreshtha D, Sharma S, Singh V K, Manjunatha C, Bhardwaj S C, Saharan M S. 2018. Molecular characterization of Indian pathotypes of Puccinia striiformis f. sp. tritici and multigene phylogenetic analysis to establish inter- and intraspecific relationships. Genetics and Molecular Biology, 41, 834-842.

Awais M, Ali S, Ju M, Liu W, Zhang G S, Zhang Z D, Li Z J, Ma X Y, Wang L, Du Z M, Tian X X, Zeng Q D, Kang Z S, Zhao J. 2022. Countrywide inter-epidemic region migration pattern suggests the role of southwestern population in wheat stripe rust epidemics in China. Environmental Microbiology, 24, 4684-4701.

Chen L, Awais M, Yang H, Shen Y Y, Li G K, Gao H F, Ma J B. 2023. Races CYR34 and Suwon11-1 of Puccinia striiformis f. sp. tritici played an important role in causing the stripe rust epidemic in winter wheat in Yili, Xinjiang, China. Journal of Fungi, 9, 436.

Chen X M, Line R F, Leung H. 1993. Relationship between virulence variation and DNA polymorphism in Puccinia striiformis. Phytopathology, 83, 1489-1497.

Chen X M, Line R F. 1992. Identification of stripe rust resistance genes in wheat genotypes used to differentiate North American races of Puccinia striiformis. Phytopathology, 82, 1428-1434.

Doling D A, Doodson J K. 1968. The effect of yellow rust on the yield of spring and winter wheat. Transactions of the British Mycological Society, 51, 427-434.

Gangwar O P, Kumar S, Bhardwaj S C, Prasad P, Lata C, Adhikari S, Singh G P. 2022. Elucidating the population structure and genetic diversity of Indian Puccinia striiformis f. sp. tritici pathotypes based on microsatellite markers. Phytopathology, 112, 1444-1453.

Jin Y, Szabo L J., Carson M. 2010. Century-old mystery of Puccinia striiformis life history solved with the identification of Berberis as an alternate host. Phytopathology, 100, 432-435.

Kosman E, Dinoor A, Herrmann A, Schachtel G A. 2008. Virulence Analysis Tool (VAT). User Manual. http://www.tau.ac.il/lifesci/departments/plant_s/members/kosman/VAT. html (Accessed 21 Sep, 2023).

Kuang W J, Zhang G S, Zhang Z Y, Ji H L, Shen L, Ni J Y, Wang Z H, Peng Y L. 2013. Studies on virulence of avrYr10/24/26/ch42 mutants of Puccinia striiformis f. sp. tritici. Southwest China Journal of Agricultural Science, 26, 2323-2331.

Law C N. 1976. Genetic control of yellow rust resistance in T. spelta album. p. 108-109. In Plant Breeding Institute annual report 1975. Plant Breeding Inst., Cambridge, UK.

Liu B, Liu T G, Zhang Z Y, Jia Q Z, Wang B T, Gao L, Peng Y L, Jin S L, Chen W Q. 2017. Discovery and pathogenicity of CYR34, a new race of Puccinia striiformis f. sp. tritici in China. Acta Phytopathologica Sinica, 47, 681-687.

Liu H W, Meng X C. 1957. On the loss of wheat cultivar Bima 1to stripe rust. Shaanxi Journal of Agricultural Science, 6, 329-334. (in Chinese)

Li J, Zeng J, Jiang Y Y, Li H. 2010. Occurrence and epidemics of wheat stripe rust in Xinjiang. China Plant Protection, 30, 16-19. (in Chinese)

Li Z Q, Zeng S M. 2002. Wheat Rusts in China. Beijing Agriculture Press, pp. 5, 48. (in Chinese)

Li Z Q. 1980. Primary studies on the loss of the resistance of wheat cultivars to stripe rust in China. Northwest A&F University (Nat. Sci. Ed.), 3, 83-92. (in Chinese)

Ma J B, Awais M, Chen L, Yang H, Lai H L, Shen Y Y, Wang H Q, Li G K, Gao H F. 2023. Identification of Puccinia striiformis races from the spring wheat crop in Xinjiang, China. Frontiers in Plant Science, 14, 1273306.

Macer R C F. 1966. The formal and monosomic genetic analysis of stripe rust (Puccinia striiformis) resistance in wheat. In J. Mackey (ed.) Proceedings of the 2nd International Wheat Genetics Symposium Lund, Sweden. 1963. Hereditas, Supplementary, 2, 127-142.

McIntosh R, Mu J M, Han D J, Kang Z S. 2018. Wheat stripe rust resistance gene Yr24/Yr26: A retrospective review. The Crop Journal 6, 321-329.

Mehmood S, Sajid M, Husnain S K, Zhao J, Huang L L, Kang Z S. 2020. Study of inheritance and linkage of virulence genes in a selfing population of a Pakistani dominant race of Puccinia striiformis f. sp. tritici. International Journal of Molecular Science, 21, 1685.

Meng Y, Yang C B, Jiang S C, Huang L L, Kang Z S, Zhan G M. 2020. Development and evaluation of SNP molecular markers of wheat stripe rust based on KASP technology. Journal of Plant Protection, 47, 65-73. (in Chinese)

Nagarajan S. 1986. Race 13 (67S8) of Puccinia striiformis virulent on Triticum spelta var. album in India. Plant Disease, 70, 173.

Rapilly F. 1979. Yellow rust epidemiology. Annual Review of Phytopathology, 17, 59-73.

Rodriguez-Algaba J, HovmØller M S, Villegas D, Cantero-Martínez C, Jin Y, Justesen A F. 2021. Two indigenous Berberis species from Spain were confirmed as alternate hosts for the yellow rust fungus Puccinia striiformis f. sp. tritici. Plant Disease, 105, 2281-2285.

Roelfs A P. 1978. Estimated losses causes by rust in small grain in cereals in United States 1918-1976. Miscellaneous Publication (United States Department of Agricultura), no. 1363, 85 pp.

Singh H, Kaur J, Bala R, Srivastava P, Bains N S. 2020. Virulence and genetic diversity of Puccinia striiformis f. sp. tritici isolates in sub-mountainous area of Punjab, India. Phytoparasitica, 48, 383-395.

Tekin M, Cat A, Akan K, Catal M, Akar T. 2021. A new virulent race of wheat stripe rust pathogen (Puccinia striiformis f. sp. tritici) on the resistance gene Yr5 in Turkey. Plant Disease, 105, 3292-3292.

Tian Y, Zhan G M, Chen X M, Tungruentragoon A, Lu X, Zhao J, Huang L L, Kang Z S. 2016. Virulence and simple sequence repeat marker segregation in a Puccinia striiformis f. sp. tritici population produced by selfing a Chinese isolate on Berberis shensiana. Phytopathology, 106, 185-191.

Tian Y, Zhan G M, Lu X., Zhao J, Huang L L, Kang Z S. 2017. Determination of heterozygosity for avirulence/virulence loci through sexual hybridization of Puccinia striiformis f. sp. tritici. Frontiers of Agricultural Science and Engineering, 4, 48-58.

Voorrips R E. 2002. MapChart: Software for the graphical presentation of linkage maps and QTLs. Journal of Heredity, 93, 77-78.

Wan Q, Liang J M, Luo Y, Ma Z H. 2015. Population Genetic Structure of Puccinia striiformis in Northwestern China. Plant Disease99, 1764-1774.

Wang L, Zheng D, Zuo S X, Chen X M, Zhuang H, Huang L L, Kang Z S, Zhao J. 2018. Inheritance and linkage of virulence genes in Chinese predominant race CYR32 of the wheat stripe rust pathogen Puccinia striiformis f. sp. tritici. Frontiers in Plant Science, 9, 120.

Wellings C R, Mcintosh R A. 1990. Puccinia striiformis f. sp. tritici in Australasia: pathogenic changes during the first 10 years. Plant Pathology, 39, 316-325.

Wu L R, Yang H A, Yuan W H, Song W Z, Yang J X, Li Y F, Bi Y Q. 1993. On the physiological specialization of stripe rust on wheat in China during 1985-1990. Acta Phytopathologica Sinica, 23, 269-274. (in Chinese)

Xia C J, Lei Y, Wang M N, Chen W Q, Chen X M. 2020. An avirulence gene cluster in the wheat stripe rust pathogen (Puccinia striiformis f. sp. tritici) identified through genetic mapping and whole-genome sequencing of a sexual population. mSphere, 5, e00128-20.

Xiang C, Feng J Y, Wang M N, Chen X M, See D R, Wan A M, Wang T. 2016. Molecular mapping of stripe rust resistance gene Yr76 in winter club wheat cultivar Tyee. Phytopathology, 106, 1186-1193.

Yuan C Y, Wang M N, Skinner D Z, See D R, Xia C J, Guo X H, Chen X M. 2017. Inheritance of virulence, construction of a linkage map, and mapping dominant virulence genes in Puccinia striiformis f. sp. tritici through characterization of a sexual population with genotyping-by sequencing. Phytopathology, 108, 133-141.

Zhan G M, Wang F P, Wan C P, Han Q M, Huang L L, Kang Z S, Chen X M. 2016. Virulence and molecular diversity of the Puccinia striiformis f. sp. tritici population in Xinjiang in relation to other regions of western China. Plant Disease100, 99-107.

Zhang G S, Liu W, Wang L, Ju M, Tian X X, Du Z M, Kang Z S, Zhao J. 2023. Genetic Characteristics and linkage of virulence genes of the Puccinia striiformis f. sp. tritici TSA-6 isolate to Yr5 host resistance. Plant Disease, 107, 688-700.

Zhang G S, Zhao Y Y, Kang Z S, Zhao J. 2020. First report of a Puccinia striiformis f. sp. tritici race virulent to wheat rust resistance gene Yr5 in China. Plant Disease, 104, 284-284.

Zhang H, Zhao J, Huang L L, Kang Z S, Zhao J. 2019. Identification of three Berberis species as potential alternate hosts for Puccinia striiformis f. sp. tritici in wheat-growing regions of Xinjiang, China. Journal of Integrative Agriculture, 18, 2786-2792.

Zhang Z Z. 1962. Occurrence and control strategy of wheat stripe rust in Xinjiang. Xinjiang Agricultural Sciences, 3, 99-100. (in Chinese)

No related articles found!
No Suggested Reading articles found!