Please wait a minute...
Journal of Integrative Agriculture  2022, Vol. 21 Issue (10): 2957-2972    DOI: 10.1016/j.jia.2022.07.044
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |
The peroxisomal matrix shuttling receptor Pex5 plays a role of FB1 production and virulence in Fusarium verticillioides

YU Wen-ying1, LIN Mei1, YAN Hui-juan2, WANG Jia-jia1, ZHANG Sheng-min1, LU Guo-dong1, WANG Zong-hua1, 3, Won-Bo SHIM2

1 State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops/Fujian Universities Key Laboratory for Plant–Microbe Interaction, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, P.R.China 
2 Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843-2132, USA
3 Marine Biotechnology Center, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

过氧化物酶体内基质主要包括氧化酶、过氧化氢酶和过氧化物酶等,它们调节细胞氧化稳态和功能,绝大部分的基质含过氧化物酶体靶向信号(PTS)并由PTS受体运输入内。本文研究发现过氧化物酶体靶向信号类型1(PTS1) 受体Pex5的缺失影响了病原真菌轮枝镰刀菌多种生物学功能,结果将有助于阐明 Pex5致病及产毒的分子机制,并为控制病害和减少伏马菌素 B1(FB1)的毒害提供理论依据。同源重组的方法构建FvPEX5敲除突变体(ΔFvpex5),继而构建敲除突变体的互补菌株。通过比较野生型,敲除突变体和互补菌株三者的表型,我们探究并验证FvPex5在轮枝镰刀菌中的生物学功能;进一步通过RNA-Seq 分析ΔFvpex5中表达差异的PTS蛋白,并结合GO和KEEG注释进而解析FvPex5影响生物学功能的原因。研究发现轮枝镰刀 PTS1受体 FvPex5 参与 PTS1 的定位、碳源和脂质的利用、消除 ROS、细胞壁应激反应、分生孢子的形成FB1产生以及致病性。在ΔFvpex5 突变体,RNA-Seq 分析发现差异表达的PTS1、PTS2、 PTS 相关途径中的过氧化物酶体相关基因(PEX) FB1 毒素相关基因,并进一步通过RT-PCR 证实这些基因的差异表达。此外,结合GO和KEEG注释,发现ΔFvpex5突变体中差异表达的PTS1、PTS2基因在碳代谢、氮代谢、脂质代谢和氧化平衡等多种生化途径中富集。FvPex5 参与了 PTS 相关基因的调控,从而影响了轮枝镰刀菌的氧化平衡、FB1产量和致病性。本研究首次发现了FvPex5对伏马毒素FB1合成起调节作用,并首次对轮枝镰刀菌中的过氧化物酶体靶向信号(PTS)蛋白进行了预测及功能分析。



Abstract  

The peroxisomal matrix oxidase, catalase and peroxidase are imported peroxisomes through the shuttling receptors, which regulates the cellular oxidative homeostasis and function.  Here, we report that PTS1 shuttling receptor FvPex5 is involved in the localization of PTS1, utilization of carbon sources and lipids, elimination ROS, cell wall stress, conidiation, fumonisin B1 (FB1) production, and virulence in maize pathogen Fusarium verticillioides.  Significantly, differential expression of PTS1-, PTS2-, PEX- and FB1 toxin-related genes in wild type and ΔFvpex5 mutant were examined by RNA-Seq analyses and confirmed by RT-PCR assay.  In addition, different expression of PTS1 and PTS2 genes of the ΔFvpex5 mutant were enriched in diverse biochemical pathways, such as carbon metabolism, nitrogen metabolism, lipid metabolism and the oxidation balance by combining GO and KEGG annotations.  Overall, we showed that FvPex5 is involved in the regulation of genes associated with PTS, thereby affecting the oxidation balance, FB1 and virulence in Fverticillioides.  The results help to clarify the functional divergence of Pex5 orthologs, and may provide a possible target for controlling Fverticillioides infections and FB1 biosynthesis.

Keywords:  Fusarium verticillioides        FvPex5       PTS       fumonisin B1       virulence  
Received: 24 August 2021   Accepted: 28 December 2021
Fund: This work was supported by the National Natural Science Foundation of China (31601599) and the Science and Technology Innovation Funding of Fujian Agriculture and Forestry University, China (CXZX2020044A).
About author:  Correspondence YU Wen-ying, E-mail: wenyingyu2004@126.com; Won-Bo SHIM, E-mail: wbshim@tamu.edu

Cite this article: 

YU Wen-ying, LIN Mei, YAN Hui-juan, WANG Jia-jia, ZHANG Sheng-min, LU Guo-dong, WANG Zong-hua, Won-Bo SHIM. 2022. The peroxisomal matrix shuttling receptor Pex5 plays a role of FB1 production and virulence in Fusarium verticillioides. Journal of Integrative Agriculture, 21(10): 2957-2972.

Afolabi C G, Ojiambo P S, Ekpo E J A, Menkir A, Bandyopadhyay R. 2008. Novel sources of resistance to Fusarium stalk rot of maize in Tropical Africa. Plant Disease, 92, 772–780.
Arias S L, Mary V S, Otaiza S N, Wunderlin D A, Rubinstein H R, Theumer M G. 2016. Toxin distribution and sphingoid base imbalances in Fusarium verticillioides-infected and fumonisin B1-watered maize seedlings. Phytochemistry, 125, 54–64.
Arias S L, Theumer M G, Mary V S, Rubinstein H R. 2012. Fumonisins: Probable role as effectors in the complex interaction of susceptible and resistant maize hybrids and Fusarium verticillioides. Journal of Agricultural and Food Chemistry, 60, 5667–5675. 
Bluhm B H, Kim H, Butchko R A, Woloshuk C P. 2008. Involvement of ZFR1 of Fusarium verticillioides in kernel colonization and the regulation of FST1, a putative sugar transporter gene required for fumonisin biosynthesis on maize kernels. Molecular Plant Pathology, 9, 203–211. 
Braverman N, Dodt G, Gould S J, Valle D. 1998. An isoform of Pex5p, the human PTS1 receptor, is required for the import of PTS2 proteins into peroxisomes. Human Molecular Genetics, 7, 1195–1205.
Brown D W, Butchko R A, Proctor R H. 2008. Genomic analysis of Fusarium verticillioides. Food Additives & Contaminants (Part A: Chemistry, Analysis, Control, Exposure & Risk Assessment), 25, 1158–1165.
Dennis G J, Sherman B T, Hosack D A, Yang J, Gao W, Lane H C, Lempicki R A. 2003. DAVID: Database for annotation, visualization, and integrated discovery. Genome Biology, 4, P3. 
Dodt G, Braverman N, Wong C, Moser A, Moser H W, Watkins P, Valle D, Gould S J. 1995. Mutations in the PTS1 receptor gene, PXR1, define complementation group 2 of the peroxisome biogenesis disorders. Nature Genetics, 9, 115–125.
Dodt G, Warren D, Becker E, Rehling P, Gould S J. 2001. Domain mapping of human PEX5 reveals functional and structural similarities to Saccharomyces cerevisiae Pex18p and Pex21p. The Journal of Biological Chemistry, 276, 41769–41781.
Fujihara N, Sakaguchi A, Tanaka S, Fujii S, Tsuji G, Shiraishi T, O’Connell R, Kubo Y. 2010. Peroxisome biogenesis factor Pex13 is required for appressorium-mediated plant infection by the anthracnose fungus Colletotrichum orbiculare. Molecular Plant–Microbe Interactions, 23, 436–445.
Gabay-Maskit S, Cruz-Zaragoza L D, Shai N, Eisenstein M, Bibi C, Cohen N, Hansen  T, Yifrach E, Harpaz N, Belostotsky R, Schliebs W, Schuldiner M, Erdmann R, Zalckvar E. 2020. A piggybacking mechanism enables peroxisomal localization of the glyoxylate cycle enzyme Mdh2 in yeast. Journal of Cell Science, 133, jcs244376.
Gao S, Gold S E, Glenn A E. 2018. Characterization of two catalase-peroxidase-encoding genes in Fusarium verticillioides reveals differential responses to in vitro versus in planta oxidative challenges. Molecular Plant Pathology, 19, 1127–1139. 
Glenn A E, Zitomer N C, Zimeri A M, Williams L D, Riley R T, Proctor R H. 2008. Transformation-mediated complementation of a FUM gene cluster deletion in Fusarium verticillioides restores both fumonisin production and pathogenicity on maize seedlings. Molecular Plant–Microbe Interactions, 21, 87–97. 
González H H, Martínez E J, Pacin A M, Resnik S L, Sydenham E W. 1999. Natural co-occurrence of fumonisins, deoxynivalenol, zearalenone and aflatoxins in field trial corn in Argentina. Food Additives and Contaminants, 16, 565–569. 
Hagstrom D, Ma C, Guha-Polley S, Subramani S. 2014. The unique degradation pathway of the PTS2 receptor, Pex7, is dependent on the PTS receptor/coreceptor, Pex5 and Pex20. Molecular Biology of the Cell, 25, 2634–2643.
Hayashi M, Aoki M, Kondo M, Nishimura M. 1997. Changes in targeting efficiencies of proteins to plant microbodies caused by amino acid substitutions in the carboxy-terminal tripeptide. Plant and Cell Physiology, 38, 759–768.
Hayashi M, Yagi M, Nito K, Kamada T, Nishimura M. 2005. Differential contribution of two peroxisomal protein receptors to the maintenance of peroxisomal functions in Arabidopsis. The Journal of Biological Chemistry, 280, 14829–14835.
Henne W M. 2019. Spastin joins LDs and peroxisomes in the interorganelle contact ballet. The Journal of Cell Biology, 218, 2439–2441.
Hiltunen J K, Mursula A M, Rottensteiner H, Wierenga R K, Kastaniotis A J, Gurvitz A. 2003. The biochemistry of peroxisomal beta-oxidation in the yeast Saccharomyces cerevisiae. FEMS Microbiology Reviews, 27, 35–64.
Imazaki A, Tanaka A, Harimoto Y, Yamamoto M, Akimitsu K, Park P, Tsuge T. 2010. Contribution of peroxisomes to secondary metabolism and pathogenicity in the fungal plant pathogen Alternaria alternata. Eukaryotic Cell, 9, 682–694.
Kamada T, Nito K, Hayashi H, Mano S, Hayashi M, Nishimura M. 2003. Functional differentiation of peroxisomes revealed by expression profiles of peroxisomal genes in Arabidopsis thaliana. Plant Cell Physiology, 44, 1275–1289. 
Kato A, Hayashi M, Kondo M, Nishimura M. 2000. Transport of peroxisomal proteins synthesized as large precursors in plants. Cell Biochemistry and Biophysics, 32, 269–275.
Khan B R, Zolman B K. 2010. PEX5 mutants that differentially disrupt PTS1 and PTS2 peroxisomal matrix protein import in Arabidopsis. Plant Physiology, 154, 1602–1615.
Kiel J A, van den Berg M, Bovenberg R A, van der Klei I J, Veenhuis M. 2004. Penicillium chrysogenum Pex5p mediates differential sorting of PTS1 proteins to microbodies of the methylotrophic yeast Hansenula polymorpha. Fungal Genetics and Biology, 41, 708–720. 
Kong J, Ji Y, Jeon Y G, Han J S, Han K H, Lee J H, Lee G, Jang H, Choe S S, Baes M, Kim J B. 2020. Spatiotemporal contact between peroxisomes and lipid droplets regulates fasting-induced lipolysis via PEX5. Nature Communications, 11, 578. 
Leslie J F, Summerell B A. 2006. The Fusarium Laboratory Manual. Blackwell Publishing, Ames, Iowa.
Lima S L, Colombo A L, de Almeida J N. 2019. Fungal cell wall: Emerging antifungals and drug resistance. Frontiers in Microbiology, 21, 2573. 
Liu W Z, Xie Y B, Ma J Y, Luo X T, Nie P, Zuo Z X, Lahrmann U, Zhao Q, Zheng Y Y, Zhao Y, Xue Y, Ren J. 2015. IBS: An illustrator for the presentation and visualization of biological sequences. Bioinformatics (Oxford, England), 31, 3359–3361.
Maggio-Hall L A, Keller N P. 2004. Mitochondrial beta-oxidation in Aspergillus nidulans. Molecular Microbiology, 54, 1173–1185. 
Martín J F, Ullán R V, García-Estrada C. 2012. Role of peroxisomes in the biosynthesis and secretion of β-lactams and other secondary metabolites. Journal of Industrial Microbiology and Biotechnology, 39, 367–382.
Matsumura T, Otera H, Fujiki Y. 2000. Disruption of the interaction of the longer isoform of Pex5p, Pex5pL, with Pex7p abolishes peroxisome targeting signal type 2 protein import in mammals: Study with a novel Pex5-impaired Chinese hamster ovary cell mutant. The Journal of Biological Chemistry, 275, 21715–21721.
Meijer W H, Gidijala L, Fekken S, Kiel J A, van den Berg M A, Lascaris R, Bovenberg R A, van der Klei I J. 2010. Peroxisomes are required for efficient penicillin biosynthesis in Penicillium chrysogenum. Applied and Environmental Microbiology, 76, 5702–5709.
Min K, Son H, Lee J, Choi G J, Kim J C, Lee Y W. 2012. Peroxisome function is required for virulence and survival of Fusarium graminearum. Molecular Plant–Microbe Interactions, 25, 1617–1627. 
Montilla-Martinez M, Beck S, Klümper J, Meinecke M, Schliebs W, Wagner R, Erdmann R. 2015. Distinct pores for peroxisomal import of PTS1 and PTS2 proteins. Cell Reports, 13, 2126–2134.
Myung K, Zitomer N C, Duvall M, Glenn A E, Riley R T, Calvo A M. 2012. The conserved global regulator VeA is necessary for symptom production and mycotoxin synthesis in maize seedlings by Fusarium verticillioides. Plant Pathology, 61, 152–160.
Nguyen L N, Bormann J, Le G T, Stärkel C, Olsson S, Nosanchuk J D, Giese H, Schäfer W. 2011. Autophagy-related lipase FgATG15 of Fusarium graminearum is important for lipid turnover and plant infection. Fungal Genetics and Biology, 48, 217–224. 
Nito K, Hayashi M, Nishimura M. 2002. Direct interaction and determination of binding domains among peroxisomal import factors in Arabidopsis thaliana. Plant and Cell Physiology, 43, 355–366.
Otera H, Setoguchi K, Hamasaki M, Kumashiro T, Shimizu N, Fujiki Y. 2002. Peroxisomal targeting signal receptor Pex5p interacts with cargoes and import machinery components in a spatiotemporally differentiated manner: Conserved Pex5p WXXXF/Y motifs are critical for matrix protein import. Molecular and Cellular Biology, 22, 1639–1655. 
Platta H W, Erdmann R. 2007. Peroxisomal dynamics. Trends in Cell Biology, 17, 474–484. 
Proctor R H, Brown D W, Plattner R D, Desjardins A E. 2003. Co-expression of 15 contiguous genes delineates a fumonisin biosynthetic gene cluster in Gibberella moniliformis. Fungal Genetics and Biology, 38, 237–249. 
Ramón N M, Bartel B. 2010. Interdependence of the peroxisome-targeting receptors in Arabidopsis thaliana: PEX7 facilitates PEX5 accumulation and import of PTS1 cargo into peroxisomes. Molecular Biology of the Cell, 21, 1263–1271. 
Ramos-Pamplona M, Naqvi N I. 2006. Host invasion during rice-blast disease requires carnitine-dependent transport of peroxisomal acetyl-CoA. Molecular Microbiology, 61, 61–75. 
Robertson-Hoyt L A, Betrán J, Payne G A, White D G, Isakeit T, Maragos C M, Molnár T L, Holland J B. 2007. Relationships among resistances to fusarium and Aspergillus ear rots and contamination by fumonisin and aflatoxin in maize. Phytopathology, 97, 311–317.
Rodrigues T A, Grou C P, Azevedo J E. 2015. Revisiting the intraperoxisomal pathway of mammalian Pex7. Scientific Reports, 5, 11806.
Sánchez-Rangel D, Sánchez-Nieto S, Plasencia J. 2012. Fumonisin B1, a toxin produced by Fusarium verticillioides, modulates maize β-1,3-glucanase activities involved in defense response. Planta, 235, 965–978.
Shen Y Q, Burger G. 2009. Plasticity of a key metabolic pathway in fungi. Functional and Integrative Genomics, 9, 145–151. 
Shimozawa N, Zhang Z, Suzuki Y, Imamura A, Tsukamoto T, Osumi T, Fujiki Y, Orii T, Barth P G, Wanders R J, Kondo N. 1999. Functional heterogeneity of C-terminal peroxisome targeting signal 1 in PEX5-defective patients. Biochemical and Biophysical Research Communications, 262, 504–508.
Shiozawa K, Konarev P V, Neufeld C, Wilmanns M, Svergun D I. 2009. Solution structure of human Pex5–Pex14–PTS1 protein complexes obtained by small angle X-ray scattering. The Journal of Biological Chemistry, 284, 25334–25342. 
Sibirny A A. 2016. Yeast peroxisomes: Structure, functions and biotechnological opportunities. FEMS Yeast Research, 16, fow038. 
Soriano J M, González L, Catalá A I. 2005. Mechanism of action of sphingolipids and their metabolites in the toxicity of fumonisin B1. Progress in Lipid Research, 44, 345–356.
Stagnati L, Lanubile A, Samayoa L F, Bragalanti M, Giorni P, Busconi M, Holland J B, Marocco A. 2019. A genome wide association study reveals markers and genes associated with resistance to Fusarium verticillioides infection of seedlings in a maize diversity panel. G3 (Bethesda), 9, 571–579. 
Wang J, Zhang Z, Wang Y, Li L, Chai R, Mao X, Jiang H, Qiu H, Du X, Lin F, Sun G. 2013. PTS1 peroxisomal import pathway plays shared and distinct roles to PTS2 pathway in development and pathogenicity of Magnaporthe oryzae. PLoS ONE, 8, e55554.
Wang Z Y, Soanes D M, Kershaw M J, Talbot N J. 2007. Functional analysis of lipid metabolism in Magnaporthe grisea reveals a requirement for peroxisomal fatty acid beta-oxidation during appressorium-mediated plant infection. Molecular Plant–Microbe Interactions, 20, 475–491. 
Wu K L , Chen W Z , Yang S, Wen Y, Zheng Y R, Anjago W M. 2019. Isolation and identification of Fusarium oxysporum f. sp. cubense in Fujian Province, China. Journal of Integrative Agriculture, 18, 1905–1913.
Wu P C, Chen C W, Choo C Y L, Chen Y K, Yago J I, Chung K R. 2020. Proper functions of peroxisomes are vital for pathogenesis of citrus brown spot disease caused by alternaria alternata. Journal of Fungi, 6, 248.
Yan H, Shim W B. 2020. Characterization of non-canonical G beta-like protein FvGbb2 and its relationship with heterotrimeric G proteins in Fusarium verticillioides. Environmental Microbiology, 22, 615–628. 
Ye J, Zhang Y, Cui H, Liu J, Wu Y, Cheng Y, Xu H, Huang X, Li S, Zhou A, Zhang X, Bolund L, Chen Q, Wang J, Yang H, Fang L, Shi C. 2018. WEGO 2.0: a web tool for analyzing and plotting GO annotations, 2018 update. Nucleic Acids Research, 46, W71–W75.
Yu W, Lin M, Peng M, Yan H, Wang J, Zhou J, Lu G, Wang Z, Shim W B. 2021. Fusarium verticillioides FvPex8 is a key component of peroxisomal docking/translocation module that serves important roles in fumonisin biosynthesis but not in virulence. Molecular Plant–Microbe Interactions, 34, 803–814.
Zhang C, Wang J, Tao H, Dang X, Wang Y, Chen M, Zhai Z, Yu W, Xu L, Shim W B, Lu G, Wang Z. 2015. FvBck1, a component of cell wall integrity MAP kinase pathway, is required for virulence and oxidative stress response in sugarcane Pokkah Boeng pathogen. Frontiers in Microbiology, 6, 1096.
Zhang F, Geng L, Huang L, Deng J, Fasoyin O E, Yao G, Wang S. 2018. Contribution of peroxisomal protein importer AflPex5 to development and pathogenesis in the fungus Aspergillus flavus. Current Genetics, 64, 1335–1348.
Zhang L, Chen S, Qi M, Cao X, Liang N, Li Q, Tang W, Lu G, Zhou J, Yu W, Wang Z, Zheng H. 2021. The putative elongator complex protein Elp3 is involved in asexual development and pathogenicity by regulating autophagy in rice blast fungus. Journal of Integrative Agriculture, 20, 2944–2956.
[1] Ambreen LEGHARI, Shakeel Ahmed LAKHO, Faiz Muhammad KHAND, Khaliq ur Rehman BHUTTO, Sameen Qayoom LONE, Muhammad Tahir ALEEM, Iqra BANO, Muhammad Ali CHANDIO, Jan Muhammad SHAH, LIN Hui-xing, FAN Hong-jie. Molecular epidemiology, characterization of virulence factors and antibiotic-resistance profile of Streptococcus agalactiae isolated from dairy farms in China and Pakistan[J]. >Journal of Integrative Agriculture, 2023, 22(5): 1514-1528.
[2] XU Bin, MA Zhe, ZHOU Hong, LIN Hui-xing, FAN Hong-jie. The vital role of CovS in the establishment of Streptococcus equi subsp. zooepidemicus virulence[J]. >Journal of Integrative Agriculture, 2023, 22(2): 568-584.
[3] WANG Pei-hong, WANG Sai, NIE Wen-han, WU Yan, Iftikhar AHMAD, Ayizekeranmu YIMING, HUANG Jin, CHEN Gong-you, ZHU Bo. A transferred regulator that contributes to Xanthomonas oryzae pv. oryzicola oxidative stress adaptation and virulence by regulating the expression of cytochrome bd oxidase genes[J]. >Journal of Integrative Agriculture, 2022, 21(6): 1673-1682.
[4] SHI Dong-ya, REN Wei-chao, WANG Jin, ZHANG Jie, Jane Ifunanya MBADIANYA, MAO Xue-wei, CHEN Chang-jun. The transcription factor FgNsf1 regulates fungal development, virulence and stress responses in Fusarium graminearum[J]. >Journal of Integrative Agriculture, 2021, 20(8): 2156-2169.
[5] TIAN Li, HUANG Cai-min, ZHANG Dan-dan, LI Ran, CHEN Jie-yin, SUN Wei-xia, QIU Nian-wei, DAI Xiao-feng. Extracellular superoxide dismutase VdSOD5 is required for virulence in Verticillium dahliae[J]. >Journal of Integrative Agriculture, 2021, 20(7): 1858-1870.
[6] Bongekile NGOBESE, Oliver Tendayi ZISHIRI, Mohamed Ezzat EL ZOWALATY. Molecular detection of virulence genes in Campylobacter species isolated from livestock production systems in South Africa[J]. >Journal of Integrative Agriculture, 2020, 19(6): 1656-1670.
[7] CHEN Bin, TIAN Yan-li, ZHAO Yu-qiang, WANG Yuan-jie, CHUAN Jia-cheng, LI Xiang, HU Bai-shi. Genomic characteristics of Dickeya fangzhongdai isolates from pear and the function of type IV pili in the chromosome[J]. >Journal of Integrative Agriculture, 2020, 19(4): 906-920.
[8] QIN Jia-xing, LI Bao-hua, ZHOU Shan-yue. A novel glycoside hydrolase 74 xyloglucanase CvGH74A is a virulence factor in Coniella vitis[J]. >Journal of Integrative Agriculture, 2020, 19(11): 2725-2735.
[9] YUAN Long-yu, HAO Yuan-hao, CHEN Qiao-kui, PANG Rui, ZHANG Wen-qing. Pancreatic triglyceride lipase is involved in the virulence of the brown planthopper to rice plants[J]. >Journal of Integrative Agriculture, 2020, 19(11): 2758-2766.
[10] ZHANG Hang, YANG Feng, LI Xin-pu, LUO Jin-yin, WANG Ling, ZHOU Yu-long, YAN Yong, WANG Xu-rong, LI Hong-sheng. Detection of antimicrobial resistance and virulence-related genes in Streptococcus uberis and Streptococcus parauberis isolated from clinical bovine mastitis cases in northwestern China[J]. >Journal of Integrative Agriculture, 2020, 19(11): 2784-2791.
[11] WANG Qian-nan, HUANG Pan-pan, ZHOU Shan-yue. Functional characterization of the catalytic and bromodomain of FgGCN5 in development, DON production and virulence of Fusarium graminearum[J]. >Journal of Integrative Agriculture, 2020, 19(10): 2477-2487.
[12] ZHENG Na, ZHANG Liu-ping, GE Feng-yong, HUANG Wen-kun, KONG Ling-an, PENG De-liang, LIU Shi-ming. Conidia of one Fusarium solani isolate from a soybean-production field enable to be virulent to soybean and make soybean seedlings wilted[J]. >Journal of Integrative Agriculture, 2018, 17(09): 2042-2053.
[13] LIU Tai-guo, GE Run-jing, MA Yu-tong, LIU Bo, GAO Li, CHEN Wan-quan. Population genetic structure of Chinese Puccinia triticina races based on multi-locus sequences[J]. >Journal of Integrative Agriculture, 2018, 17(08): 1779-1789.
[14] WANG Bao-hua, Daniel J. Ebbole, WANG Zong-hua. The arms race between Magnaporthe oryzae and rice: Diversity and interaction of Avr and R genes[J]. >Journal of Integrative Agriculture, 2017, 16(12): 2746-2760.
[15] FAN Hong-jie. Advances in pathogenesis of Streptococcus suis serotype 2[J]. >Journal of Integrative Agriculture, 2017, 16(12): 2834-2847.
No Suggested Reading articles found!