Aliyu S R, Lin L, Chen X, Abdul W, Lin Y, Otieno F J, Shabbir A, Batool W, Zhang Y, Tang W, Wang Z, Norvienyeku J. 2019. Disruption of putative short-chain acyl-CoA dehydrogenases compromised free radical scavenging, conidiogenesis, and pathogenesis of Magnaporthe oryzae. Fungal Genetics and Biology, 127, 23–34.
Allen P M, Bowen W R. 1985. Electrochemical regeneration of redox cofactors and mediators - The key to bioelectrosynthesis. Trends in Biotechnology, 3, 145–149.
Amjad S, Nisar S, Bhat A A, Shah A R, Frenneaux M P, Fakhro K, Haris M, Reddy R, Patay Z, Baur J, Bagga P. 2021. Role of NAD(+) in regulating cellular and metabolic signaling pathways. Molecular Metabolism, 49, 101195.
Ansell R, Granath K, Hohmann S, Thevelein J M, Adler L. 1997. The two isoenzymes for yeast NAD+-dependent glycerol 3-phosphate dehydrogenase encoded by GPD1 and GPD2 have distinct roles in osmoadaptation and redox regulation. The EMBO Journal, 16, 2179–2187.
Badaruddin M, Holcombe L J, Wilson R A, Wang Z Y, Kershaw M J, Talbot N J. 2013. Glycogen metabolic genes are involved in trehalose-6-phosphate synthase-mediated regulation of pathogenicity by the rice blast fungus Magnaporthe oryzae. PLoS Pathogens, 9, e1003604.
Bakker B M, Overkamp K M, van Maris A J, Kötter P, Luttik M A, van Dijken J P, Pronk J T. 2001. Stoichiometry and compartmentation of NADH metabolism in Saccharomyces cerevisiae. FEMS Microbiology Reviews, 25, 15–37.
Batool W, Norvienyeku J, Yi W, Wang Z H, Zhang S H, Lin L L. 2024. Disruption of non-classically secreted protein (MoMtp) compromised conidiation, stress homeostasis, and pathogenesis of Magnaporthe oryzae. Journal of Integrative Agriculture, 23, 2686–2702.
Becker-Kettern J, Paczia N, Conrotte J F, Kay D P, Guignard C, Jung P P, Linster C L. 2016. Saccharomyces cerevisiae forms D-2-hydroxyglutarate and couples its degradation to D-lactate formation via a cytosolic transhydrogenase. Journal of Biological Chemistry, 291, 6036-58.
Bhadauria V, Banniza S, Vandenberg A, Selvaraj G, Wei Y. 2012. Peroxisomal alanine: Glyoxylate aminotransferase AGT1 is indispensable for appressorium function of the rice blast pathogen, Magnaporthe oryzae. PLoS ONE, 7, e36266.
Blacker T S, Duchen M R. 2016. Investigating mitochondrial redox state using NADH and NADPH autofluorescence. Free Radical Biology and Medicine, 100, 53–65.
Cambon B, Monteil V, Remize F, Camarasa C, Dequin S. 2006. Effects of GPD1 overexpression in Saccharomyces cerevisiae commercial wine yeast strains lacking ALD6 genes. Applied and Environmental Microbiology, 72, 4688–4694.
Canto C, Menzies K J, Auwerx J. 2015. NAD+ metabolism and the control of energy homeostasis: A balancing act between mitochondria and the nucleus. Cell Metabolism, 22, 31–53.
Christianson D W. 2008. Unearthing the roots of the terpenome. Current Opinion in Chemical Biology, 12, 141–150.
Collemare J, Billard A, Böhnert H U, Lebrun M H. 2008. Biosynthesis of secondary metabolites in the rice blast fungus Magnaporthe grisea: The role of hybrid PKS-NRPS in pathogenicity. Mycological Research, 112, 207–215.
Creissen G, Firmin J, Fryer M, Kular B, Leyland N, Reynolds H, Pastori G, Wellburn F, Baker N, Wellburn A. 1999. Elevated glutathione biosynthetic capacity in the chloroplasts of transgenic tobacco plants paradoxically causes increased oxidative stress. The Plant Cell, 11, 1277–1291.
Dadley-Moore D. 2006. Understanding rice blast disease. Nature Reviews Microbiology, 4, 323.
Dean R A, Talbot N J, Ebbole D J, Farman M L, Mitchell T K, Orbach M J, Thon M, Kulkarni R, Xu J R, Pan H. 2005. The genome sequence of the rice blast fungus Magnaporthe grisea. Nature, 434, 980.
Deng Y Z, Qu Z, Naqvi N I. 2015. Twilight, a novel circadian-regulated gene, integrates phototropism with nutrient and redox homeostasis during fungal development. PLoS Pathogens, 11, e1004972.
van Dijken J P, Scheffers W A. 1986. Redox balances in the metabolism of sugars by yeasts. FEMS Microbiology Reviews, 1, 199–224.
Egan M J, Wang Z Y, Jones M A, Smirnoff N, Talbot N J. 2007. Generation of reactive oxygen species by fungal NADPH oxidases is required for rice blast disease. Proceedings of the National Academy of Sciences of the United States of America, 104, 11772–11777.
Fernandez J, Marroquin-Guzman M, Wilson R A. 2014. Evidence for a transketolase-mediated metabolic checkpoint governing biotrophic growth in rice cells by the blast fungus Magnaporthe oryzae. PLoS Pathogens, 10, e1004354.
Fernandez J, Wilson R A. 2014. Characterizing roles for the glutathione reductase, thioredoxin reductase and thioredoxin peroxidase-encoding genes of Magnaporthe oryzae during rice blast disease. PLoS ONE, 9, e87300.
Guo M, Chen Y, Du Y, Dong Y, Guo W, Zhai S, Zhang H, Dong S, Zhang Z, Wang Y, Wang P, Zheng X. 2011. The bZIP transcription factor MoAP1 mediates the oxidative stress response and is critical for pathogenicity of the rice blast fungus Magnaporthe oryzae. PLoS Pathogens, 7, e1001302.
Howard R J, Valent B. 1996. Breaking and entering: Host penetration by the fungal rice blast pathogen Magnaporthe grisea. Annual Reviews in Microbiology, 50, 491–512.
Huang D W, Sherman B T, Lempicki R A. 2008. Bioinformatics enrichment tools: Paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Research, 37, 1–13.
Huang G, Zhang Y, Shan Y, Yang S, Chelliah Y, Wang H, Takahashi J S. 2016. Circadian oscillations of NADH redox state using a heterologous metabolic sensor in mammalian cells. Journal of Biological Chemistry, 291, 23906–23914.
Jacob C, Jamier V, Ba L A. 2011. Redox active secondary metabolites. Current Opinion in Chemical Biology, 15, 149–155.
de Jong J C, McCormack B J, Smirnoff N, Talbot N J. 1997. Glycerol generates turgor in rice blast. Nature, 389, 244.
Kolde R. 2012. Pheatmap: Pretty heatmaps. R Package 1.0.8.
Langmead B, Salzberg S L. 2012. Fast gapped-read alignment with Bowtie 2. Nature Methods, 9, 357–359.
Lau G W, Hamer J E. 1998. Acropetal: A genetic locus required for conidiophore architecture and pathogenicity in the rice blast fungus. Fungal Genetics and Biology, 24, 228–239.
Li B, Dewey C N. 2011. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics, 12, 323.
Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods, 25, 402–408.
Lopez-Moya F, Martin-Urdiroz M, Oses-Ruiz M, Were V M, Fricker M D, Littlejohn G, Lopez-Llorca L V, Talbot N J. 2021. Chitosan inhibits septin-mediated plant infection by the rice blast fungus Magnaporthe oryzae in a protein kinase C and Nox1 NADPH oxidase-dependent manner. New Phytologist, 230, 1578–1593.
Metallo C M, Vander Heiden M G. 2013. Understanding metabolic regulation and its influence on cell physiology. Molecular Cell, 49, 388–398.
Mir A A, Park S Y, Sadat M A, Kim S, Choi J, Jeon J, Lee Y H. 2015. Systematic characterization of the peroxidase gene family provides new insights into fungal pathogenicity in Magnaporthe oryzae. Scientific Reports, 5, 11831.
Mráček T, Drahota Z, Houštěk J. 2013. The function and the role of the mitochondrial glycerol-3-phosphate dehydrogenase in mammalian tissues. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1827, 401–410.
Norvienyeku J, Zhong Z, Lin L, Dang X, Chen M, Lin X, Zhang H, Anjago W M, Lin L, Abdul W, Wang Z. 2017. Methylmalonate-semialdehyde dehydrogenase mediated metabolite homeostasis essentially regulate conidiation, polarized germination and pathogenesis in Magnaporthe oryzae. Environmental Microbiology,19, 4256–4277.
Nosanchuk J D, Casadevall A. 2003. The contribution of melanin to microbial pathogenesis. Cellular Microbiology, 5, 203–223.
Osés-Ruiz M, Cruz-Mireles N, Martin-Urdiroz M, Soanes D M, Eseola A B, Tang B, Derbyshire P, Nielsen M, Cheema J, Were V, Eisermann I, Kershaw M J, Yan X, Valdovinos-Ponce G, Molinari C, Littlejohn G R, Valent B, Menke F L H, Talbot N J. 2021. Appressorium-mediated plant infection by Magnaporthe oryzae is regulated by a Pmk1-dependent hierarchical transcriptional network. Nature Microbiology, 6, 1383–1397.
Qiao K, Wasylenko T M, Zhou K, Xu P. 2017. Lipid production in Yarrowia lipolytica is maximized by engineering cytosolic redox metabolism. Nature Biotechnology, 35, 173–177.
Quettier A L, Shaw E, Eastmond P J. 2008. SUGAR-DEPENDENT6 encodes a mitochondrial flavin adenine dinucleotide-dependent glycerol-3-P dehydrogenase, which is required for glycerol catabolism and postgerminative seedling growth in Arabidopsis. Plant Physiology, 148, 519–528.
Rigoulet M, Aguilaniu H, Avéret N, Bunoust O, Camougrand N, Grandier-Vazeille X, Larsson C, Pahlman I L, Manon S, Gustafsson L. 2004. Organization and regulation of the cytosolic NADH metabolism in the yeast Saccharomyces cerevisiae. Molecular and Cellular Biochemistry, 256, 73–81.
Robinson M D, McCarthy D J, Smyth G K. 2010. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 26, 139–140.
Van Roermund C, Elgersma Y, Singh N, Wanders R, Tabak H F. 1995. The membrane of peroxisomes in Saccharomyces cerevisiae is impermeable to NAD(H) and acetyl-CoA under in vivo conditions. The EMBO Journal, 14, 3480–3486.
Rutter J, Reick M, Wu L C, McKnight S L. 2001. Regulation of clock and NPAS2 DNA binding by the redox state of NAD cofactors. Science, 293, 510–514.
Samalova M, Meyer A J, Gurr S J, Fricker M D. 2014. Robust anti-oxidant defences in the rice blast fungus Magnaporthe oryzae confer tolerance to the host oxidative burst. New Phytologist, 201, 556–573.
Sambrook J, Fritsch E F, Maniatis T. 1989. Molecular Cloning. Cold Spring Harbor Laboratory Press, New York.
Shen W, Wei Y, Dauk M, Tan Y, Taylor D C, Selvaraj G, Zou J. 2006. Involvement of a glycerol-3-phosphate dehydrogenase in modulating the NADH/NAD+ ratio provides evidence of a mitochondrial glycerol-3-phosphate shuttle in Arabidopsis. The Plant Cell, 18, 422–441.
Shi Y, Wang H, Yan Y, Cao H, Liu X, Lin F, Lu J. 2018. Glycerol-3-phosphate shuttle is involved in development and virulence in the rice blast fungus Pyricularia oryzae. Frontiers in Plant Science, 23, 687.
Stangherlin A, Reddy A B. 2013. Regulation of circadian clocks by redox homeostasis. Journal of Biological Chemistry, 288, 26505–26511.
Talbot N J, Kershaw M J. 2009. The emerging role of autophagy in plant pathogen attack and host defence. Current Opinion in Plant Biology, 12, 444–450.
Thines E, Weber R W, Talbot N J. 2000. MAP kinase and protein kinase A-dependent mobilization of triacylglycerol and glycogen during appressorium turgor generation by Magnaporthe grisea. The Plant Cell Online, 12, 1703–1718.
Turkolmez S, Chornyi S, Alhajouj S, L I J, Waterham H R, Mitchell P J, Hettema E H, van Roermund C W T. 2023. Peroxisomal NAD(H) Homeostasis in the yeast debaryomyces hansenii depends on two redox shuttles and the NAD(+) carrier, Pmp47. Biomolecules, 13, 1294.
Valadi A, Granath K, Gustafsson L, Adler L. 2004. Distinct intracellular localization of Gpd1p and Gpd2p, the two yeast Iso-forms of NAD+-dependent glycerol 3-phosphate dehydrogenase, explains their different contributions to redox-driven glycerol production. Journal of Biological Chemistry, 38, 39677–39685.
Wang Z Y, Thornton C R, Kershaw M J, Debao L, Talbot N J. 2003. The glyoxylate cycle is required for temporal regulation of virulence by the plant pathogenic fungus Magnaporthe grisea. Molecular Microbiology, 47, 1601–1612.
Weber R W, Wakley G E, Thines E, Talbot N J. 2001. The vacuole as central element of the lytic system and sink for lipid droplets in maturing appressoria of Magnaporthe grisea. Protoplasma, 216, 101–112.
Wilson R A, Gibson R P, Quispe C F, Littlechild J A, Talbot N J. 2010. An NADPH-dependent genetic switch regulates plant infection by the rice blast fungus. Proceedings of the National Academy of Sciences of the United States of America, 107, 21902–21907.
Xiao W, Wang R S, Handy D E, Loscalzo J. 2018. NAD (H) and NADP(H) redox couples and cellular energy metabolism. Antioxidants & Redox Signaling, 28, 251–272.
Ying W. 2008. NAD+/NADH and NADP+/NADPH in cellular functions and cell death: Regulation and biological consequences. Antioxidants & Redox Signaling, 10, 179–206.
Yoshida Y, Maeda T, Lee B, Hasunuma K. 2008. Conidiation rhythm and light entrainment in superoxide dismutase mutant in Neurospora crassa. Molecular Genetics and Genomics, 279, 193–202.
Zhang L M, Chen S T, Qi M, Cao X Q, Liang N, Li Q, Tang W, Lu G D, Zhou J, Yu W Y, Wang Z H, Zheng H K. 2021. The putative elongator complex protein Elp3 is involved in asexual development and pathogenicity by regulating autophagy in the rice blast fungus. Journal of Integrative Agriculture, 20, 2944–2956.
Zhang X G, Chen S, Abubakar Y, Mao X Z, Miao P F, Wang Z H, Zhou J, Zheng H W. 2023. FgGyp8 as a putative FgRab1 GAP is required for growth and pathogenesis by regulating FgSnc1-mediated secretory vesicles fusion in Fusarium graminearum. Journal of Integrative Agriculture, 22, 3444–3457.
Zhou T, Qin L, Zhu X, Shen W, Zou J, Wang Z, Wei Y. 2017. The D-lactate dehydrogenase MoDLD1 is essential for growth and infection-related development in Magnaporthe oryzae. Environmental Microbiology, 19, 3938–3958.
|