Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (2): 638-654    DOI: 10.1016/j.jia.2024.05.021
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |
Uncoupling of nutrient metabolism and cellular redox by cytosolic routing of the mitochondrial G-3-P dehydrogenase Gpd2 causes loss of conidiation and pathogenicity in Pyricularia oryzae

Wenqin Fang1, 3, Yonghe Hong1, Tengsheng Zhou2, Yangdou Wei2, Lili Lin1#, Zonghua Wang1, 3#, Xiaohan Zhu4#

1 State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China

2 Department of Biology, College of Arts and Science, University of Saskatchewan, Saskatoon, SK S7N5E2, Canada

3 Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, China

4 Department of Plant Science, University of Manitoba, Winnipeg, MB R3T2N2, Canada

 Highlights 
● Carbohydrate and lipid oxidation fuels Pyricularia oryzae development.
Cytosolic redox balance is crucial for nutrient metabolism in fungi.
Overexpression of cytosolic gpd2Δmts disrupts redox banlance and cellular oxidoreductase activities, ultimately impairing conidiation and pathogenicity in P. oryzae.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  稻瘟病菌(Pyricularia oryzae)是导致水稻发生毁灭性病害的病原真菌,其无性生殖和与侵染过程中形态的快速变化需要大量能量,依赖于碳水化合物和脂质的氧化代谢。这一过程中形成的NADHFADH2等还原剂需要依赖一种细胞质-线粒体穿梭机制运送,以维持氧化还原平衡。我们先前的研究揭示了线粒体D-乳酸脱氢酶MoDld1在调控代谢流动和维持氧化还原平衡中的关键作用。然而,调控细胞质氧化还原状态的具体因子及机制还不清楚。G-3-P穿梭途径是一种高度保守的细胞质-线粒体还原等转运机制。研究表明,稻瘟病菌中的线粒体G-3-P脱氢酶Gpd2对维持细胞NAD+/NADH平衡和增强真菌致病性具有关键作用。为进一步解析Gpd2在细胞质氧化还原调控中的作用,本研究构建了缺失线粒体靶向信号(MTS)的细胞质型Gpdgpd2Δmts过表达菌株,从而将线粒体G-3-P脱氢酶Gpd2重新定位到细胞质中以扰乱细胞质的氧化还原平衡。结果表明,gpd2Δmts过表达可显著抑制稻瘟病菌分生孢子的形成和致病力。进一步研究发现,过表达株出现糖原和脂质代谢流动性下降的现象,这与NADH生成减少和抗氧化能力下调有关,这一氧化还原紊乱导致了无性生殖和附着胞发育缺陷。转录组和非靶向代谢组分析证实,碳源代谢和脂肪酸合成途径相关基因在gpd2Δmts过表达菌株中普遍下调。综上,本研究阐明了细胞质氧化还原的精准调控在稻瘟病菌营养代谢及其无性生殖和侵染过程中发挥关键作用。

Abstract  

Oxidation of self-stored carbohydrates and lipids provides the energy for the rapid morphogenetic transformation during asexual and infection-related development in Pyricularia oryzae, which results in intracellular accumulation of reducing equivalents NADH and FADH2, requiring a cytosolic shuttling machinery towards mitochondria.  Our previous studies identified the mitochondrial D-lactate dehydrogenase MoDld1 as a regulator to channel the metabolite flow in conjunction with redox homeostasis.  However, the regulator(s) facilitating the cytosolic redox balance and the importance in propelling nutrient metabolite flow remain unknown.  The G-3-P shuttle is a conserved machinery transporting the cytosolic reducing power to mitochondria.  In Poryzae, the mitochondrial G-3-P dehydrogenase Gpd2 was required for cellular NAD+/NADH balance and fungal virulence.  In this study, we re-locate the mitochondrial G-3-P dehydrogenase Gpd2 to the cytosol for disturbing cytosolic redox status.  Our results showed overexpression of cytosolic gpd2Δmts without the mitochondrial targeted signal (MTS) driven by Ribosomal protein 27 promoter (PR27) exerted conflicting regulation of cellular oxidoreductase activities compared to the ΔModld1 deletion mutant by RNA-seq and prevented the conidiation and pathogenicity of Poryzae.  Moreover, overexpression of gpd2Δmts caused defects in glycogen and lipid mobilization underlying asexual and infectious structural development associated with decreased cellular NADH production and weakened anti-oxidation activities.  RNA-seq and non-targeted metabolic profiling revealed down-regulated transcriptional activities of carbohydrate metabolism and lower abundance of fatty acids and secondary metabolites in RP27:gpd2Δmts.  Thus, our studies indicate the essential role of cytosolic redox control in nutrient metabolism fueling the asexual and infection-related development in Poryzae.

Keywords:  Pyricularia oryzae       mitochondrial G-3-P dehydrogenase       NAD+/NADH balance       fungal virulence       mitochondrial targeted signal  
Received: 18 January 2024   Accepted: 09 May 2024
Fund: 
This research was funded by the National Natural Science Foundation of China (32272513 and 31770156), the Natural Sciences and Engineering Research Council of Canada (Discovery Grant, RGPIN-2016-05356), and the Canadian Foundation for Innovation (Discovery Grant, 227398-2011).
About author:  #Correspondence Xiaohan Zhu, E-mail: huhu772@hotmail.com; Zonghua Wang, E-mail: zonghuaw@163.com; Lili Lin, E-mail: lilly116@163.com

Cite this article: 

Wenqin Fang, Yonghe Hong, Tengsheng Zhou, Yangdou Wei, Lili Lin, Zonghua Wang, Xiaohan Zhu. 2025. Uncoupling of nutrient metabolism and cellular redox by cytosolic routing of the mitochondrial G-3-P dehydrogenase Gpd2 causes loss of conidiation and pathogenicity in Pyricularia oryzae. Journal of Integrative Agriculture, 24(2): 638-654.

Aliyu S R, Lin L, Chen X, Abdul W, Lin Y, Otieno F J, Shabbir A, Batool W, Zhang Y, Tang W, Wang Z, Norvienyeku J. 2019. Disruption of putative short-chain acyl-CoA dehydrogenases compromised free radical scavenging, conidiogenesis, and pathogenesis of Magnaporthe oryzaeFungal Genetics and Biology127, 23–34.

Allen P M, Bowen W R. 1985. Electrochemical regeneration of redox cofactors and mediators - The key to bioelectrosynthesis. Trends in Biotechnology3, 145–149.

Amjad S, Nisar S, Bhat A A, Shah A R, Frenneaux M P, Fakhro K, Haris M, Reddy R, Patay Z, Baur J, Bagga P. 2021. Role of NAD(+) in regulating cellular and metabolic signaling pathways. Molecular Metabolism49, 101195.

Ansell R, Granath K, Hohmann S, Thevelein J M, Adler L. 1997. The two isoenzymes for yeast NAD+-dependent glycerol 3-phosphate dehydrogenase encoded by GPD1 and GPD2 have distinct roles in osmoadaptation and redox regulation. The EMBO Journal16, 2179–2187.

Badaruddin M, Holcombe L J, Wilson R A, Wang Z Y, Kershaw M J, Talbot N J. 2013. Glycogen metabolic genes are involved in trehalose-6-phosphate synthase-mediated regulation of pathogenicity by the rice blast fungus Magnaporthe oryzaePLoS Pathogens9, e1003604.

Bakker B M, Overkamp K M, van Maris A J, Kötter P, Luttik M A, van Dijken J P, Pronk J T. 2001. Stoichiometry and compartmentation of NADH metabolism in Saccharomyces cerevisiaeFEMS Microbiology Reviews25, 15–37.

Batool W, Norvienyeku J, Yi W, Wang Z H, Zhang S H, Lin L L. 2024. Disruption of non-classically secreted protein (MoMtp) compromised conidiation, stress homeostasis, and pathogenesis of Magnaporthe oryzaeJournal of Integrative Agriculture23, 2686–2702.

Becker-Kettern J, Paczia N, Conrotte J F, Kay D P, Guignard C, Jung P P, Linster C L. 2016. Saccharomyces cerevisiae forms D-2-hydroxyglutarate and couples its degradation to D-lactate formation via a cytosolic transhydrogenase. Journal of Biological Chemistry291, 6036-58.

Bhadauria V, Banniza S, Vandenberg A, Selvaraj G, Wei Y. 2012. Peroxisomal alanine: Glyoxylate aminotransferase AGT1 is indispensable for appressorium function of the rice blast pathogen, Magnaporthe oryzaePLoS ONE7, e36266.

Blacker T S, Duchen M R. 2016. Investigating mitochondrial redox state using NADH and NADPH autofluorescence. Free Radical Biology and Medicine100, 53–65.

Cambon B, Monteil V, Remize F, Camarasa C, Dequin S. 2006. Effects of GPD1 overexpression in Saccharomyces cerevisiae commercial wine yeast strains lacking ALD6 genes. Applied and Environmental Microbiology72, 4688–4694.

Canto C, Menzies K J, Auwerx J. 2015. NAD+ metabolism and the control of energy homeostasis: A balancing act between mitochondria and the nucleus. Cell Metabolism22, 31–53.

Christianson D W. 2008. Unearthing the roots of the terpenome. Current Opinion in Chemical Biology12, 141–150.

Collemare J, Billard A, Böhnert H U, Lebrun M H. 2008. Biosynthesis of secondary metabolites in the rice blast fungus Magnaporthe grisea: The role of hybrid PKS-NRPS in pathogenicity. Mycological Research112, 207–215.

Creissen G, Firmin J, Fryer M, Kular B, Leyland N, Reynolds H, Pastori G, Wellburn F, Baker N, Wellburn A. 1999. Elevated glutathione biosynthetic capacity in the chloroplasts of transgenic tobacco plants paradoxically causes increased oxidative stress. The Plant Cell11, 1277–1291.

Dadley-Moore D. 2006. Understanding rice blast disease. Nature Reviews Microbiology4, 323.

Dean R A, Talbot N J, Ebbole D J, Farman M L, Mitchell T K, Orbach M J, Thon M, Kulkarni R, Xu J R, Pan H. 2005. The genome sequence of the rice blast fungus Magnaporthe griseaNature434, 980.

Deng Y Z, Qu Z, Naqvi N I. 2015. Twilight, a novel circadian-regulated gene, integrates phototropism with nutrient and redox homeostasis during fungal development. PLoS Pathogens11, e1004972.

van Dijken J P, Scheffers W A. 1986. Redox balances in the metabolism of sugars by yeasts. FEMS Microbiology Reviews1, 199–224.

Egan M J, Wang Z Y, Jones M A, Smirnoff N, Talbot N J. 2007. Generation of reactive oxygen species by fungal NADPH oxidases is required for rice blast disease. Proceedings of the National Academy of Sciences of the United States of America104, 11772–11777.

Fernandez J, Marroquin-Guzman M, Wilson R A. 2014. Evidence for a transketolase-mediated metabolic checkpoint governing biotrophic growth in rice cells by the blast fungus Magnaporthe oryzaePLoS Pathogens10, e1004354.

Fernandez J, Wilson R A. 2014. Characterizing roles for the glutathione reductase, thioredoxin reductase and thioredoxin peroxidase-encoding genes of Magnaporthe oryzae during rice blast disease. PLoS ONE9, e87300.

Guo M, Chen Y, Du Y, Dong Y, Guo W, Zhai S, Zhang H, Dong S, Zhang Z, Wang Y, Wang P, Zheng X. 2011. The bZIP transcription factor MoAP1 mediates the oxidative stress response and is critical for pathogenicity of the rice blast fungus Magnaporthe oryzaePLoS Pathogens7, e1001302.

Howard R J, Valent B. 1996. Breaking and entering: Host penetration by the fungal rice blast pathogen Magnaporthe griseaAnnual Reviews in Microbiology50, 491–512.

Huang D W, Sherman B T, Lempicki R A. 2008. Bioinformatics enrichment tools: Paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Research37, 1–13.

Huang G, Zhang Y, Shan Y, Yang S, Chelliah Y, Wang H, Takahashi J S. 2016. Circadian oscillations of NADH redox state using a heterologous metabolic sensor in mammalian cells. Journal of Biological Chemistry291, 23906–23914.

Jacob C, Jamier V, Ba L A. 2011. Redox active secondary metabolites. Current Opinion in Chemical Biology15, 149–155.

de Jong J C, McCormack B J, Smirnoff N, Talbot N J. 1997. Glycerol generates turgor in rice blast. Nature389, 244.

Kolde R. 2012. Pheatmap: Pretty heatmaps. R Package 1.0.8.

Langmead B, Salzberg S L. 2012. Fast gapped-read alignment with Bowtie 2. Nature Methods9, 357–359.

Lau G W, Hamer J E. 1998. Acropetal: A genetic locus required for conidiophore architecture and pathogenicity in the rice blast fungus. Fungal Genetics and Biology24, 228–239.

Li B, Dewey C N. 2011. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics12, 323.

Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods25, 402–408.

Lopez-Moya F, Martin-Urdiroz M, Oses-Ruiz M, Were V M, Fricker M D, Littlejohn G, Lopez-Llorca L V, Talbot N J. 2021. Chitosan inhibits septin-mediated plant infection by the rice blast fungus Magnaporthe oryzae in a protein kinase C and Nox1 NADPH oxidase-dependent manner. New Phytologist230, 1578–1593.

Metallo C M, Vander Heiden M G. 2013. Understanding metabolic regulation and its influence on cell physiology. Molecular Cell49, 388–398.

Mir A A, Park S Y, Sadat M A, Kim S, Choi J, Jeon J, Lee Y H. 2015. Systematic characterization of the peroxidase gene family provides new insights into fungal pathogenicity in Magnaporthe oryzaeScientific Reports5, 11831.

Mráček T, Drahota Z, Houštěk J. 2013. The function and the role of the mitochondrial glycerol-3-phosphate dehydrogenase in mammalian tissues. Biochimica et Biophysica Acta (BBA)-Bioenergetics1827, 401–410.

Norvienyeku J, Zhong Z, Lin L, Dang X, Chen M, Lin X, Zhang H, Anjago W M, Lin L, Abdul W, Wang Z. 2017. Methylmalonate-semialdehyde dehydrogenase mediated metabolite homeostasis essentially regulate conidiation, polarized germination and pathogenesis in Magnaporthe oryzaeEnvironmental Microbiology,19, 4256–4277.

Nosanchuk J D, Casadevall A. 2003. The contribution of melanin to microbial pathogenesis. Cellular Microbiology, 5, 203–223.

Osés-Ruiz M, Cruz-Mireles N, Martin-Urdiroz M, Soanes D M, Eseola A B, Tang B, Derbyshire P, Nielsen M, Cheema J, Were V, Eisermann I, Kershaw M J, Yan X, Valdovinos-Ponce G, Molinari C, Littlejohn G R, Valent B, Menke F L H, Talbot N J. 2021. Appressorium-mediated plant infection by Magnaporthe oryzae is regulated by a Pmk1-dependent hierarchical transcriptional network. Nature Microbiology6, 1383–1397.

Qiao K, Wasylenko T M, Zhou K, Xu P. 2017. Lipid production in Yarrowia lipolytica is maximized by engineering cytosolic redox metabolism. Nature Biotechnology35, 173–177.

Quettier A L, Shaw E, Eastmond P J. 2008. SUGAR-DEPENDENT6 encodes a mitochondrial flavin adenine dinucleotide-dependent glycerol-3-P dehydrogenase, which is required for glycerol catabolism and postgerminative seedling growth in Arabidopsis. Plant Physiology148, 519–528.

Rigoulet M, Aguilaniu H, Avéret N, Bunoust O, Camougrand N, Grandier-Vazeille X, Larsson C, Pahlman I L, Manon S, Gustafsson L. 2004. Organization and regulation of the cytosolic NADH metabolism in the yeast Saccharomyces cerevisiaeMolecular and Cellular Biochemistry256, 73–81.

Robinson M D, McCarthy D J, Smyth G K. 2010. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics26, 139–140.

Van Roermund C, Elgersma Y, Singh N, Wanders R, Tabak H F. 1995. The membrane of peroxisomes in Saccharomyces cerevisiae is impermeable to NAD(H) and acetyl-CoA under in vivo conditions. The EMBO Journal14, 3480–3486.

Rutter J, Reick M, Wu L C, McKnight S L. 2001. Regulation of clock and NPAS2 DNA binding by the redox state of NAD cofactors. Science293, 510–514.

Samalova M, Meyer A J, Gurr S J, Fricker M D. 2014. Robust anti-oxidant defences in the rice blast fungus Magnaporthe oryzae confer tolerance to the host oxidative burst. New Phytologist201, 556–573.

Sambrook J, Fritsch E F, Maniatis T. 1989. Molecular Cloning. Cold Spring Harbor Laboratory Press, New York.

Shen W, Wei Y, Dauk M, Tan Y, Taylor D C, Selvaraj G, Zou J. 2006. Involvement of a glycerol-3-phosphate dehydrogenase in modulating the NADH/NAD+ ratio provides evidence of a mitochondrial glycerol-3-phosphate shuttle in Arabidopsis. The Plant Cell18, 422–441.

Shi Y, Wang H, Yan Y, Cao H, Liu X, Lin F, Lu J. 2018. Glycerol-3-phosphate shuttle is involved in development and virulence in the rice blast fungus Pyricularia oryzaeFrontiers in Plant Science23, 687.

Stangherlin A, Reddy A B. 2013. Regulation of circadian clocks by redox homeostasis. Journal of Biological Chemistry288, 26505–26511.

Talbot N J, Kershaw M J. 2009. The emerging role of autophagy in plant pathogen attack and host defence. Current Opinion in Plant Biology12, 444–450.

Thines E, Weber R W, Talbot N J. 2000. MAP kinase and protein kinase A-dependent mobilization of triacylglycerol and glycogen during appressorium turgor generation by Magnaporthe griseaThe Plant Cell Online12, 1703–1718.

Turkolmez S, Chornyi S, Alhajouj S, L I J, Waterham H R, Mitchell P J, Hettema E H, van Roermund C W T. 2023. Peroxisomal NAD(H) Homeostasis in the yeast debaryomyces hansenii depends on two redox shuttles and the NAD(+) carrier, Pmp47. Biomolecules13, 1294.

Valadi A, Granath K, Gustafsson L, Adler L. 2004. Distinct intracellular localization of Gpd1p and Gpd2p, the two yeast Iso-forms of NAD+-dependent glycerol 3-phosphate dehydrogenase, explains their different contributions to redox-driven glycerol production. Journal of Biological Chemistry38, 39677–39685.

Wang Z Y, Thornton C R, Kershaw M J, Debao L, Talbot N J. 2003. The glyoxylate cycle is required for temporal regulation of virulence by the plant pathogenic fungus Magnaporthe griseaMolecular Microbiology47, 1601–1612.

Weber R W, Wakley G E, Thines E, Talbot N J. 2001. The vacuole as central element of the lytic system and sink for lipid droplets in maturing appressoria of Magnaporthe griseaProtoplasma216, 101–112.

Wilson R A, Gibson R P, Quispe C F, Littlechild J A, Talbot N J. 2010. An NADPH-dependent genetic switch regulates plant infection by the rice blast fungus. Proceedings of the National Academy of Sciences of the United States of America107, 21902–21907.

Xiao W, Wang R S, Handy D E, Loscalzo J. 2018. NAD (H) and NADP(H) redox couples and cellular energy metabolism. Antioxidants & Redox Signaling28, 251–272.

Ying W. 2008. NAD+/NADH and NADP+/NADPH in cellular functions and cell death: Regulation and biological consequences. Antioxidants & Redox Signaling10, 179–206.

Yoshida Y, Maeda T, Lee B, Hasunuma K. 2008. Conidiation rhythm and light entrainment in superoxide dismutase mutant in Neurospora crassaMolecular Genetics and Genomics279, 193–202.

Zhang L M, Chen S T, Qi M, Cao X Q, Liang N, Li Q, Tang W, Lu G D, Zhou J, Yu W Y, Wang Z H, Zheng H K. 2021. The putative elongator complex protein Elp3 is involved in asexual development and pathogenicity by regulating autophagy in the rice blast fungus. Journal of Integrative Agriculture20, 2944–2956.

Zhang X G, Chen S, Abubakar Y, Mao X Z, Miao P F, Wang Z H, Zhou J, Zheng H W. 2023. FgGyp8 as a putative FgRab1 GAP is required for growth and pathogenesis by regulating FgSnc1-mediated secretory vesicles fusion in Fusarium graminearumJournal of Integrative Agriculture22, 3444–3457.

Zhou T, Qin L, Zhu X, Shen W, Zou J, Wang Z, Wei Y. 2017. The D-lactate dehydrogenase MoDLD1 is essential for growth and infection-related development in Magnaporthe oryzaeEnvironmental Microbiology19, 3938–3958.

No related articles found!
No Suggested Reading articles found!