Please wait a minute...
Journal of Integrative Agriculture  2024, Vol. 23 Issue (7): 2318-2331    DOI: 10.1016/j.jia.2024.02.019
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |
Development of a stable attenuated double-mutant of tobacco mosaic virus for cross-protection

Xiaojie Xu1, 2*#, Shaoyan Jiang2*, Chunju Liu3*, Xujie Sun2, Qing Zhu2, Xiuzhai Chen4, Pengchao Jiang3, Fenglong Wang5, Yanping Tian2#, Xiangdong Li2#

1 The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai 264025, China

2 Laboratory of Plant Virology, Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China

3 Weifang Tobacco Corporation, Weifang 261031, China

4 Linyi Tobacco Corporation, Linyi 276000, China

5 Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  
烟草(Nicotiana tabacum)和番茄(Solanum lycopersicum)是我国两种主要的经济作物,其安全生产受到烟草花叶病毒(tobacco mosaic virus,TMV)的严重威胁。交叉保护是预防植物病毒病安全且环保的措施。然而,稳定的TMV弱毒突变体却很少。TMV基因组为单链RNA,其编码的p126蛋白参与病毒复制、细胞间运动、抑制寄主RNA沉默和病毒症状形成等过程。在本研究中我们发现,将p126蛋白中第196位的精氨酸(arginine,R196)替换为天冬氨酸(aspartic acid,D),第614位的谷氨酸(glutamic acid,E614)替换为甘氨酸(glycine,G),第643位的丝氨酸(serine,S643)替换为苯丙氨酸(phenylalanine,F),或者把第730位的D(D730)替换为S,均可以显著降低TMV的致病力和复制水平。然而,只有S643F突变可以降低TMV p126的RNA沉默抑制活性。由于RNA病毒的RNA聚合酶缺乏校对和修复活性,导致RNA病毒基因组易发生突变。一些携带单一致弱突变位点的病毒突变体可能会通过自发突变恢复其致病力,而在多个致弱位点有突变的突变体恢复强致病力的风险会相对较低。为了获得稳定的TMV弱毒突变体,我们在p126中两个位点同时引入突变,发现仅双位点突变体TMV-E614G-S643F可以系统侵染烟草植株,而且不引起明显的症状,因此将其作为用于交叉保护的候选突变体。我们将其在烟草植株中连续继代接种六次,发现双位点突变体TMV-E614G-S643F可以稳定遗传。交叉保护效果实验结果表明,双位点突变体TMV-E614G-S643F可以有效保护烟草和番茄植株免受野生型TMV侵染。本研究报道了一种具有应用前景的TMV双位点弱毒突变体,可用于通过交叉保护来防治烟草和番茄植株中的TMV。


Abstract  

Tobacco (Nicotiana tabacum) and tomato (Solanum lycopersicum) are two major economic crops in China.  Tobacco mosaic virus (TMV; genus Tobamovirus) is the most prevalent virus infecting both crops.  Currently, some widely cultivated tobacco and tomato cultivars are susceptible to TMV and there is no effective strategy to control this virus.  Cross-protection can be a safe and environmentally friendly strategy to prevent viral diseases.  However, stable attenuated TMV mutants are scarce.  In this study, we found that the substitutions in the replicase p126, arginine at position 196 (R196) with aspartic acid (D), glutamic acid at position 614 (E614) with glycine (G), serine at position 643 (S643) with phenylalanine (F), or D at position 730 (D730) with S, significantly reduced the virulence and replication of TMV.  However, only the mutation of S643 to F reduced the RNA silencing suppression activity of TMV p126.  A double-mutant TMV-E614G-S643F induced no visible symptom and was genetically stable through six successive passages in tobacco plants.  Furthermore, our results showed that TMV-E614G-S643F double-mutant could provide effective protection against the wild-type TMV infection in tobacco and tomato plants.  This study reports a promising mild mutant for cross-protection to control TMV in tobacco and tomato plants.


Keywords:  cross-protection       double-mutant        p126        tobacco mosaic virus        virulence  
Received: 16 November 2023   Accepted: 17 January 2024
Fund: This work was supported by funds from ‘Taishan Scholar’ Construction Project, China (TS2022-028 and 202101-KN275).
About author:  Shaoyan Jiang, E-mail: Syan_Jiang@163.com; Chunju Liu, E-mail: liuchunju19790326@163.com; #Correspondence Xiaojie Xu, E-mail: xiaojiexua105@163.com; Yanping Tian, E-mail: yanping.tian@sdau.edu.cn; Xiangdong Li, Tel: +86-538-8242523, Fax: +86-538-8226399, E-mail: xdongli@sdau.edu.cn * These authors contributed equally to this study.

Cite this article: 

Xiaojie Xu, Shaoyan Jiang, Chunju Liu, Xujie Sun, Qing Zhu, Xiuzhai Chen, Pengchao Jiang, Fenglong Wang, Yanping Tian, Xiangdong Li. 2024. Development of a stable attenuated double-mutant of tobacco mosaic virus for cross-protection. Journal of Integrative Agriculture, 23(7): 2318-2331.

Agüero J, Gómez-Aix C, Sempere R N, García-Villalba J, García-Núñez J, Hernando Y, Aranda M A. 2018. Stable and broad spectrum cross-protection against Pepino mosaic virus attained by mixed infection. Frontiers in Plant Science9, 1810.

Allard H A. 1916. Some properties of the virus of the mosaic disease of tobacco. Journal of Agricultural Research6, 649–674.

Anandalakshmi R, Pruss G J, Ge X, Marathe R, Mallory A C, Smith T H, Vance V B. 1998. A viral suppressor of gene silencing in plants. Proceedings of the National Academy of Sciences of the United States of America95, 13079–13084.

Bao Y, Carter S A, Nelson R S. 1996. The 126-and 183-kilodalton proteins of tobacco mosaic virus, and not their common nucleotide sequence, control mosaic symptom formation in tobacco. Journal of Virology70, 6378–6383.

Cheng X, Wang A. 2017. The potyvirus silencing suppressor protein VPg mediates degradation of SGS3 via ubiquitination and autophagy pathways. Journal of Virology91, e01478-e01494.

Chewachong G M, Miller S A, Blakeslee J J, Francis D M, Morris T J, Qu F. 2015. Generation of an attenuated, cross-protective Pepino mosaic virus variant through alignment-guided mutagenesis of the viral capsid protein. Phytopathology105, 126–134.

Cong Q, Wang Y, Liu J, Lan Y, Guo Z, Yang J, Li X, Tian Y. 2019. Evaluation of Potato virus X mild mutants for cross protection against severe infection in China. Virology Journal16, 36.

Dasgupta I, Malathi V, Mukherjee S. 2003. Genetic engineering for virus resistance. Current Chinese Science84, 341–354.

Ding X, Liu J, Cheng N, Folimonov A, Hou Y, Bao Y, Katagi C, Carter S A, Nelson R S. 2004. The Tobacco mosaic virus 126-kDa protein associated with virus replication and movement suppresses RNA silencing. Molecular Plant-Microbe Interactions17, 583–592.

Duan C G, Wang C H, Guo H S. 2012. Application of RNA silencing to plant disease resistance. Silence3, 1–8.

Ellis M D, Hoak J M, Ellis B W, Brown J A, Sit T L, Wilkinson C A, Reed T D, Welbaum G E. 2020. Quantitative real-time PCR analysis of individual flue-cured tobacco seeds and seedlings reveals seed transmission of tobacco mosaic virus. Phytopathology110, 194–205.

Fondong V N. 2019. The ever-expanding role of C4/AC4 in geminivirus infection: Punching above its weight? Molecular Plant12, 145–147.

Gal-On A, Shiboleth Y. 2006. Cross-protection. In: Loebenstein G, Carr J P, eds., Natural Resistance Mechanisms of Plants to Viruses. Springer, The Netherlands. A12, pp. 261–288.

Gao R, Tian Y, Wang J, Yin X, Li X, Valkonen J P. 2012. Construction of an infectious cDNA clone and gene expression vector of Tobacco vein banding mosaic virus (genus Potyvirus). Virus Research169, 276–281.

Goregaoker S P, Culver J N. 2003. Oligomerization and activity of the helicase domain of the tobacco mosaic virus 126-and 183-kilodalton replicase proteins. Journal of Virology77, 3549–3556.

Goregaoker S P, Lewandowski D J, Culver J N. 2001. Identification and functional analysis of an interaction between domains of the 126/183-kDa replicase-associated proteins of tobacco mosaic virus. Virology282, 320–328.

Guerrero J, Regedanz E, Lu L, Ruan J, Bisaro D M, Sunter G. 2020. Manipulation of the plant host by the Geminivirus AC2/C2 protein, a central player in the infection cycle. Frontiers in Plant Science11, 591.

Guo Q, Liu Q, A Smith N, Liang G, Wang M B. 2016. RNA silencing in plants: Mechanisms, technologies and applications in horticultural crops. Current Genomics17, 476–489.

Haikonen T, Rajamäki M L, Tian Y P, Valkonen J P T. 2013. Mutation of a short variable region in HCpro protein of Potato virus A affects interactions with a microtubule-associated protein and induces necrotic responses in tobacco. Molecular Plant–Microbe Interactions26, 721–733.

Hasiów-Jaroszewska B, Borodynko N, Jackowiak P, Figlerowicz M, Pospieszny H. 2011. Single mutation converts mild pathotype of the Pepino mosaic virus into necrotic one. Virus Research159, 57–61.

Hirashima K, Watanabe Y. 2001. Tobamovirus replicase coding region is involved in cell-to-cell movement. Journal of Virology75, 8831–8836.

Holmes F O. 1934. A masked strain of tobacco mosaic virus. Phytopathology24, 845–873.

Huang X D, Fang L, Gu Q S, Tian Y P, Geng C, Li X D. 2019. Cross protection against the watermelon strain of Papaya ringspot virus through modification of viral RNA silencing suppressor. Virus Research265, 166–171.

Jiang Y, Zheng W, Li J, Liu P, Zhong K, Jin P, Xu M, Yang J, Chen J. 2021. NbWRKY40 positively regulates the response of Nicotiana benthamiana to tomato mosaic virus via salicylic acid signaling. Frontiers in Plant Science11, 603518.

Kearney C, Thomson M, Roland K. 1999. Genome evolution of tobacco mosaic virus populations during long-term passaging in a diverse range of hosts. Archives of Virology144, 1513–1526.

Knapp E, Danyluk G M, Achor D, Lewandowski D J. 2005. A bipartite Tobacco mosaic virus defective RNA (dRNA) system to study the role of the N-terminal methyl transferase domain in cell-to-cell movement of dRNAs. Virology341, 47–58.

Kung Y, Lin P, Yeh S, Hong S, Chua N, Liu L, Lin C, Huang Y, Wu H, Chen C, Lin S. 2014. Genetic analyses of the FRNK motif function of Turnip mosaic virus uncover multiple and potentially interactive pathways of cross-protection. Molecular Plant–Microbe Interactions27, 944–955.

Lewandowski D J, Dawson W O. 1993. A single amino acid change in tobacco mosaic virus replicase prevents symptom production. Molecular Plant–Microbe Interactions6, 157.

Lewandowski D J, Dawson W O. 2000. Functions of the 126-and 183-kDa proteins of tobacco mosaic virus. Virology271, 90–98.

Lin S S, Wu H W, Jan F J, Hou R F, Yeh S D. 2007. Modifications of the helper component-protease of Zucchini yellow mosaic virus for generation of attenuated mutants for cross protection against severe infection. Phytopathology97, 287–296.

Liu H, Naismith J H. 2008. An efficient one-step site-directed deletion, insertion, single and multiple-site plasmid mutagenesis protocol. BMC Biotechnology8, 91.

Liu J, Li X D, Xu S. 2020. Single amino acid substitutions in the coat protein and RNA-dependent RNA polymerase alleviated the virulence of Cucumber green mottle mosaic virus and conferred cross protection against severe infection. Virus Research56, 228–235.

Liu L, Peng B, Zhang Z, Wu Y, Miras M, Aranda M A, Gu Q. 2017. Exploring different mutations at a single amino acid position of Cucumber green mottle mosaic virus replicase to attain stable symptom attenuation. Phytopathology107, 1080–1086.

Mascia T, Santovito E, Gallitelli D, Cillo F. 2010. Evaluation of reference genes for quantitative reverse-transcription polymerase chain reaction normalization in infected tomato plants. Molecular Plant Pathology11, 805–816.

Oshima N, Komochi S, Goto T. 1965. Study on control of plant virus diseases by vaccination of attenuated virus. (i) Control of tomato mosaic disease. Hokkaido National Agricultural Experiment Station Research Bull85, 23–33.

Pechinger K, Chooi K M, MacDiarmid R M, Harper S J, Ziebell H. 2019. A new era for mild strain cross-protection. Viruses11, 670.

Peng J, Song K, Zhu H, Kong W, Liu F, Shen T, He Y. 2017. Fast detection of tobacco mosaic virus infected tobacco using laser-induced breakdown spectroscopy. Sciences Report7, 1–9.

Raja J A, Huang C H, Chen C C, Hu W C, Cheng H W, Goh R P, Chao C H, Tan Y R, Yeh S D. 2022. Modification of the N-terminal FWKG-αH1 element of potyviral HC-Pro affects its multiple functions and generates effective attenuated mutants for cross-protection. Molecular Plant Pathology23, 947–965.

Rajamäki M L, Streng J, Valkonen J P. 2014. Silencing suppressor protein VPg of a potyvirus interacts with the plant silencing-related protein SGS3. Molecular Plant–Microbe Interactions27, 1199–1210.

Rast A T B. 1972. M II-16, an artificial symptomless mutant of tobacco mosaic virus for seedling inoculation of tomato crops. Netherlands Journal of Plant Pathology78, 110–112.

Rast A T B. 1975. Variability of Tobacco Mosaic Virus in Relation to Control of Tomato Mosaic in Glasshouse Tomato Crops by Resistance Breeding and Cross Protection. Wageningen University and Research, The Netherlands.

Sawalha H. 2014. Quantitative effects of single and multiple infections with four viruses on tomato production. Annual Research & Review in Biology4, 2804–2814.

Scholthof K B G, Adkins S, Czosnek H, Palukaitis P, Jacquot E, Hohn T, Hohn B, Saunders K, Candresse T, Ahlquist P. 2011. Top 10 plant viruses in molecular plant pathology. Molecular Plant Pathology12, 938–954.

Shintaku M H, Carter S A, Bao Y, Nelson R S. 1996. Mapping nucleotides in the 126-kDa protein gene that control the differential symptoms induced by two strains of tobacco mosaic virus. Virology221, 218–225.

Stoykova D, Dratchev D. 2001. Study on the effect of Tobacco mosaic virus (TMV) and Potato virus Y (PVY) on tobacco quality. Biotechnology & Biotechnological Equipment15, 62–64.

Sun L, Suzuki N. 2008. Intragenic rearrangements of a mycoreovirus induced by the multifunctional protein p29 encoded by the prototypic hypovirus CHV1-EP713. RNA14, 2557–2571.

Tosh P K, Boyce T G, Poland G A. 2008. Flu myths: Dispelling the myths associated with live attenuated influenza vaccine. Mayo Clinic Proceedings83, 77–84.

Tuo D, Zhou P, Zhao G, Yan P, Tan D, Li X, Shen W. 2020. A double mutation in the conserved motifs of the helper component protease of papaya leaf distortion mosaic virus for the generation of a cross-protective attenuated strain. Phytopathology110, 187–193.

Wang J, Chen T, Han M, Qian L, Li J, Wu M, Han T, Cao J, Nagalakshmi U, Rathjen J P. 2020. Plant NLR immune receptor Tm-2activation requires NB-ARC domain-mediated self-association of CC domain. PLoS Pathogens16, e1008475.

Wang L Y, Lin S S, Hung T H, Li T K, Lin N C, Shen T L. 2012. Multiple domains of the Tobacco mosaic virus p126 protein can independently suppress local and systemic RNA silencing. Molecular Plant-Microbe Interactions25, 648–657.

Wang M B, Masuta C, Smith N A, Shimura H. 2012. RNA silencing and plant viral diseases. Molecular Plant–Microbe Interactions25, 1275–1285.

Van Wezel R, Dong X, Blake P, Stanley J, Hong Y. 2002. Differential roles of geminivirus Rep and AC4 (C4) in the induction of necrosis in Nicotiana benthamianaMolecular Plant Pathology3, 461–471.

Wyrsch I, Domínguez-Ferreras A, Geldner N, Boller T. 2015. Tissue-specific FLAGELLIN-SENSING 2 (FLS2) expression in roots restores immune responses in Arabidopsis fls2 mutants. New Phytologist206, 774–784.

Xu X J, Li H G, Cheng D J, Liu L Z, Geng C, Tian Y P, Li X D. 2020. A spontaneous complementary mutation restores the RNA silencing suppression activity of HC-pro and the virulence of sugarcane mosaic virus. Frontiers in Plant Science11, 1279.

Xu X J, Zhu Q, Jiang S Y, Yan Z Y, Geng C, Tian Y P, Li X D. 2021. Development and evaluation of stable sugarcane mosaic virus mild mutants for cross-protection against infection by severe strain. Frontiers in Plant Science12, 788963.

Yamaji Y, Kobayashi T, Hamada K, Sakurai K, Yoshii A, Suzuki M, Namba S, Hibi T. 2006. In vivo interaction between Tobacco mosaic virus RNA-dependent RNA polymerase and host translation elongation factor 1A. Virology347, 100–108.

Yoon J Y, Ahn H I, Kim M, Tsuda S, Ryu K H. 2006. Pepper mild mottle virus pathogenicity determinants and cross protection effect of attenuated mutants in pepper. Virus Research118, 23–30.

Zhang H, Zhao J, Liu S, Zhang D P, Liu Y. 2013. Tm-22 confers different resistance responses against tobacco mosaic virus dependent on its expression level. Molecular Plant6, 971–974.

Zhao S, Gong P, Ren Y, Liu H, Li H, Li F, Zhou X. 2022. The novel C5 protein from tomato yellow leaf curl virus is a virulence factor and suppressor of gene silencing. Stress Biology2, 19.

Zhou C, Zhou Y. 2012. Strategies for viral cross protection in plants. Methods in Molecular Biology894, 69–81.

Ziebell H, Payne T, Berry J O, Walsh J A, Carr J P. 2007. A cucumber mosaic virus mutant lacking the 2b counter-defence protein gene provides protection against wild-type strains. Journal of General Virology88, 2862–2871.

No related articles found!
No Suggested Reading articles found!