Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (11): 2062-2080.doi: 10.3864/j.issn.0578-1752.2025.11.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Map-Based Cloning and Functional Verification of A Novel Split Glume Gene OsSG2 in Rice (Oryza sativa L.)

ZENG YueHui1,2(), ZOU WenGuang2,3(), ZHAO FuMing1,2, XIAO ChangChun1,2, HUANG JianHong1,2, MA BinLin2,3, YANG WangXing2,3, WEI XinYu1,2(), XU XuMing2,3()   

  1. 1 Biotechnology Research Institute, Sanming Academy of Agricultural Sciences, Sanming 365500, Fujian
    2 Fujian Key Laboratory of Crop Genetic Improvement and Innovative Utilization for Mountainous Areas, Sanming 365500, Fujian
    3 Rice Research Institute, Sanming Academy of Agricultural Sciences, Sanming 365500, Fujian
  • Received:2024-11-20 Accepted:2024-12-19 Online:2025-06-01 Published:2025-06-09
  • Contact: WEI XinYu, XU XuMing

Abstract:

【Objective】 The sg2 (split glume 2) is a naturally occurring rice mutant derived from an advanced-generation breeding population of the restorer line GK1327 originating from the Sanming Academy of Agricultural Sciences (SAAS). In this work, the OsSG2 (Oryza sativa Split Glume 2) gene in the mutant was performed to conduct genetic analysis, map-based cloning and functional verification, which will provide a theoretical basis and an important germplasm resource for further study on the function of OsSG2 in the development of rice floral organs.【Method】 The morphological characteristics of the sg2 mutant florets were anatomically observed to analyze the features of floral organ development. By investigating the phenotypic and agronomic characteristics of wild-type GK1327 and sg2 mutant, and observing the pollen staining in I2-KI, the effects of the mutant phenotype on yield-related traits and pollen fertility were analyzed. The F2 populations developed by crossing sg2 mutant with wild-type GK1327 and 9311, respectively, were used to perform genetic analysis and physical mapping of the OsSG2. Bulked segregant analysis (BSA) combined with next-generation sequencing (NGS) technology (BSA-seq) was used to screen the candidate genes of OsSG2, and a combination of RT-PCR (reverse-transcription PCR) and qRT-PCR (quantitative real-time PCR) was performed to analyze their expression patterns. The OsSG2 candidate genes were cloned and sequenced by PCR amplification and sequencing approaches, and the functional verification was conducted by knockout using CRISPR-cas9 and a complementation test.【Result】 The sg2 mutant exhibited an abnormal spikelet phenotype at the reproductive stage, the palea and lemma of florets were weak, distorted, and dehiscent, and with the proportion of abnormal florets in the panicles were 100%. Compared with the wild-type GK1327, the seed setting rate, the 1000-grain weight, and the seed germination rate of sg2 mutant were markedly lower, whereas the pollen fertility was normal. Genetic analysis demonstrated that a recessive nuclear gene was responsible for the mutant phenotype of sg2. A map-based cloning strategy delimited OsSG2 to a 919.85 kb physical interval on the short arm of chromosome 3, flanked by two InDel (insertion/deletion) markers, InDel-12083 and InDel-17610, that included 75 putative ORFs (open read frames). Moreover, a BSA-seq technology identified a potential candidate gene LOC_Os03g11614 as the OsSG2 gene, which encodes an OsMADS1 transcription factor localized to the nucleus. Expression and sequence analyses revealed that the transcript levels of LOC_Os03g11614 were markedly lower in young panicles of the sg2 mutant compared with those in the wild-type GK1327 during the flowering stage, and a SNP (single nucleotide polymorphism) mutation (G-A) was identified at the third nucleotide position of exon 1 in the LOC_Os03g11614, resulting in the change of the start codon from ATG to ATA, which caused a transcriptional suppression of LOC_Os03g11614 and a functional loss of the OsMADS1 protein. These results further supported the tentative identification of LOC_Os03g11614 as the candidate OsSG2 gene, which was confirmed by knockout using CRISPR-cas9 and a functional complementation test.【Conclusion】 The split glume gene OsSG2, which was successfully isolated from sg2 mutant in this work, was identified as a new allele of OsMADS1 in rice.

Key words: rice (Oryza sativa L.), floral organ, OsSG2, map-based cloning, gene editing, OsMADS1

Fig. 1

Phenotypic and agronomic characteristics of wild-type and sg2 mutant plants A: Phenotype of WT and sg2 individual plant during the filling stage, Bar=10 cm; B and C: Phenotype of WT and sg2 mutant panicle during the filling stage, Bar=5 cm, where Figure C is the magnified map of the area of sg2 mutant panicle in Fig.B, Bar=2 cm; D: Phenotype of floral organs of sg2 mutant during flowering stage, Bar=1 cm; E: Anatomic structure of sg2 floral organs, Bar=1 cm; F and G: Phenotype of WT and sg2 mutant grains during the filling stage (F, Bar=1 cm) and the mature stage (G, Bar=1 cm), respectively; H-J: Seed-setting rate (H), 1000-grain weight (I), and Germination rate of seeds (J) of WT and sg2 mutant; K: I2-KI staining identification of pollen fertility of WT and sg2 mutant, Bar=1mm. le:Lemma; pa: Palea; st: Stamen; pi: Pistil; sl: Sterile lemma; WT: Wild-type GK1327.**: P<0.01. The same as below"

Table 1

Segregation analysis of sg2 crosses"

杂交组合
Cross combinations
F2表型F2 phenotype χ2 χ20.05 P
分离群体 Segregation population 野生型 WT 突变型 Mutant type
sg2×WT 1136 863 273 0.565 3.84 0.8513
sg2×9311 1448 1091 357 0.092 3.84 0.9741
9311×sg2 1040 798 243 1.661 3.84 0.7175

Table 2

Sequences of primers used in this study"

引物名称
Primer name
正向引物
Forward primer (5′-3′)
反向引物
Reverse primer (5′-3′)
用途
Usage
Rm14462 TCTGTATTCAAGGAGGGCTAGATGC GCTGGAGAGATGCATTGACTGG OsSG2初步定位
Preliminary mapping for OsSG2
Rm3392 AGCAACCAACCCAGTAGTTAGCC GCTCATTTGCATGCTGTGTTAGC
Rm14722 ACACACCACATTGTTGGCATTGG TGGTGGGAGGAAGATTTCAGTGG
Rm14728 CTCAGCGGACTAGAATGCAAGC AAACGGATACATCTTCGCAGAACG
Rm7 TTCGCCATGAAGTCTCTCG CCTCCCATCATTTCGTTGTT
InDel-2923 GCCTAAATTTGCAGTGATGTG TACCAGTGCCCAATAATCGT OsSG2精细定位
Fine mapping for OsSG2
InDel-12083 GCAATCAGGTCGCGTATCAG GGTTGGGTGTTCGACGTATC
InDel-17610 ACGAATGTAACTTTGGCATGTCA ATGCTCTGAGGTGATTACTTTT
InDel-31068 AAGCCCCGTTTGACTTAGGT AAGCCCCGTTTGACTTAGGT
InDel-31355 TTAGGCCCAGTTTTGCTCTC CTCCCTCCGTCCCGAAAA
OsMADS1-Q TTGGAGAGGTACCGCAGC TCTGGTTCTCAAGCTGCTCC OsMADS1的qRT-PCR检测
qRT-PCR detection for OsMADS1
OsMADS1-Seq01 CGACGTGACAGCAGTTTGAT AGCACTAAAAGCACGCGAAA OsMADS1的测序
Sequencing for OsMADS1
OsMADS1-Seq02 TGCGCAAATCAAAACTGTACAG ATTGCGGCCCATCTAAACTG
OsMADS1-Seq03 TAGGGCGCATTGTGACTTTG GCCTGTGTTAAAAGCCATGC
OsMADS1-Seq04 AGCAAGCACTTCACACCATG AGAACAGTGCTAGAACCGCT
OsMADS1-Seq05 AGCCATCGATCACCCTGAAA GTCTGCTGCTTCATTGCTCA
OsMADS1-Seq06 CCATCAGGGTCTTCTCCACC TGAGATAACAGCTGCCGTCT
OsActin-F/R ACCTTCAACACCCCTGCTAT CACCATCACCAGAGTCCAAC OsActin的qRT-PCR检测
qRT-PCR detection for OsActin (as internal standard)
FMHPT-F/R ATTTGTGTACGCCCGACAGT GTGCTTGACATTGGGGAGTT PCR鉴定HPT PCR detection for HPT
FMCas9-F/R AGAACCTCTCCGATGCTATCC AGCAAGAGGACCAACGTAG PCR鉴定Cas9 PCR detection for Cas9

Fig. 2

Fine mapping of OsSG2 A: OsSG2 was preliminarily mapped to a region on chromosome 3 between SSR molecular markers Rm3392 and Rm14722; B: Fine mapping of OsSG2 using 600 F2 mutant individuals from the crosses 9311×sg2 and sg2×9311, and the OsSG2 locus was narrowed down to a 919.85 kb genomic DNA region between InDel markers InDel-12083 and InDel-17610; C: A BAC contig spanning the OsSG2 locus; D: Seventy-five predicted open reading frames (ORFs) identified as candidate OsSG2 genes according to genomic information of the japonica rice cultivar Nipponbare. The numbers in parentheses beneath each of the molecular markers linked to the OsSG2 represent the number of recombinants among the 600 F2 mutant individuals. The numbers below the chromosome indicate the actual physical location of the corresponding linkage molecular markers on rice chromosome 3 based on the Gramene database"

Table 3

The quality of sequencing data"

样本
Samples
原始数据量
Raw base (Gb)
有效数据量
Clean base (Gb)
有效数据占比
Clean base percent (%)
>Q20
(%)
>Q30
(%)
GC含量
GC content (%)
9311 26.84 26.28 97.93 97.67 93.43 42.80
sg2 27.78 27.20 97.92 97.65 93.39 42.92
WT-Pool 29.36 28.68 97.71 97.84 93.86 42.81
MT-Pool 30.73 30.03 97.73 97.81 93.79 42.82

Table 4

Sequencing depth and coverage"

样本
Samples
有效序列数
Total reads
比对序列数
Mapped reads
比对率
Mapped rate (%)
平均覆盖深度
Average coverage (×)
1×覆盖度
1×coverage (%)
10×覆盖度
10×coverage (%)
9311 176181050 136126271 98.23 52.7028 93.72 88.85
sg2 182366852 140044150 98.16 54.2271 93.16 88.38
WT-Pool 192599862 145760573 98.13 56.2530 94.71 90.18
MT-Pool 201645008 152345579 98.11 58.7479 94.74 90.45

Fig. 3

ΔSNP-index/ΔInDel-index correlation analysis chart based on InDel and SNP of BSA-seq A and B: ΔSNP-index/ΔInDel-index association analysis chart based on InDel (A) and SNP (B) of BSA-seq, the black arrow points to the associated chromosome region, and the confidence intervals represented by yellow and purple lines are 95% and 99%, respectively; C: Functional annotation results of candidate genes in linkage region"

Fig. 4

Expression analysis of candidate gene LOC_Os03g11614 A: Expression analysis of candidate gene LOC_Os03g11614 in various tissues of WT during the flowering stage, determined by RT-PCR; B: Expression analysis of candidate gene LOC_Os03g11614 in various tissues of WT and sg2 mutant during the flowering stage, determined by qRT-PCR. R: Root; S: Stem; FL: Flag leaf; YP: Young panicle; M: 2000 bp DNA Marker; WT: Wild-type GK1327"

Fig. 5

Sequence analysis of candidate gene LOC_Os03g11614 A: Comparison analysis of CDS of candidate gene LOC_Os03g11614 in 9311, Nipponbare, Minghui82, Minghui86, Minghui63, Minghui2155, Minhui3301, R498, Zhonghua11, WT, and sg2; B: Structure of candidate gene LOC_Os03g11614 and its encoded protein OsMADS1; C: The location of transcription start site ATG in LOC_Os03g11614; D: Comparison analysis of amino acid sequences between PP-02, PP-04, PP-06, PP-09, PP-11 and OsMADS1. PP: Polypeptide; aa: Amino acid; WT: Wild-type GK1327"

Fig. 6

CRISPR-Cas9 verification of OsSG2 candidate gene LOC_Os03g11614 A: Two positive transgenic lines of T0 generation, OsMADS1-Cas9-1# and OsMADS1-Cas9-3#, generated using the CRISPR-Cas9 system, Bar=3 cm; B and C: PCR identification of the positive transgenic plants in the gene-editing lines of T0 generation with the functional markers FMCas9-F/R (B) and FMHPT-F/R (C), where + and - indicate the positive control and negative control, respectively, and M represent 2000 bp DNA Marker; D: Mutation analysis at the Target 1 of LOC_Os03g11614 in the OsMADS1-Cas9-1# and OsMADS1-Cas9-3#, respectively. The nucleotides with red font and boxed in the black rectangle represent Target and PAM sequence, respectively, and - represent base deletions; E: The relative expression level of LOC_Os03g11614 in the young panicles of WT, OsMADS1-Cas9-1#, and OsMADS1-Cas9-3# during the flowering stage, respectively, determined by qRT-PCR; F: The phenotype of young panicles of OsMADS1-Cas9-1# and OsMADS1-Cas9-3# during the flowering stage, respectively. Bars=2 cm (left), 6 cm (middle), and 2 cm (right). WT: Wild-type GK1327"

Fig. 7

Functional verification of OsSG2 candidate gene LOC_Os03g11614 by using a complementation test A: Three positive transgenic lines of T0 generation, OsMADS1-OE1#, OsMADS1-OE2#, and OsMADS1-OE5#, generated using a complementation test, Bar=3 cm; B: PCR identification of the positive transgenic plants in the overexpressed lines of T0 generation with the functional marker FMHPT-F/R, where + and - indicate the positive control and negative control, respectively, and M represent 2000 bp DNA Marker; C: The relative expression level of LOC_Os03g11614 in the young panicles of WT, sg2, OsMADS1-OE1#, OsMADS1-OE2#, and OsMADS1-OE5# during the flowering stage, respectively, determined by qRT-PCR; D: The phenotype of young panicles of WT, OsMADS1-OE1#, OsMADS1-OE2#, and OsMADS1-OE5# during the flowering stage, respectively. Bar=6 cm. WT: Wild-type GK1327"

[1]
HAN B, XUE Y B, LI J Y, DENG X W, ZHANG Q F. Rice functional genomics research in China. Philosophical Transactions of the Royal Society B: Biological Sciences, 2007, 362(1482): 1009-1021.
[2]
陈晓东, 李飞, 李丹阳, 刘灵芝, 乔守晨, 孙红正, 李俊周, 张静, 彭廷, 谭金芳, 杜彦修, 赵全志. 水稻内颖畸形或缺失基因OsAPP1的图位克隆及表达分析. 植物遗传资源学报, 2021, 22(2): 416-426.

doi: 10.13430/j.cnki.jpgr.20200901001
CHEN X D, LI F, LI D Y, LIU L Z, QIAO S C, SUN H Z, LI J Z, ZHANG J, PENG T, TAN J F, DU Y X, ZHAO Q Z. Map-based cloning and expression analysis of rice abnormal or absent Palea gene OsAPP1. Journal of Plant Genetic Resources, 2021, 22(2): 416-426. (in Chinese)
[3]
RIJPKEMA A S, VANDENBUSSCHE M, KOES R, HEIJMANS K, GERATS T. Variations on a theme: Changes in the floral ABCs in angiosperms. Seminars in Cell & Developmental Biology, 2010, 21(1): 100-107.
[4]
曾生元, 郭旻, 李荣德, 盛生兰, 龚红兵, 严长杰. 水稻新裂颖突变体sg1的遗传分析与基因定位. 中国水稻科学, 2015, 29(1): 22-27.

doi: 10.3969/j.issn.1001-7216.2015.01.003
ZENG S Y, GUO M, LI R D, SHENG S L, GONG H B, YAN C J. Genetic analysis and fine mapping for a novel split glume mutant in rice. Chinese Journal of Rice Science, 2015, 29(1): 22-27. (in Chinese)
[5]
潘孝武, 刘文强, 黎用朝, 熊海波, 盛新年, 段永红, 余亚莹, 赵文锦, 魏秀彩, 李小湘. 水稻裂颖突变体sh1的鉴定及基因定位. 中国水稻科学, 2019, 33(4): 323-330.

doi: 10.16819/j.1001-7216.2019.9027
PAN X W, LIU W Q, LI Y C, XIONG H B, SHENG X N, DUAN Y H, YU Y Y, ZHAO W J, WEI X C, LI X X. Identification and genetic analysis of split husk mutant sh1 in rice. Chinese Journal of Rice Science, 2019, 33(4): 323-330. (in Chinese)
[6]
姜树坤, 张喜娟, 王嘉宇, 张凤鸣. 水稻幼穗-颖花发育的研究进展. 植物遗传资源学报, 2012, 13(6): 1018-1022, 1030.

doi: 10.13430/j.cnki.jpgr.2012.06.016
JIANG S K, ZHANG X J, WANG J Y, ZHANG F M. Research advancement on young panicle and spikelet development in rice (Oryza sativa L.). Journal of Plant Genetic Resources, 2012, 13(6): 1018-1022, 1030. (in Chinese)
[7]
YUN D P, LIANG W Q, DRENI L, YIN C S, ZHOU Z G, KATER M M, ZHANG D B. OsMADS16 genetically interacts with OsMADS3 and OsMADS58 in specifying floral patterning in rice. Molecular Plant, 2013, 6(3): 743-756.
[8]
曾晓春, 周燮, 吴晓玉. 水稻颖花开放机理研究进展. 中国农业科学, 2004, 37(2): 188-195. doi: 10.3864/j.issn.0578-1752.040205.
ZENG X C, ZHOU X, WU X Y. Advances in study of opening mechanism in rice florets. Scientia Agricultura Sinica, 2004, 37(2): 188-195. doi: 10.3864/j.issn.0578-1752.040205. (in Chinese)
[9]
管恩相, 李勇, 刘陵武, 姚仁祥, 郭君, 唐海燕. 三系不育系种子裂颖形成的原因及防治措施研究. 中国种业, 2010(1): 42-43.
GUAN E X, LI Y, LIU L W, YAO R X, GUO J, TANG H Y. Study on the causes and control measures of glumecracking in seeds of three-line sterile lines. China Seed Industry, 2010(1): 42-43. (in Chinese)
[10]
朱伟, 童继平, 吴跃进. 水稻品种抗裂颖资源的筛选与初步研究. 植物遗传资源学报, 2004, 5(1): 52-55.
ZHU W, TONG J P, WU Y J. Preliminary study and selection of rice germplasm with glume gaping resistance. Journal of Plant Genetic Resources, 2004, 5(1): 52-55. (in Chinese)
[11]
王忠, 顾蕴洁, 高煜珠.水稻开颖机理的探讨: V. 不育系与可育系浆片和花丝结构的比较. 作物学报, 1994, 20(1): 13-17, 129-131.
WANG Z, GU Y J, GAO Y Z. Studies on the mechanism of the anthesis of rice: V. comparison of lodicule and filament structure between sterile line and fertile line. Acta Agronomica Sinica, 1994, 20(1): 13-17, 129-131. (in Chinese)
[12]
WEIGEL D, MEYEROWITZ E M. The ABCs of floral homeotic genes. Cell, 1994, 78(2): 203-209.

doi: 10.1016/0092-8674(94)90291-7 pmid: 7913881
[13]
COEN E S, MEYEROWITZ E M. The war of the whorls: Genetic interactions controlling flower development. Nature, 1991, 353(6339): 31-37.
[14]
MA H, DEPAMPHILIS C. The ABCs of floral evolution. Cell, 2000, 101(1): 5-8.

doi: 10.1016/S0092-8674(00)80618-2 pmid: 10778850
[15]
THEIßEN G. Development of floral organ identity: Stories from the MADS house. Current Opinion in Plant Biology, 2001, 4(1): 75-85.

doi: 10.1016/s1369-5266(00)00139-4 pmid: 11163172
[16]
THEISSEN G, SAEDLER H. Plant biology floral quartets. Nature, 2001, 409(6819): 469-471.
[17]
COLOMBO L, FRANKEN J, KOETJE E, VAN WENT J, DONS H J, ANGENENT G C, VAN TUNEN A J. The Petunia MADS box gene FBP11 determines ovule identity. The Plant Cell, 1995, 7(11): 1859-1868.
[18]
PELAZ S, DITTA G S, BAUMANN E, WISMAN E, YANOFSKY M F. B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature, 2000, 405(6783): 200-203.
[19]
THEISSEN G, MELZER R. Molecular mechanisms underlying origin and diversification of the angiosperm flower. Annals of Botany, 2007, 100(3): 603-619.

doi: 10.1093/aob/mcm143 pmid: 17670752
[20]
YOSHIDA H, NAGATO Y. Flower development in rice. Journal of Experimental Botany, 2011, 62(14): 4719-4730.

doi: 10.1093/jxb/err272 pmid: 21914655
[21]
YU X Q, XIA S S, XU Q K, CUI Y J, GONG M, ZENG D L, ZHANG Q, SHEN L, JIAO G A, GAO Z Y, HU J, ZHANG G H, ZHU L, GUO L B, REN D Y, QIAN Q. Abnormal flower and grain 1 encodes OsMADS6 and determines Palea identity and affects rice grain yield and quality. Science China Life Sciences, 2020, 63(2): 228-238.
[22]
WU F, SHI X W, LIN X L, LIU Y, CHONG K, THEIßEN G, MENG Z. The ABCs of flower development: mutational analysis of AP1/FUL-like genes in rice provides evidence for a homeotic (A)-function in grasses. The Plant Journal, 2017, 89(2): 310-324.
[23]
YIN X M, LIU X, XU B X, LU P Y, DONG T, YANG D, YE T T, FENG Y Q, WU Y. OsMADS18, a membrane-bound MADS-box transcription factor, modulates plant architecture and the abscisic acid response in rice. Journal of Experimental Botany, 2019, 70(15): 3895-3909.

doi: 10.1093/jxb/erz198 pmid: 31034557
[24]
YADAV S R, PRASAD K, VIJAYRAGHAVAN U. Divergent regulatory OsMADS2 functions control size, shape and differentiation of the highly derived rice floret second-whorl organ. Genetics, 2007, 176(1): 283-294.
[25]
YAO S G, OHMORI S, KIMIZU M, YOSHIDA H. Unequal genetic redundancy of rice PISTILLATA orthologs, OsMADS2 and OsMADS4, in lodicule and stamen development. Plant & Cell Physiology, 2008, 49(5): 853-857.
[26]
YAMAGUCHI T, LEE D Y, MIYAO A, HIROCHIKA H, AN G, HIRANO H Y. Functional diversification of the two C-class MADS box genes OSMADS3 and OSMADS58 in Oryza sativa. The Plant Cell, 2006, 18(1): 15-28.
[27]
XU W, TAO J H, CHEN M J, DRENI L, LUO Z J, HU Y, LIANG W Q, ZHANG D B. Interactions between FLORAL ORGAN NUMBER4 and floral homeotic genes in regulating rice flower development. Journal of Experimental Botany, 2017, 68(3): 483-498.
[28]
LI H F, LIANG W Q, YIN C S, ZHU L, ZHANG D B. Genetic interaction of OsMADS3, DROOPING LEAF, and OsMADS13 in specifying rice floral organ identities and meristem determinacy. Plant Physiology, 2011, 156(1): 263-274.
[29]
WANG H H, ZHANG L, CAI Q, HU Y, JIN Z M, ZHAO X X, FAN W, HUANG Q M, LUO Z J, CHEN M J, ZHANG D B, YUAN Z. OsMADS 32 interacts with PI-like proteins and regulates rice flower development. Journal of Integrative Plant Biology, 2015, 57(5): 504-513.
[30]
HU Y, WANG L, JIA R, LIANG W Q, ZHANG X L, XU J, CHEN X F, LU D, CHEN M J, LUO Z J, XIE J Y, CAO L M, XU B, YU Y, PERSSON S, ZHANG D B, YUAN Z. Rice transcription factor MADS32 regulates floral patterning through interactions with multiple floral homeotic genes. Journal of Experimental Botany, 2021, 72(7): 2434-2449.

doi: 10.1093/jxb/eraa588 pmid: 33337484
[31]
OSNATO M, LACCHINI E, PILATONE A, DRENI L, GRIONI A, CHIARA M, HORNER D, PELAZ S, KATER M M. Transcriptome analysis reveals rice MADS13 as an important repressor of the carpel development pathway in ovules. Journal of Experimental Botany, 2021, 72(2): 398-414.

doi: 10.1093/jxb/eraa460 pmid: 33035313
[32]
YIN L L, XUE H W. The MADS29 transcription factor regulates the degradation of the nucellus and the nucellar projection during rice seed development. The Plant Cell, 2012, 24(3): 1049-1065.
[33]
PRASAD K, PARAMESWARAN S, VIJAYRAGHAVAN U. OsMADS1, a rice MADS-box factor, controls differentiation of specific cell types in the lemma and Palea and is an early-acting regulator of inner floral organs. Plant Journal, 2005, 43(6): 915-928.

doi: 10.1111/j.1365-313X.2005.02504.x pmid: 16146529
[34]
AGRAWAL G K, ABE K, YAMAZAKI M, MIYAO A, HIROCHIKA H. Conservation of the E-function for floral organ identity in rice revealed by the analysis of tissue culture-induced loss-of-function mutants of the OsMADS1 gene. Plant Molecular Biology, 2005, 59(1): 125-135.
[35]
LIU Z J, LI P H, YU L, HU Y Z, DU A P, FU X Y, WU C L, LUO D G, HU B H, DONG H, JIANG H B, MA X R, HUANG W Z, YANG X C, TU S B, LI H. OsMADS1 regulates grain quality, gene expressions, and regulatory networks of starch and storage protein metabolisms in rice. International Journal of Molecular Sciences, 2023, 24(9): 8017.
[36]
XIANG C, QU L J, GAO Y M, SHI Y Y. Flower development and photoperiodic control of flowering in rice. Rice Science, 2013, 20(2): 79-87.

doi: 10.1016/S1672-6308(13)60112-2
[37]
CUI R F, HAN J K, ZHAO S Z, SU K M, WU F, DU X Q, XU Q J, CHONG K, THEISSEN G, MENG Z. Functional conservation and diversification of class E floral homeotic genes in rice (Oryza sativa). The Plant Journal, 2010, 61(5): 767-781.

doi: 10.1111/j.1365-313X.2009.04101.x pmid: 20003164
[38]
GAO X C, LIANG W Q, YIN C S, JI S M, WANG H M, SU X, GUO C C, KONG H Z, XUE H W, ZHANG D B. The SEPALLATA-like gene OsMADS34 is required for rice inflorescence and spikelet development. Plant Physiology, 2010, 153(2): 728-740.
[39]
ZENG Y H, ZHU Y S, LIAN L, XIE H G, ZHANG J F, XIE H A. Genetic analysis and fine mapping of the pubescence gene GL6in rice (Oryza sativa L.). Chinese Science Bulletin, 2013, 58(24): 2992-2999.
[40]
WEI X Y, ZENG Y H, ZHANG R, HUANG J H, YANG W X, ZOU W G, XU X M. Fine mapping and identification of the rice blast-resistance locus Pi-kf2(t) as a new member of the Pi2/Pi9 multigene family. Molecular Breeding, 2019, 39(7): 108.
[41]
韦新宇, 曾跃辉, 杨旺兴, 肖长春, 候新坡, 黄建鸿, 邹文广, 许旭明. 利用CRISPR-Cas9技术编辑Badh2基因创制优质香型籼稻三系不育系. 作物学报, 2023, 49(8): 2144-2159.

doi: 10.3724/SP.J.1006.2023.22043
WEI X Y, ZENG Y H, YANG W X, XIAO C C, HOU X P, HUANG J H, ZOU W G, XU X M. 9 technology in rice (Oryza sativa L.). Acta Agronomica Sinica, 2023, 49(8): 2144-2159. (in Chinese)
[42]
ZENG Y H, WEI X Y, XIAO C C, ZHANG R, HUANG J H, XU X M. Fine mapping and identification of a novel albino gene OsAL50 that is required for chlorophyll biosynthesis and chloroplast development in rice (Oryza sativa L.). Plant Growth Regulation, 2024, 103(2): 389-407.
[43]
陈立凯, 黄明, 刘永柱, 王慧, 陈志强, 郭涛. 水稻开颖半不育突变体的观察、遗传分析和基因定位. 中国农业科学, 2016, 49(1): 1-13. doi: 10.3864/j.issn.0578-1752.2016.01.001.
CHEN L K, HUANG M, LIU Y Z, WANG H, CHEN Z Q, GUO T. Observation, genetic analysis and gene mapping of an open hull semi-sterility mutant in rice (Oryza sativa). Scientia Agricultura Sinica, 2016, 49(1): 1-13. doi: 10.3864/j.issn.0578-1752.2016.01.001. (in Chinese)
[44]
孙廉平, 张迎信, 张沛沛, 杨正福, 占小登, 沈希宏, 张振华, 胡霞, 轩丹丹, 吴玮勋, 曹立勇, 程式华. 一个由可变剪接造成的水稻开颖不育突变体ohms1的鉴定及基因定位. 中国水稻科学, 2015, 29(5): 457-466.

doi: 10.3969/j.issn.1001G7216.2015.05.002
SUN L P, ZHANG Y X, ZHANG P P, YANG Z F, ZHAN X D, SHEN X H, ZHANG Z H, HU X, XUAN D D, WU W X, CAO L Y, CHENG S H. Characterization and gene mapping of an open hull male sterile mutant ohms1 caused by alternative splicing in rice. Chinese Journal of Rice Science, 2015, 29(5): 457-466. (in Chinese)
[45]
JEON J S, JANG S, LEE S, NAM J, KIM C, LEE S H, CHUNG Y Y, KIM S R, LEE Y H, CHO Y G, AN G. Leafy hull sterile1 is a homeotic mutation in a rice MADS box gene affecting rice flower development. The Plant Cell, 2000, 12(6): 871-884.
[46]
WANG K J, TANG D, HONG L L, XU W Y, HUANG J, LI M, GU M H, XUE Y B, CHENG Z K. DEP and AFO regulate reproductive habit in rice. PLoS Genetics, 2010, 6(1): e1000818.
[47]
ARORA R, AGARWAL P, RAY S, SINGH A K, SINGH V P, TYAGI A K, KAPOOR S. MADS-box gene family in rice: Genome- wide identification, organization and expression profiling during reproductive development and stress. BMC Genomics, 2007, 8: 242.
[1] WANG WeiMeng, WEI YunXiao, TANG YunNi, LIU MiaoMiao, CHEN QuanJia, DENG XiaoJuan, ZHANG Rui. Establishment and Rooting Optimization of Agrobacterium rhizogenes Transformation System in Cotton [J]. Scientia Agricultura Sinica, 2025, 58(8): 1479-1493.
[2] LUO Gang, CHENG YiYi, YANG Wen, XIAO YiMeng, YANG ChengXi. CRISPR-Cas12a Gene Editing Technology and Its Application in Agricultural Production [J]. Scientia Agricultura Sinica, 2025, 58(7): 1434-1450.
[3] JIN YaRu, CHEN Bin, WANG XinKai, ZHOU TianTian, LI Xiao, DENG JingJing, YANG YuWen, GUO DongShu, ZHANG BaoLong. Generation of Low-Glutelin Rice (Oryza sativa L.) Germplasm Through Long Fragment Deletion Using CRISPR/Cas9-Mediated Targeted Mutagenesis [J]. Scientia Agricultura Sinica, 2025, 58(6): 1052-1064.
[4] XU YiHeng. The Dilemma and Way Out of Patent Regulation for Gene-Edited Crops [J]. Scientia Agricultura Sinica, 2025, 58(5): 831-839.
[5] XU Na, TANG Ying, XU ZhengJin, SUN Jian, XU Quan. Genetic Analysis and Candidate Gene Identification on Fertility and Inheritance of Hybrid Sterility of XI and GJ Cross [J]. Scientia Agricultura Sinica, 2024, 57(8): 1417-1429.
[6] ZHANG BiDong, LIN Hong, ZHU SiYing, LI ZhongCheng, ZHUANG Hui, LI YunFeng. Identification and Candidate Gene Analysis of the ABNORMAL HULL 1 (ah1) Mutant in Rice (Oryza sativa L.) [J]. Scientia Agricultura Sinica, 2024, 57(3): 429-441.
[7] WU YuHua, ZHAI ShanShan, PU HaoZhen, GAO HongFei, ZHANG Hua, LI Jun, LI YunJing, XIAO Fang, WU Gang, XU LiQun. Progress on Detection Methods for Gene-Edited Organisms [J]. Scientia Agricultura Sinica, 2024, 57(17): 3318-3334.
[8] YAN LiuHui, ZHONG Qi, MA ZengFeng, WEI MinYi, LIU Chi, QIN YuanYuan, ZHOU XiaoLong, HUANG DaHui, LU YingPing, QIN Gang, ZHANG YueXiong. Identification and Evolutionary Analysis of the Early Heading Gene OsEHD8 in Common Wild Rice (Oryza rufipogon Giff.) [J]. Scientia Agricultura Sinica, 2024, 57(14): 2703-2716.
[9] ZHU HongHui, LI YingZi, GAO YuanZhuo, LIN Hong, WANG ChengYang, YAN ZiYi, PENG HanPing, LI TianYe, XIONG Mao, LI YunFeng. Map-Based Cloning of the SHORT AND WIDEN GRAIN 1 Gene in Rice (Oryza sativa L.) [J]. Scientia Agricultura Sinica, 2023, 56(7): 1260-1274.
[10] ZHAO ZiJun, WU RuHui, WANG Shuo, ZHANG Jun, YOU Jing, DUAN QianNan, TANG Jun, ZHANG XinFang, WEI Mi, LIU JinYan, LI YunFeng, HE GuangHua, ZHANG Ting. Mutation of PDL2 Gene Causes Degeneration of Lemma in the Spikelet of Rice [J]. Scientia Agricultura Sinica, 2023, 56(7): 1248-1259.
[11] WEN YiBo, CHEN ShuTing, XU ZhengJin, SUN Jian, XU Quan. Combination of DEP1, Gn1a, and qSW5 Regulates the Panicle Architecture in Rice [J]. Scientia Agricultura Sinica, 2023, 56(7): 1218-1227.
[12] ZANG XinShan, WANG KangWen, ZHANG XianLiang, WANG XuePing, WANG Jun, LIANG Yu, PEI XiaoYu, REN Xiang, LÜ YuLong, GAO Yu, WANG XingXing, PENG YunLing, MA XiongFeng. Research Advances of Map-Based Cloning Genes in Cotton [J]. Scientia Agricultura Sinica, 2023, 56(23): 4635-4647.
[13] WU YuanLong, HUI FengJiao, PAN ZhenYuan, YOU ChunYuan, LIN HaiRong, LI ZhiBo, JIN ShuangXia, NIE XinHui. Opportunities and Challenges for Developing Herbicide-Resistance Crops in the Post-Genomic Era [J]. Scientia Agricultura Sinica, 2023, 56(17): 3285-3301.
[14] ZHAO ChunFang,ZHAO QingYong,LÜ YuanDa,CHEN Tao,YAO Shu,ZHAO Ling,ZHOU LiHui,LIANG WenHua,ZHU Zhen,WANG CaiLin,ZHANG YaDong. Screening of Core Markers and Construction of DNA Fingerprints of Semi-Waxy Japonica Rice Varieties [J]. Scientia Agricultura Sinica, 2022, 55(23): 4567-4582.
[15] DUAN YaRu,GAO MeiLing,GUO Yu,LIANG XiaoXue,LIU XiuJie,XU HongGuo,LIU JiXiu,GAO Yue,LUAN Feishi. Map-Based Cloning and Molecular Marker Development of Watermelon Fruit Shape Gene [J]. Scientia Agricultura Sinica, 2022, 55(14): 2812-2824.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!