Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (23): 4565-4584.doi: 10.3864/j.issn.0578-1752.2023.23.002

• SPECIAL FOCUS: FIBER DEVELOPMENT IN COTTON • Previous Articles     Next Articles

Identification and Expression Analysis of Fuzz Fiber Development Related Long Noncoding RNAs in Gossypium arboreum

WANG XiaoYang1(), PENG Zhen1,2, XING AiShuang1, ZHAO YingRui1, MA XinLi1, LIU Fang1,2(), DU XiongMing1,2(), HE ShouPu1,2()   

  1. 1 Institute of Cotton Research of Chinese Academy of Agricultural Sciences/National Key Laboratory of Cotton Biological Breeding and Comprehensive Utilization, Anyang 455000, Henan
    2 School of Agricultural Sciences, Zhengzhou University/Zhengzhou Research Base, National Key Laboratory of Cotton Biological Breeding and Comprehensive Utilization, Zhengzhou 450001
  • Received:2022-12-30 Accepted:2023-03-16 Online:2023-12-04 Published:2023-12-04
  • Contact: LIU Fang, DU XiongMing, HE ShouPu

Abstract:

【Objective】Long non-coding RNAs(lncRNAs) are a group of RNA molecules longer than 200 bp with no protein coding capacity, which are involved in various biological regulatory processes. In this study, we aim to analyze the RNA-sequencing data of two Gossypium arboreum isogenic lines, a fuzzless mutant (GA0149) and its wildtype (GA0146), to identify the lncRNA involved in early fuzz fiber development, providing a foundation for investigation the mechanism of fiber development. 【Method】We collected 0 DPA, 3 DPA and 5 DPA ovule and 8 DPA ovule and fiber from the G. arboreum fuzzless mutant GA0149 and its isogenic line GA0146 with normal fuzz and lint fibers, were used for RNA-seq to identify lncRNA and predict their target genes. Differentially expressed mRNA (DE-mRNA) and lncRNA(DE-lncRNAs) between the samples were identified. The KOBAS software was used to predict the KEGG enrichment pathways which DE-lncRNAs targets were involved in. To ensure the quality of high-through sequencing, 25 DE-lncRNAs were selected for RT-qPCR detection. 【Result】We identified 15 339 lncRNA-encoding transcripts that 11 595 lncRNAs were located to intergenic regions, 2 428 lncRNAs were classified as antisense lncRNAs, 350 were categorized as intronic lncRNAs and 966 belonged to sense lncRNAs. Compared to mRNAs, lncRNAs in Asian cotton showed shorter exons and lower GC content. Most of lncRNAs had cis-regulatory effects on their neighboring mRNAs. We identified 1 932 differentially expressed (DE) lncRNAs, with 8 134 predicted DE-lncRNA target genes. Further analysis showed that 788 genes (mRNA) were differentially expressed (DE-genes) during four fiber development stages. KEGG enrichment pathways analysis showed that DE-target-mRNAs were mainly enriched in plant hormone signal transduction and protein processing in endoplasmic reticulum. Co-expression network analysis revealed that lncRNA (MSTRG.454250.3) and its associated target genes showed identical expression trends during four fuzz fiber development stages, while lncRNAs (MSTRG.454261.4) and its associated target genes showed contrary expression tendency, exhibiting dramatic higher expression in fuzzless GA0149 compared to wildtype GA0146. The results of RT-qPCR analysis confirmed the authenticity of our RNA-seq data.【Conclusion】A total of 26 specifically expressed lncRNAs were identified which related to cotton fuzz fiber development process. We further confirmed that these lncRNAs affected the fuzz fiber development by regulating the expression of indole-3-acetic acid-amido synthetase (Ga03G2421) and Auxin-responsive protein (Ga05G1344) in the plant hormone signal transduction pathway.

Key words: Gossypium arboreum, fuzzless mutant, long non-coding RNAs, regulation network, RT-qPCR

Fig. 1

Characteristics of lncRNAs identified during early fuzz fiber development stages in fuzzless mutant (GA0149) and wild-type (GA0146) A: The phenotype of mature seeds in wild-type and fuzzless mutant; B: Distribution of four types of lncRNAs"

Fig. 2

The basic properties of cotton lncRNAs and coding RNA A: The GC contents of the lncRNAs and mRNAs; B: Distribution of exon lengths in lncRNAs and mRNAs; C: Proportions of exon numbers per transcript for lncRNAs and mRNAs; D: Interaction regulation between lncRNAs and mRNAs"

Fig. 3

Volcano plot illustrating the distribution of fold changes and FDR P values for lncRNAs"

Fig. 4

Common differentially expressed lncRNAs in fuzzless mutant and wild-type during four fuzz fiber development stage A: Venn diagram showing the number of differentially expressed lncRNAs between two varieties across four fuzz fiber development stages; B: Heatmap showing 65 common significant differentially expressed lncRNAs in fuzzless mutant and wild-type across fiber development stages"

Table 1

Common differentially expressed lncRNAs in fuzzless mutant as compared to wild-type during cotton fiber initiation"

lncRNA编号
lncRNA ID
0 DPA 3 DPA 5 DPA 8 DPA
log2 (FC) P log2 (FC) P log2 (FC) P log2 (FC) P
MSTRG.218820.2 -11.47940 2.03E-09 -10.81080 2.43E-10 -10.95160 6.06E-12 -8.78711 0.001646
MSTRG.488434.1 -10.29570 0.001787 -10.80150 1.25E-07 -7.09785 0.029641 -9.14006 2.37E-10
MSTRG.418233.2 -10.05510 2.04E-07 -9.27025 8.9E-06 -8.75282 1.12E-05 -8.39458 8.77E-08
MSTRG.198809.4 -9.38133 4.29E-09 -9.26064 2.59E-11 -8.07549 6.41E-09 -7.21244 7.73E-06
MSTRG.16035.84 -9.31822 2.15E-10 -8.88159 5.08E-09 -7.31218 0.02019 -6.81111 0.021079
MSTRG.198809.3 -9.22472 4.5E-10 -9.210450 1.32E-11 -7.00735 2.36E-07 -7.83885 5.28E-07
MSTRG.285152.1 -9.21331 7.85E-12 -8.53242 2.5E-08 -7.79328 0.012844 -7.51993 7.56E-06
MSTRG.638435.2 -8.85124 3.69E-10 -9.54015 4.02E-11 -8.56096 4.4E-11 -7.08650 0.002833
MSTRG.295723.2 -8.52846 2.94E-10 -7.02797 0.024719 -6.23242 0.004987 -5.08612 0.029263
MSTRG.286961.2 -8.38087 2.18E-24 -8.53432 3.72E-16 -10.82810 1.07E-17 -7.77000 1.26E-06
MSTRG.454250.3 -8.10113 5.84E-06 -8.32650 8.26E-06 -8.38398 1.85E-09 -7.84265 2.73E-07
MSTRG.199201.1 -7.24116 3.73E-25 -8.99919 7.61E-16 -8.42043 8.79E-29 -8.60699 4.38E-12
MSTRG.454285.1 -7.23820 0.020715 -8.42005 0.006549 -8.41553 4.01E-11 -7.62117 9.89E-07
MSTRG.130836.1 -7.05155 0.002377 -5.18296 0.002243 -5.08014 0.000387 -6.37689 0.000862
MSTRG.295242.1 -7.03069 5.27E-08 -9.25794 3.11E-27 -8.35346 4.59E-24 -8.79585 1.68E-11
MSTRG.35965.5 -6.93155 6.82E-07 -6.56034 4.3E-06 -5.69637 0.000228 -5.22843 0.0079
MSTRG.638435.6 -6.85069 3.17E-05 -6.83353 9.67E-07 -7.21599 2.51E-07 -5.31159 0.005991
MSTRG.59999.2 -6.73057 3.36E-07 -7.29751 3.21E-05 -2.08447 0.00763 -6.51848 0.000256
MSTRG.286961.1 -6.69270 1.49E-45 -12.0248 1.42E-19 -11.82020 7.21E-22 -10.08520 1.62E-12
MSTRG.307567.4 -6.58285 2.63E-05 -3.82355 0.006515 -5.79779 0.009506 -5.85988 0.001595
MSTRG.295242.2 -6.51823 1.18E-07 -11.3313 6.44E-18 -10.83570 1.47E-17 -9.11979 3.32E-10
MSTRG.307567.7 -6.50366 0.003217 -5.55940 5.5E-05 -5.60794 0.001071 -5.06204 0.011061
MSTRG.638435.5 -6.43214 0.047701 -6.53292 0.041702 -7.32729 2.53E-05 -7.07537 0.000546
MSTRG.45779.2 -6.40744 1.35E-06 -7.32454 5.04E-06 -8.15858 2.7E-12 -9.53754 4.03E-11
MSTRG.437516.1 -6.27021 0.00106 -7.00719 1.43E-06 -3.65675 0.01951 -5.36611 0.011425
MSTRG.286961.3 -6.17207 1.08E-08 -10.49060 2.46E-15 -9.76975 1.43E-13 -7.22905 2.95E-05
MSTRG.307567.6 -6.11269 0.004939 -5.41955 0.000106 -4.61031 0.021236 -6.49860 7.95E-05
MSTRG.638435.1 -5.92618 3.08E-05 -10.27230 2.06E-15 -10.22560 5.46E-16 -10.40250 1.2E-13
MSTRG.488434.2 -5.66044 1.13E-06 -11.30660 1.98E-16 -10.63200 3.73E-06 -7.50133 1.21E-08
MSTRG.59999.3 -5.21799 0.000117 -8.14519 2.93E-10 -4.18506 0.020905 -5.03482 0.026929
MSTRG.454260.3 -4.22593 0.035659 -9.16324 4.04E-12 -9.68765 3.53E-12 -8.38584 7.65E-09
MSTRG.198938.1 -4.14982 0.048026 -4.50917 0.00658 -7.85626 0.010503 -7.97808 5.08E-07
MSTRG.32986.1 -4.03325 6.41E-10 -3.45234 0.001688 -3.50965 2.98E-05 -5.08295 0.01343
MSTRG.313969.1 -3.76582 0.005792 -2.32801 1.36E-10 -5.48056 0.000928 -3.64159 0.005345
MSTRG.313969.7 -3.72767 1.74E-09 -3.68611 1.11E-10 -6.04251 2.29E-08 -7.78886 4.99E-06
MSTRG.454260.46 -3.22958 6.5E-06 -1.58662 0.02249 -3.18568 0.00035 -4.42366 1.21E-05
MSTRG.441122.1 -2.82027 4.08E-12 -1.46639 0.005114 -2.79128 1.46E-09 -1.73590 0.036909
MSTRG.454261.4 1.20530 0.009535 1.36848 0.005267 1.25717 0.000401 2.28680 0.00043
MSTRG.439082.1 2.30096 6E-05 3.29579 0.002213 2.70368 6.84E-05 3.54630 0.005178
MSTRG.454256.1 2.34120 8.32E-10 2.45648 3.23E-10 1.78629 4.21E-05 2.13974 0.008473
MSTRG.283424.1 2.71551 1.59E-07 3.25732 1.26E-08 3.11617 9.7E-11 5.59313 0.000127
MSTRG.291781.2 3.85334 2.18E-19 4.13617 9.92E-15 4.37252 2.1E-25 2.40298 0.023372
MSTRG.620320.1 4.21095 0.00561 7.71574 3.77E-09 7.47394 3.76E-08 5.36623 0.007933
MSTRG.638095.1 4.34353 0.003476 4.77389 2.41E-06 4.21478 0.043987 5.81799 0.003952
MSTRG.577666.1 4.71471 2.92E-05 8.04445 2.98E-10 6.67361 7.94E-09 6.61542 1.09E-06
MSTRG.568994.33 5.33652 0.043708 6.71026 4.36E-05 6.73925 3.59E-06 7.12512 1.56E-05
MSTRG.454255.7 5.77743 2.29E-11 5.51520 5.15E-07 5.70722 3.82E-08 2.37151 0.042941
MSTRG.660507.1 5.95775 5.36E-05 6.33436 4.82E-05 5.28420 0.002924 5.26719 0.000406
MSTRG.283950.1 6.85484 5.52E-05 7.60915 8.14E-11 8.14048 1.62E-18 8.86202 2.19E-09
MSTRG.568994.15 7.00698 2.39E-07 7.28587 4.12E-08 7.55757 2.49E-08 6.03203 0.008367
MSTRG.568994.34 7.26201 4.32E-08 7.32716 3.98E-08 8.14198 1.25E-08 6.18129 0.013416
MSTRG.568994.17 7.34288 2.17E-08 7.70496 3.65E-09 7.52666 3.09E-08 6.38978 0.008836
MSTRG.621281.3 7.36016 4.83E-06 6.35723 0.000365 7.16863 1.65E-07 6.05174 0.000871
MSTRG.389122.7 7.39607 1.14E-07 7.27098 1.36E-06 7.48976 6.06E-07 6.82192 4.59E-06
MSTRG.163561.1 7.51752 0.019476 7.53834 7.59E-09 6.35119 0.010928 6.90695 0.018056
MSTRG.496256.3 7.56010 6.72E-07 7.21337 3.29E-07 6.89023 5.83E-06 4.28799 0.001424
MSTRG.306464.2 7.56122 2.97E-07 6.98605 8.63E-06 8.41529 6.49E-10 5.52123 0.005686
MSTRG.283950.2 8.42677 1.12E-09 8.25116 2.97E-08 8.26440 1.52E-10 7.63528 7.04E-07
MSTRG.585009.3 8.94799 4.09E-10 8.79452 2.74E-12 8.71795 7.13E-11 6.67564 0.00045
MSTRG.585009.2 9.30100 9.97E-14 7.95255 1.95E-08 8.70137 1.59E-11 7.51810 6.76E-06
MSTRG.621281.1 9.57909 1.07E-14 9.05022 1.53E-09 9.48013 1.24E-13 8.99004 1.65E-07
MSTRG.638094.1 9.96140 1.4E-15 9.03040 2.28E-11 8.75902 4.75E-11 7.99949 1.07E-07
MSTRG.454315.2 10.09066 2.07E-15 9.64703 2.42E-14 9.54303 2.13E-13 10.26427 2.8E-12
MSTRG.585009.1 10.94786 7.38E-19 11.23440 1.11E-19 8.90520 4.13E-21 11.11503 1.35E-15
MSTRG.198471.1 13.50563 3.23E-28 11.17626 2.17E-34 7.30601 3.33E-50 8.24918 1.16E-13

Table 2

The expression level of differentially expressed lncRNAs targets genes in plant hormone signaling pathway"

基因ID
Gene ID
基因注释
Gene annotation
基因
Gene
激素
Hormone
0 DPA 3 DPA 5 DPA 8 DPA
Ga01G2735 转录因子MYC4 Transcription factor MYC4 MYC4 JA 1.66929 1.35158 4.08489 0.49324
Ga02G1269 水杨酸相关蛋白Salicylic acid-related protein PRP1 SA 0.83454 0.87131 0.41650 0.53005
Ga03G2608 生长素诱导蛋白X10A Auxin-induced protein X10A AIP10A IAA 2.23652 0.81687 1.29341 0.96182
Ga03G2421 吲哚乙酸合成酶
GH3.1 Probable indole-3-acetic acid-amido synthetase GH3.1
GH3.1 IAA 1.87383 1.10787 2.11783 0.99925
Ga05G0157 生长素响应蛋白IAA29 Auxin-responsive protein IAA29 IAA29 IAA 1.26487 0.82160 0.51501 0.49518
Ga05G0163 EIN3结合F盒蛋白1 EIN3-binding F-box protein 1 EBF1 ETH 0.93660 1.16611 3.60043 0.40549
Ga05G1344 生长素响应蛋白IAA16 Auxin-responsive protein IAA16 IAA16 IAA 1.49560 1.03839 2.27272 0.57805
Ga05G1988 生长素响应蛋白SAUR50 Auxin-responsive protein SAUR50 SAUR50 IAA 1.06233 0.76972 2.93240 0.34698
Ga07G1535 茉莉酸甲酯合成酶JAR1 Jasmonic acid-amido synthetase JAR1 GH3.5 JA 0.78397 1.26241 1.49571 0.36714
Ga07G0455 生长素响应蛋白IAA9 Auxin-responsive protein IAA9 IAA9 IAA 1.58434 0.75494 2.64841 0.31957
Ga08G2885 蛋白磷酸酶2C 77 Protein phosphatase 2C 77 ABI2 ABA 1.39957 1.33425 3.93469 0.43093
Ga09G2536 生长素诱导蛋白22D Auxin-induced protein 22D AUX22D IAA 1.55776 1.02316 2.61126 1.57910
Ga09G2537 生长素响应蛋白IAA14 Auxin-responsive protein IAA14 IAA14 IAA 1.04958 0.48203 0.43195 1.23456
Ga12G2846 赤霉素受体GID1B Gibberellin receptor GID1B GID1B GA 1.16381 1.79652 2.13160 0.42108

Fig. 5

Overview of DE-lncRNAs at early fuzz fiber development stages in wild type GA0146 and fuzz-mutant GA0149 A: The number of genes differentially expressed lncRNAs during early fuzz fiber development within and between GA0146 and GA0149; Red indicates up-regulated lncRNAs, blue indicates down-regulated lncRNA; B: Heatmap showing differentially expressed lncRNAs across four fiber development stages; C: The KEGG enrichment pathway of the target genes of differentially expressed lncRNAs across four fiber development stages"

Fig. 6

The interaction network between lncRNAs and mRNAs"

Fig. 7

Co-expression regulatory network of DE-lncRNAs and its target genes in fuzzless mutant as compared to wild-type during four fiber development stages"

Fig. 8

Comparative analysis the results of RNA-seq and RT-qPCR A: The heatmap showing the difference of lncRNAs transcript levels in wild-type (GA0146) and fuzzless mutant (GA0149); B: The expression levels of 25 lncRNAs detected in eight samples using RT-qPCR. The values shown are the means±standard deviation of n=3 replicates. *P<0.05, **P<0.01, ****P<0.0001"

Fig. 9

The identify of lncRNAs for diploid species G. arboretum and allotetraploid species G. hirsutum A: Histogram showed the lncRNAs homologous loci distribution in G. arboretum, and G. hirsutum; B: The KEGG pathway of lncRNAs homologous loci in G. arboretum, and G. hirsutum"

[1]
KIM H J, TRIPLETT B A. Cotton fiber growth in planta and in vitro. Models for plant cell elongation and cell wall biogenesis. Plant Physiology, 2001, 127(4): 1361-1366.

pmid: 11743074
[2]
STEWART J M. Fiber initiation on the cotton ovule (Gossypium hirsutum). American Journal of Botany, 1975, 62(7): 723-730.

doi: 10.1002/ajb2.1975.62.issue-7
[3]
WU H T, TIAN Y, WAN Q, FANG L, GUAN X Y, CHEN J D, HU Y, YE W X, ZHANG H, GUO W Z, CHEN X Y, ZHANG T Z. Genetics and evolution of MIXTA genes regulating cotton lint fiber development. The New Phytologist, 2018, 217(2): 883-895.

doi: 10.1111/nph.2018.217.issue-2
[4]
WAN Q, GUAN X Y, YANG N N, WU H T, PAN M Q, LIU B L, FANG L, YANG S P, HU Y, YE W X, ZHANG H, MA P Y, CHEN J D, WANG Q, MEI G F, CAI C P, YANG D L, WANG J W, GUO W Z, ZHANG W H, CHEN X Y, ZHANG T Z. Small interfering RNAs from bidirectional transcripts of GhMML3_A12 regulate cotton fiber development. The New Phytologist, 2016, 210(4): 1298-1310.

doi: 10.1111/nph.2016.210.issue-4
[5]
CHEN W, LI Y, ZHU S H, FANG S T, ZHAO L J, GUO Y, WANG J Y, YUAN L, LU Y J, LIU F, YAO J B, ZHANG Y S. A retrotransposon insertion in GhMML3_D12 is likely responsible for the lintless locus li3 of tetraploid cotton. Frontiers in Plant Science, 2020, 11: 593679.

doi: 10.3389/fpls.2020.593679
[6]
NAOUMKINA M, THYSSEN G N, FANG D D, LI P, FLORANE C B. Elucidation of sequence polymorphism in fuzzless-seed cotton lines. Molecular Genetics and Genomics, 2021, 296(1): 193-206.

doi: 10.1007/s00438-020-01736-z pmid: 33141290
[7]
ZHU Q H, STILLER W, MONCUQUET P, GORDON S, YUAN Y M, BARNES S, WILSON I. Genetic mapping and transcriptomic characterization of a new fuzzless-tufted cottonseed mutant. G3 Genes|Genomes|Genetics, 2021, 11(1): jkaa042.
[8]
DING M Q, CAO Y F, HE S E, SUN J, DAI H Q, ZHANG H, SUN C D, JIANG Y R, PATERSON A H, RONG J K. GaHD1, a candidate gene for the Gossypium arboreum SMA-4 mutant, promotes trichome and fiber initiation by cellular H2O2 and Ca2+ signals. Plant Molecular Biology, 2020, 103(4/5): 409-423.

doi: 10.1007/s11103-020-01000-3
[9]
LIU X Y, MONCUQUET P, ZHU Q H, STILLER W, ZHANG Z S, WILSON I. Genetic identification and transcriptome analysis of lintless and fuzzless traits in Gossypium arboreum L.. International Journal of Molecular Sciences, 2020, 21(5): 1675-1696.

doi: 10.3390/ijms21051675
[10]
DU S J, DONG C J, ZHANG B, LAI T F, DU X M, LIU J Y. Comparative proteomic analysis reveals differentially expressed proteins correlated with fuzz fiber initiation in diploid cotton (Gossypium arboreum L.). Journal of Proteomics, 2013, 82: 113-129.

doi: 10.1016/j.jprot.2013.02.020
[11]
WANG X Y, MIAO Y C, CAI Y F, SUN G F, JIA Y H, SONG S, PAN Z E, ZHANG Y M, WANG L Y, FU G Y, GAO Q, JI G X, WANG P P, CHEN B J, PENG Z, ZHANG X M, WANG X, DING Y, HU D W, GENG X L, WANG L R, PANG B Y, GONG W F, HE S P, DU X M. Large-fragment insertion activates gene GaFZ (Ga08G0121) and is associated with the fuzz and trichome reduction in cotton (Gossypium arboreum). Plant Biotechnology Journal, 2021, 19(6): 1110-1124.

doi: 10.1111/pbi.v19.6
[12]
FENG X X, CHENG H L, ZUO D Y, ZHANG Y P, WANG Q L, LIU K, ASHRAF J, YANG Q H, LI S M, CHEN X Q, SONG G L. Fine mapping and identification of the fuzzless gene GaFzl in DPL972 (Gossypium arboreum). Theoretical and Applied Genetics, 2019, 132(8): 2169-2179.

doi: 10.1007/s00122-019-03330-3
[13]
FENG X X, LIU S, CHENG H L, ZUO D Y, ZHANG Y P, WANG Q L, LV L M, SONG G L. Weighted gene Co-expression network analysis reveals hub genes contributing to fuzz development in Gossypium arboreum. Genes, 2021, 12(5): 753-768.

doi: 10.3390/genes12050753
[14]
LIU J, JUNG C, XU J, WANG H, DENG S L, BERNAD L, ARENAS-HUERTERO C, CHUA N H. Genome-wide analysis uncovers regulation of long intergenic noncoding RNAs in Arabidopsis. The Plant Cell, 2012, 24(11): 4333-4345.

doi: 10.1105/tpc.112.102855
[15]
GUTTMAN M, RUSSELL P, INGOLIA N T, WEISSMAN J S, LANDER E S. Ribosome profiling provides evidence that large noncoding RNAs do not encode proteins. Cell, 2013, 154(1): 240-251.

doi: 10.1016/j.cell.2013.06.009 pmid: 23810193
[16]
PONTING C P, OLIVER P L, REIK W. Evolution and functions of long noncoding RNAs. Cell, 2009, 136(4): 629-641.

doi: 10.1016/j.cell.2009.02.006 pmid: 19239885
[17]
WANG H L V, CHEKANOVA J A. Long noncoding RNAs in plants. Advances in Experimental Medicine and Biology. Singapore: Springer Singapore, 2017, 1008: 133-154.
[18]
SUN X, ZHENG H X, SUI N. Regulation mechanism of long noncoding RNA in plant response to stress. Biochemical and Biophysical Research Communications, 2018, 503(2): 402-407.

doi: 10.1016/j.bbrc.2018.07.072
[19]
ZHANG X P, SHEN J, XU Q J, DONG J, SONG L R, WANG W, SHEN F F. Long noncoding RNA lncRNA354 functions as a competing endogenous RNA of miR160b to regulate ARF genes in response to salt stress in upland cotton. Plant, Cell & Environment, 2021, 44(10): 3302-3321.
[20]
ZHANG L, LIU J L, CHENG J R, SUN Q, ZHANG Y, LIU J G, LI H M, ZHANG Z, WANG P, CAI C W, CHU Z Y, ZHANG X, YUAN Y L, SHI Y Z, CAI Y F. lncRNA7 and lncRNA2 modulate cell wall defense genes to regulate cotton resistance to Verticillium wilt. Plant Physiology, 2022, 189(1): 264-284.

doi: 10.1093/plphys/kiac041
[21]
SUN Q W, CSORBA T, SKOURTI-STATHAKI K, PROUDFOOT N J, DEAN C. R-loop stabilization represses antisense transcription at the Arabidopsis FLC locus. Science, 2013, 340(6132): 619-621.

doi: 10.1126/science.1234848
[22]
JABNOUNE M, SECCO D, LECAMPION C, ROBAGLIA C, SHU Q Y, POIRIER Y. A rice cis-natural antisense RNA acts as a translational enhancer for its cognate mRNA and contributes to phosphate homeostasis and plant fitness. The Plant Cell, 2013, 25(10): 4166-4182.

doi: 10.1105/tpc.113.116251
[23]
DING J H, SHEN J Q, MAO H L, XIE W B, LI X H, ZHANG Q F. RNA-directed DNA methylation is involved in regulating photoperiod- sensitive male sterility in rice. Molecular Plant, 2012, 5(6): 1210-1216.

doi: 10.1093/mp/sss095
[24]
ZHANG Y C, LIAO J Y, LI Z Y, YU Y, ZHANG J P, LI Q F, QU L H, SHU W S, CHEN Y Q. Genome-wide screening and functional analysis identify a large number of long noncoding RNAs involved in the sexual reproduction of rice. Genome Biology, 2014, 15(12): 512.

doi: 10.1186/s13059-014-0512-1
[25]
ZHANG G Y, CHEN D G, ZHANG T, DUAN A G, ZHANG J G, HE C Y. Transcriptomic and functional analyses unveil the role of long non-coding RNAs in anthocyanin biosynthesis during sea buckthorn fruit ripening. DNA Research, 2018, 25(5): 465-476.

doi: 10.1093/dnares/dsy017 pmid: 29873696
[26]
YANG T, MA H Y, ZHANG J, WU T, SONG T T, TIAN J, YAO Y C. Systematic identification of long noncoding RNAs expressed during light-induced anthocyanin accumulation in apple fruit. The Plant Journal, 2019, 100(3): 572-590.

doi: 10.1111/tpj.14470 pmid: 31344284
[27]
YANG Z E, GE X Y, YANG Z R, QIN W Q, SUN G F, WANG Z, LI Z, LIU J, WU J, WANG Y, LU L L, WANG P, MO H J, ZHANG X Y, LI F G. Extensive intraspecific gene order and gene structural variations in upland cotton cultivars. Nature Communications, 2019, 10(1): 1-13.

doi: 10.1038/s41467-018-07882-8
[28]
DU X M, HUANG G, HE S P, YANG Z E, SUN G F, MA X F, LI N, ZHANG X Y, SUN J L, LIU M, JIA Y H, PAN Z E, GONG W F, LIU Z H, ZHU H Q, MA L, LIU F Y, YANG D G, WANG F, FAN W, GONG Q, PENG Z, WANG L R, WANG X Y, XU S J, SHANG H H, LU C R, ZHENG H K, HUANG S W, LIN T, ZHU Y X, LI F G. Resequencing of 243 diploid cotton accessions based on an updated A genome identifies the genetic basis of key agronomic traits. Nature Genetics, 2018, 50(6): 796-802.

doi: 10.1038/s41588-018-0116-x pmid: 29736014
[29]
WANG M J, YUAN D J, TU L L, GAO W H, HE Y H, HU H Y, WANG P C, LIU N, LINDSEY K, ZHANG X L. Long noncoding RNAs and their proposed functions in fibre development of cotton (Gossypium). The New Phytologist, 2015, 207(4): 1181-1197.

doi: 10.1111/nph.2015.207.issue-4
[30]
闫飞林. 棉花纤维起始相关长链非编码RNA的功能鉴定[D]. 武汉: 华中农业大学, 2019.
YAN F L. The functional identification of long non-coding RNA related to cotton fiber initial[D]. Wuhan: Huazhong Agricultural University, 2019. (in Chinese)
[31]
ZOU C S, WANG Q L, LU C R, YANG W C, ZHANG Y P, CHENG H L, FENG X X, PROSPER M A, SONG G L. Transcriptome analysis reveals long noncoding RNAs involved in fiber development in cotton (Gossypium arboreum). Science China Life Sciences, 2016, 59(2): 164-171.

doi: 10.1007/s11427-016-5000-2
[32]
HU H Y, WANG M J, DING Y H, ZHU S T, ZHAO G N, TU L L, ZHANG X L. Transcriptomic repertoires depict the initiation of lint and fuzz fibres in cotton (Gossypium hirsutum L.). Plant Biotechnology Journal, 2018, 16(5): 1002-1012.

doi: 10.1111/pbi.2018.16.issue-5
[33]
SALIH H, GONG W F, HE S P, XIA W, ODONGO M R, DU X M. Long non-coding RNAs and their potential functions in Ligon- lintless-1 mutant cotton during fiber development. BMC Genomics, 2019, 20(1): 661-678.

doi: 10.1186/s12864-019-5978-5
[34]
ZHANG X P, DONG J, DENG F N, WANG W, CHENG Y Y, SONG L R, HU M J, SHEN J, XU Q J, SHEN F F. The long non-coding RNA lncRNA973 is involved in cotton response to salt stress. BMC Plant Biology, 2019, 19(1): 459-475.

doi: 10.1186/s12870-019-2088-0 pmid: 31666019
[35]
ZHENG X M, CHEN Y J, ZHOU Y F, SHI K K, HU X, LI D Y, YE H Z, ZHOU Y, WANG K. Full-length annotation with multistrategy RNA-seq uncovers transcriptional regulation of lncRNAs in cotton. Plant Physiology, 2021, 185(1): 179-195.

doi: 10.1093/plphys/kiaa003 pmid: 33631798
[36]
KIM D, PERTEA G, TRAPNELL C, PIMENTEL H, KELLEY R, SALZBERG S L. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biology, 2013, 14(4): R36.

doi: 10.1186/gb-2013-14-4-r36
[37]
ANDERS S, PYL P T, HUBER W. HTSeq-a python framework to work with high-throughput sequencing data. Bioinformatics, 2015, 31(2): 166-169.

doi: 10.1093/bioinformatics/btu638
[38]
TRAPNELL C, ROBERTS A, GOFF L, PERTEA G, KIM D, KELLEY D R, PIMENTEL H, SALZBERG S L, RINN J L, PACHTER L. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nature Protocols, 2012, 7(3): 562-578.

doi: 10.1038/nprot.2012.016 pmid: 22383036
[39]
DATTA R, PAUL S. Long non-coding RNAs: Fine-tuning the developmental responses in plants. Journal of Biosciences, 2019, 44(4): 77-88.

doi: 10.1007/s12038-019-9910-6
[40]
SUN L, LUO H T, BU D C, ZHAO G G, YU K T, ZHANG C H, LIU Y N, CHEN R S, ZHAO Y. Utilizing sequence intrinsic composition to classify protein-coding and long non-coding transcripts. Nucleic Acids Research, 2013, 41(17): e166.

doi: 10.1093/nar/gkt646
[41]
YOUNG M D, WAKEFIELD M J, SMYTH G K, OSHLACK A. Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biology, 2010, 11(2): R14.

doi: 10.1186/gb-2010-11-2-r14
[42]
WU J M, MAO X Z, CAI T, LUO J C, WEI L P. KOBAS server: A web-based platform for automated annotation and pathway identification. Nucleic Acids Research, 2006, 34(suppl_2): W720-W724.

doi: 10.1093/nar/gkl167
[43]
王骁. 陆地棉纤维品质和产量杂种优势转录本的动态表达与调控模式分析[D]. 北京: 中国农业科学院, 2021.
WANG X. Study on dynamic expression and regulation pattern of transcripts in the heterosis of fiber quality and yield of Gossypium hirsutum L[D]. Beijing: Chinese Academy of Agricultural Sciences, 2021. (in Chinese)
[44]
LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods, 2001, 25(4): 402-408.

doi: 10.1006/meth.2001.1262
[45]
王晓阳, 王丽媛, 潘兆娥, 何守朴, 王骁, 龚文芳, 杜雄明. 亚洲棉短绒突变体纤维发育及其差异基因表达分析. 作物学报, 2020, 46(5): 645-660.

doi: 10.3724/SP.J.1006.2020.94133
WANG X Y, WANG L Y, PAN Z E, HE S P, WANG X, GONG W F, DU X M. Analysis of differentially expressed genes and fiber development in Gossypium arboreum fuzzless mutant. Acta Agronomica Sinica, 2020, 46(5): 645-660. (in Chinese)

doi: 10.3724/SP.J.1006.2020.94133
[46]
PEI Y. The homeodomain-containing transcription factor, GhHOX3, is a key regulator of cotton fiber elongation. Science China Life Sciences, 2015, 58(3): 309-310.

doi: 10.1007/s11427-015-4813-8
[47]
DING J H, LU Q, OUYANG Y D, MAO H L, ZHANG P B, YAO J L, XU C G, LI X H, XIAO J H, ZHANG Q F. A long noncoding RNA regulates photoperiod-sensitive male sterility, an essential component of hybrid rice. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(7): 2654-2659.
[48]
ZHANG W, HAN Z X, GUO Q L, LIU Y, ZHENG Y X, WU F L, JIN W B. Identification of maize long non-coding RNAs responsive to drought stress. PLoS One, 2014, 9(6): e98958.

doi: 10.1371/journal.pone.0098958
[49]
DENG F N, ZHANG X P, WANG W, YUAN R, SHEN F F. Identification of Gossypium hirsutum long non-coding RNAs (lncRNAs) under salt stress. BMC Plant Biology, 2018, 18(1): 23-37.

doi: 10.1186/s12870-018-1238-0 pmid: 29370759
[50]
ZHANG X P, DONG J, DENG F N, WANG W, CHENG Y Y, SONG L R, HU M J, SHEN J, XU Q J, SHEN F F. The long non-coding RNA lncRNA973 is involved in cotton response to salt stress. BMC Plant Biology, 2019, 19(1): 459-475.

doi: 10.1186/s12870-019-2088-0 pmid: 31666019
[51]
NECSULEA A, SOUMILLON M, WARNEFORS M, LIECHTI A, DAISH T, ZELLER U, BAKER J C, GRÜTZNER F, KAESSMANN H. The evolution of lncRNA repertoires and expression patterns in tetrapods. Nature, 2014, 505(7485): 635-640.

doi: 10.1038/nature12943
[52]
CUI J, LUAN Y S, JIANG N, BAO H, MENG J. Comparative transcriptome analysis between resistant and susceptible tomato allows the identification of lncRNA16397 conferring resistance to Phytophthora infestans by co-expressing glutaredoxin. The Plant Journal, 2017, 89(3): 577-589.

doi: 10.1111/tpj.2017.89.issue-3
[53]
ZHANG M, ZENG J Y, LONG H, XIAO Y H, YAN X Y, PEI Y. Auxin regulates cotton fiber initiation via GhPIN-mediated auxin transport. Plant and Cell Physiology, 2017, 58(2): 385-397.

doi: 10.1093/pcp/pcw203 pmid: 28034911
[54]
ZHANG M, ZHENG X L, SONG S Q, ZENG Q W, HOU L, LI D M, ZHAO J, WEI Y, LI X B, LUO M, XIAO Y H, LUO X Y, ZHANG J F, XIANG C B, PEI Y. Spatiotemporal manipulation of auxin biosynthesis in cotton ovule epidermal cells enhances fiber yield and quality. Nature Biotechnology, 2011, 29(5): 453-458.

doi: 10.1038/nbt.1843 pmid: 21478877
[55]
HAN X Y, XU X Y, FANG D D, ZHANG T Z, GUO W Z. Cloning and expression analysis of novel Aux/IAA family genes in Gossypium hirsutum. Gene, 2012, 503(1): 83-91.

doi: 10.1016/j.gene.2012.03.069
[56]
HU H Y, HE X, TU L L, ZHU L F, ZHU S T, GE Z H, ZHANG X L. GhJAZ2 negatively regulates cotton fiber initiation by interacting with the R2R3-MYB transcription factor GhMYB25-like. The Plant Journal, 2016, 88(6): 921-935.

doi: 10.1111/tpj.13273 pmid: 27419658
[57]
GILBERT M K, BLAND J M, SHOCKEY J M, CAO H P, HINCHLIFFE D J, FANG D D, NAOUMKINA M. A transcript profiling approach reveals an abscisic acid-specific glycosyltransferase (UGT73C14) induced in developing fiber of Ligon lintless-2 mutant of cotton (Gossypium hirsutum L.). PLoS One, 2013, 8(9): e75268.

doi: 10.1371/journal.pone.0075268
[58]
FLAGEL L E, WENDEL J F, UDALL J A. Duplicate gene evolution, homoeologous recombination, and transcriptome characterization in allopolyploid cotton. BMC Genomics, 2012, 13: 302-315.

doi: 10.1186/1471-2164-13-302 pmid: 22768919
[59]
ZHAO T, TAO X Y, FENG S L, WANG L Y, HONG H, MA W, SHANG G D, GUO S S, HE Y X, ZHOU B L, GUAN X Y. LncRNAs in polyploid cotton interspecific hybrids are derived from transposon neofunctionalization. Genome Biology, 2018, 19(1): 195-212.

doi: 10.1186/s13059-018-1574-2 pmid: 30419941
[60]
ZOU X, ALI F, JIN S, LI F, WANG Z. RNA-Seq with a novel glabrous-ZM24fl reveals some key lncRNAs and the associated targets in fiber initiation of cotton. BMC Plant Biology, 2022, 22: 61-77.

doi: 10.1186/s12870-022-03444-9
[1] YU YongChao, FAN WenJing, LIU Ming, ZHANG QiangQiang, ZHAO Peng, JIN Rong, WANG Jing, ZHU XiaoYa, TANG ZhongHou. Genome-Wide Association Study of Nitrogen Use Efficient Traits in Sweetpotato Seeding Stage and Screening and Validation of Candidate Genes [J]. Scientia Agricultura Sinica, 2023, 56(18): 3500-3510.
[2] QIU YiLei,WU Fan,ZHANG Li,LI HongLiang. Effects of Sublethal Doses of Imidacloprid on the Expression of Neurometabolic Genes in Apis cerana cerana [J]. Scientia Agricultura Sinica, 2022, 55(8): 1685-1694.
[3] Yu DU,DingDing ZHOU,JieQi WAN,JiaXuan LU,XiaoXue FAN,YuanChan FAN,Heng CHEN,CuiLing XIONG,YanZhen ZHENG,ZhongMin FU,GuoJun XU,DaFu CHEN,Rui GUO. Profiling and Regulation Network of Differentially Expressed Genes During the Development Process of Apis mellifera ligustica Worker’s Midgut [J]. Scientia Agricultura Sinica, 2020, 53(1): 201-212.
[4] XUE YaDong,YANG Lu,YANG HuiLi,LI Bing,LIN YaNan,ZHANG HuaiSheng,GUO ZhanYong,TANG JiHua. Comparative Transcriptome Analysis Among the Three Line of Cytoplasmic Male Sterility in Maize [J]. Scientia Agricultura Sinica, 2019, 52(8): 1308-1323.
[5] GUO Rui,DU Yu,TONG XinYu,XIONG CuiLing,ZHENG YanZhen,XU GuoJun,WANG HaiPeng,GENG SiHai,ZHOU DingDing,GUO YiLong,WU SuZhen,CHEN DaFu. Differentially Expressed MicroRNAs and Their Regulation Networks in Apis mellifera ligustica Larval Gut During the Early Stage of Ascosphaera apis Infection [J]. Scientia Agricultura Sinica, 2019, 52(1): 166-180.
[6] GUO Rui,CHEN HuaZhi,XIONG CuiLing,ZHENG YanZhen,FU ZhongMin,XU GuoJun,DU Yu,WANG HaiPeng,GENG SiHai,ZHOU DingDing,LIU SiYa,CHEN DaFu. Analysis of Differentially Expressed Circular RNAs and Their Regulation Networks During the Developmental Process of Apis mellifera ligustica Worker’s Midgut [J]. Scientia Agricultura Sinica, 2018, 51(23): 4575-4590.
[7] Rui GUO,Yu DU,CuiLing XIONG,YanZhen ZHENG,ZhongMin FU,GuoJun XU,HaiPeng WANG,HuaZhi CHEN,SiHai GENG,DingDing ZHOU,CaiYun SHI,HongXia ZHAO,DaFu CHEN. Differentially Expressed MicroRNA and Their Regulation Networks During the Developmental Process of Apis mellifera ligustica Larval Gut [J]. Scientia Agricultura Sinica, 2018, 51(21): 4197-4209.
[8] GE Bo, WANG BaoBao, GUO Cheng, SUN SuLi, CHEN GuoKang, WANG XiaoMing, ZHU ZhenDong, DUAN CanXing. Composition and quantitative analysis of Fusarium species in maize rhizosphere soil [J]. Scientia Agricultura Sinica, 2018, 51(19): 3683-3693.
[9] HE YuJuan, JU Di, WANG Yue, YANG XueQing, WANG XiaoQi . Compositive and Inductive Expression Patterns of Protease Inhibitor Genes OsLTPL164 and OsLTPL151 in Rice (Oryza sativa) [J]. Scientia Agricultura Sinica, 2018, 51(12): 2311-2321.
[10] TianBo DING, XiaoBei LIU, Jie LI, KeKe WEI, Dong CHU. Development of a Real-Time Fluorescent Quantitative PCR Method for the Detection of Tomato chlorosis virus and Its Application [J]. Scientia Agricultura Sinica, 2018, 51(10): 2013-2022.
[11] ZHOU Xing-long, SONG Li-wen, YANG Shun-yi, LI Jing-jing, WANG Jin-jun, ZHANG Xin-hu, SHEN Hui-min. Analysis of Detoxification Enzyme Genes in the Multiple Pesticide-Resistant Strain of Tetranychus urticae [J]. Scientia Agricultura Sinica, 2016, 49(9): 1696-1704.
[12] LIU Xiao-jian, SUN Ya-wen, CUI Miao, MA En-bo, ZHANG Jian-zhen. Molecular Characteristics and Functional analysis of Trehalase Genes in Locusta migratoria
 
[J]. Scientia Agricultura Sinica, 2016, 49(22): 4375-4386.
[13] MA Shuang-xin, LIU Ning, JIA Hui, DAI Dong-qing, XU Miao-miao, CAO Zhi-yan, DONG Jin-gao. Analysis and Expression of Laccase Gene Stlac2 in Setosphaeria turcica [J]. Scientia Agricultura Sinica, 2016, 49(21): 4130-4139.
[14] WEN Ze-xing, YU Si-jiu, ZHAI Yu-jia, YANG Kun, LIU Peng-gang, HE Jun-feng, CUI Yan. Differences in Expression of HSPA2 in Different Tissues and Organs of Yak [J]. Scientia Agricultura Sinica, 2014, 47(17): 3475-3482.
[15] YUE Xiu-Li-1, GAO Xin-Ju-1, WANG Jin-Jun-2, 吕Juan-Juan-1 , SHEN Hui-Min-1. Selection of Reference Genes and Study of the Expression Levels of Detoxifying Enzymes of Tetranychus urticae (Acari: Tetranychidae) [J]. Scientia Agricultura Sinica, 2013, 46(21): 4542-4549.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!