Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (10): 2008-2021.doi: 10.3864/j.issn.0578-1752.2025.10.012

• HORTICULTURE • Previous Articles     Next Articles

Effects of Seedlessness and Swelling Treatments Based on GA3 and CPPU on the Fruit Quality of 'Shine Muscat' Grapes

DONG Jie1(), ZHANG Peng1, LI WangZe1, LI HeFang1, ZHOU GuoChao2, CHEN KeQin1, FANG YuLin1(), ZHANG KeKun1()   

  1. 1 College of Enology, Northwest A&F University/Heyang Viti-Viniculture Station, Yangling 712100, Shaanxi
    2 Yuanmou Yuanshengyuan Agricultural Technology Co., Ltd, Yuanmou 651300, Yunnan
  • Received:2025-01-13 Accepted:2025-02-28 Online:2025-05-16 Published:2025-05-21
  • Contact: FANG YuLin, ZHANG KeKun

Abstract:

【Objective】 Seedless treatments and swelling treatments are important measures to improve the marketability of grapes. This study aimed to determine the effects of different seedless and swelling treatment formulas on grape fruit quality by analyzing the differences in fruit quality and aroma component accumulation under different concentrations of GA3 and CPPU mixture treatments for 'Shine Muscat' grapes, with a view to providing guidance for practical production applications. 【Method】 Taking 'Shine Muscat' grapes as materials, A group (10.0 mg·L-1 GA3+1.0 mg·L-1 CPPU), B group (25.0 mg·L-1 GA3+1.0 mg·L-1 CPPU), C group (25.0 mg·L-1 GA3+3.0 mg·L-1 CPPU), D group (50.0 mg·L-1 GA3+5.0 mg·L-1 CPPU), X group (15.0 mg·L-1 GA3+3.0 mg·L-1 CPPU) and water control (CK) were carried out for seedless treatments in six groups at full-bloom stage, respectively. 15 days after full-bloom, P0 (clear water), P1 (15.0 mg·L-1 GA3+3.5 mg·L-1 CPPU), P2 (35.0 mg·L-1 GA3+3.5 mg·L-1 CPPU), and P3 (55.0 mg·L-1 GA3+3.5 mg·L-1 CPPU) were carried out for swelling treatments in three groups on group C treatment. The effects of different seedless treatment and swelling treatment formulas on the appearance morphological indexes, color indexes and aroma components of grape fruits were compared. 【Result】 The seedless rate of fruits treated with different seedless methods was higher than that of the control group, with the D group treatment achieving a 100% seedless rate. In terms of fruit quality, the D and C groups had the highest grain weight, the largest diameter, the highest skin brightness, and the strongest storability. The B and C groups had the highest sugar accumulation and the most significant increase in the solid-acid ratio. Regarding aromatic substances, different seedless treatments increased the variety of aromas. The C group treatment increased the components of terpenes and aldehydes, adding layers to the aroma. In the post-bloom fruit swelling treatments, groups P2 and P3 significantly improved fruit quality, increased fruit diameter, and enhanced storability. The P2 treatment most notably increased skin brightness and saturation. Group P1 and P2 significantly increased sugar accumulation and reduced acidity. All three treatments reduced the concentration of aromas, with P2 showing a greater increase in aroma concentration, and expanding the fruit while preserving its aromatic diversity. 【Conclusion】 Applying 25.0 mg·L-1 GA3+3.0 mg·L-1 CPPU during the full-bloom stage, with 35.0 mg·L-1 GA3+3.5 mg·L-1 CPPU post-bloom 15 days later, could improve the seedless rate and expansion effect of 'Shine Muscat' grape fruits while enhancing the overall fruit quality.

Key words: GA3, CPPU, Shine Muscat, grape fruit quality, aroma

Table 1

Seedless treatments agent ratio"

处理 Treatment 浓度 Concentration
A 10mg·L-1 GA3+1mg·L-1 CPPU
B 25mg·L-1 GA3+1mg·L-1 CPPU
C 25mg·L-1 GA3+3mg·L-1 CPPU
D 50mg·L-1 GA3+5mg·L-1 CPPU
X 15mg·L-1 GA3+3mg·L-1 CPPU
CK 清水 Clear water

Table 2

Swelling treatments agent ratio"

处理
Treatment
盛花期处理浓度
Treatment concentration at full-bloom stage
盛花期后15 d处理浓度
Treatment concentration at 15 d after full bloom
P0 25mg·L-1 GA3+3mg·L-1 CPPU 清水 Clear water
P1 25mg·L-1 GA3+3mg·L-1 CPPU 15mg·L-1 GA3+3.5mg·L-1 CPPU
P2 25mg·L-1 GA3+3mg·L-1 CPPU 35mg·L-1 GA3+3.5mg·L-1 CPPU
P3 25mg·L-1 GA3+3mg·L-1 CPPU 55mg·L-1 GA3+3.5mg·L-1 CPPU

Table 3

Effects of different treatments on fruit size, shape and seedless rate of ‘Shine Muscat’ grape fruits"

处理
Treatment
粒质量
Berry weight (g)
纵径
Longitudinal diameter (mm)
横径
Equatorial diameter (mm)
果形指数
Berry shape index
无核率
Seedless rate (%)
CK 9.08±0.06c 26.87±1.86ab 23.34±1.54b 1.15±0.07a 0
A 8.04±0.12d 24.91±1.19c 24.26±2.00ab 1.03±0.08c 90.0
B 9.57±0.23bc 25.99±2.01bc 24.54±2.27ab 1.06±0.08c 93.3
C 10.46±0.08b 26.35±1.62ab 25.10±2.04a 1.05±0.09c 96.7
D 11.85±0.25a 27.52±2.01a 25.48±1.90a 1.08±0.06bc 100.0
X 9.63±0.49bc 26.03±2.15bc 23.29±2.32b 1.12±0.07ab 93.0
P0 10.30±0.17c 26.17±1.58c 24.67±1.25c 1.06±0.05bc
P1 13.40±0.06b 29.99±3.14b 26.68±1.58b 1.13±0.13ab
P2 15.77±0.09a 32.04±1.47a 26.91±2.01b 1.20±0.08a
P3 16.11±0.07a 31.25±2.35ab 29.82±2.37a 1.06±0.13c

Table 4

Effects of different treatments on peel color of ’Shine Muscat’ grape fruits"

处理Treatment L a b c
CK 36.87±1.12c -5.77±0.48a 9.55±0.75d 11.16±0.84d
A 37.29±1.52bc -6.36±0.44b 10.61±0.67c 12.38±0.71c
B 37.80±1.65abc -6.74±0.71bc 11.63±0.78ab 13.45±0.93ab
C 38.09±1.66ab -6.71±0.55bc 11.39±0.81ab 13.22±0.89ab
D 38.55±1.74a -7.07±0.63c 11.67±0.79a 13.65±0.93a
X 37.30±1.24bc -6.49±0.83b 11.07±0.83bc 12.84±1.04bc
P0 38.39±1.58b -7.21±0.56a 11.43±1.08c 13.52±1.19c
P1 38.77±1.79b -7.69±0.71ab 12.30±1.37b 14.51±1.51b
P2 40.57±1.25a -8.16±0.70b 13.75±0.97a 15.99±1.15a
P3 38.73±2.39b -7.50±0.79a 12.22±0.73bc 14.35±0.88bc

Table 5

Effects of different treatments on pressure tolerance and stem tension tolerance of ‘Shine Muscat' grape fruits"

处理
Treatment
果实耐压力
Berry tension resistance (kg·cm-2)
果柄耐拉力
Pulling force of fruit stalk (N)
CK 1.98±0.28e 3.12±1.12d
A 2.12±0.38d 3.35±1.53d
B 2.26±0.41c 3.97±0.97c
C 2.51±0.37b 4.39±1.46b
D 2.90±0.33a 4.61±1.13a
X 2.42±0.33b 4.09±0.94c
P0 2.21±0.39c 3.77±0.83c
P1 2.44±0.41b 4.30±1.10c
P2 2.48±0.53a 5.20±1.05b
P3 2.61±0.48a 5.56±1.42a

Table 6

Effects of different treatments on soluble solids, sugar and acid contents of ’Shine Muscat’ grape fruits"

处理
Treatment
可溶性固形物含量
Soluble solid content (%)
可溶性总糖含量
Total soluble sugar content (mg·g-1)
可滴定酸含量
Titratable acid content (g·L-1)
CK 17.48±0.08b 167.00±0.40c 4.32±0.07a
A 18.12±0.06c 172.98±0.74b 3.66±0.05b
B 18.82±0.06b 178.78±0.54a 3.46±0.09bc
C 18.58±0.04a 178.40±062a 3.37±0.02c
D 16.90±0.04a 164.22±0.61d 3.10±0.00d
X 18.02±0.11d 173.87±0.36b 3.53±0.06bc
P0 18.60±0.08a 181.81±0.66a 3.54±0.06a
P1 18.40±0.04ab 179.74±0.78a 3.04±0.04b
P2 18.13±0.08b 176.16±0.92b 3.03±0.02b
P3 17.39±0.11c 168.98±0.48c 3.08±0.02b

Table 7

Effects of different treatments on the types of volatile aroma substances of ‘Shine Muscat’ grape fruits"

处理
Treatment
醇类
Alcohols
醛类
Aldehydes
酮类
Ketones
酯类
Esters
酸类
Acids
萜烯类
Terpenes
其他
Others
总计
Total
CK 10 13 8 5 0 5 6 47
A 11 13 8 2 3 4 9 50
B 10 15 8 3 3 7 8 54
C 10 15 7 3 3 7 6 51
D 11 16 9 3 3 5 8 55
X 9 9 9 3 2 4 5 41
P0 10 15 8 3 3 7 6 52
P1 9 11 6 1 3 4 7 41
P2 9 12 7 2 3 4 7 44
P3 5 11 2 0 2 5 6 31

Fig. 1

Effects of seedless treatments and swelling treatments on the aroma compounds of 'Shine Muscat' grape fruits"

Fig. 2

Principal component analysis of grape quality indicators under seedless treatments and swelling treatments"

[1]
黄艳, 庞亚卓, 肖巧, 姚璐, 吕秀兰. 两种生长调节剂组合处理对‘阳光玫瑰’葡萄果实品质的影响. 中外葡萄与葡萄酒, 2019(2): 50-53.
HUANG Y, PANG Y Z, XIAO Q, YAO L, X L. Effects of two growth regulators combination treatments on fruit quality of ‘Shine Muscat’ grape. Sino-Overseas Grapevine & Wine, 2019(2): 50-53. (in Chinese)
[2]
房玉林, 王录俊, 刘三军, 孟江飞, 张克坤, 张鹏, 王雪飞, 张宗勤. 陕西葡萄产业现状及发展建议. 中外葡萄与葡萄酒, 2022(5): 1-5.
FANG Y L, WANG L J, LIU S J, MENG J F, ZHANG K K, ZHANG P, WANG X F, ZHANG Z Q. Current situation and development proposals of grape industry in Shaanxi. Sino-Overseas Grapevine & Wine, 2022(5): 1-5. (in Chinese)
[3]
陈哲, 王其松. 阳光玫瑰葡萄栽培常见问题及调控措施. 中外葡萄与葡萄酒, 2017(5): 58-59.
CHEN Z, WANG Q S. Common problems and control measures of sunshine rose grape cultivation. Sino-Overseas Grapevine & Wine, 2017(5): 58-59. (in Chinese)
[4]
WU Y S, LI X J, ZHANG W W, WANG L, LI B, WANG S P. Aroma profiling of Shine Muscat grape provides detailed insights into the regulatory effect of gibberellic acid and N-(2-chloro-4-pyridinyl)- N- phenylurea applications on aroma quality. Food Research International, 2023, 170: 112950.
[5]
TYAGI K, MAOZ I, LAPIDOT O, KOCHANEK B, BUTNARO Y, SHLISEL M, LERNO L, EBELER S E, LICHTER A. Effects of gibberellin and cytokinin on phenolic and volatile composition of Sangiovese grapes. Scientia Horticulturae, 2022, 295: 110860.
[6]
王莎, 程大伟, 李明, 顾红, 李正阳, 祁帅, 陈锦永. ‘阳光玫瑰’葡萄无核化研究进展. 中国农业科技导报, 2020, 22(2): 58-64.

doi: 10.13304/j.nykjdb.2018.0742
WANG S, CHENG D W, LI M, GU H, LI Z Y, QI S, CHEN J Y. Research progress on seedless-induced production of ‘shine Muscat’ grape. Journal of Agricultural Science and Technology, 2020, 22(2): 58-64. (in Chinese)

doi: 10.13304/j.nykjdb.2018.0742
[7]
NISHIYAMA S, YOSHIMURA D, SATO A, YONEMORI K. Characterization of tissue-specific transcriptomic responses to seedlessness induction by gibberellin in table grape. The Horticulture Journal, 2022, 91(2): 157-168.
[8]
GAO X T, WU M H, SUN D, LI H Q, CHEN W K, YANG H Y, LIU F Q, WANG Q C, WANG Y Y, WANG J, HE F. Effects of gibberellic acid (GA3) application before anthesis on Rachis elongation and berry quality and aroma and flavour compounds in Vitis vinifera L. ‘Cabernet Franc’ and ‘Cabernet Sauvignon’ grapes. Journal of the Science of Food and Agriculture, 2020, 100(9): 3729-3740.
[9]
PEPPI M C, ÁLVAREZ E. Gibberellic acid for table grape inflorescence elongation: Is it worth it? American Journal of Enology and Viticulture, 2023, 74(1): 0740012.
[10]
LI Y M, TANG X S, FENG W Q, WAN S Y, BIAN Y R, XIE Z S. Differential regulation of xylem and phloem differentiation in grape berries by GA3 and CPPU. Scientia Horticulturae, 2024, 337: 113582.
[11]
CAI Z H, LI X J, FORNEY C F, WANG Y, LI B, XIE Z S. Effects of GA3treatments on fruit vascular structure and water transport of grape. International Journal of Fruit Science, 2024, 24(1): 200-218.
[12]
DONG Y, HUANG L Y, ZHANG W, LIU J, NONG H L, WANG X Y, ZHENG H, TAO J M. Transcriptomic and functional analysis reveals that VvSAUR43 may be involved the elongation of grape berries. Scientia Horticulturae, 2023, 318: 112119.
[13]
ISHIKAWA H, TOGANO Y, SHIBUYA T. Effect of GA3 treatment on berry development in the large berry mutant of ‘Delaware’ grapes. The Horticulture Journal, 2023, 92(3): 236-244.
[14]
LIU Z H, WANG Y, GUAN P Y, HU J F, SUN L. Interaction of VvDELLA2 and VvCEB1 mediates expression of expansion-related gene during GA-induced enlargement of grape fruit. International Journal of Molecular Sciences, 2023, 24(19): 14870.
[15]
LI W F, ZHOU Q, MA Z H, ZUO C W, CHU M Y, MAO J, CHEN B H. Regulatory mechanism of GA3 application on grape (Vitis vinifera L.) berry size. Plant Physiology and Biochemistry, 2024, 210: 108543.
[16]
LI X J, CAI Z H, LIU X L, WU Y S, HAN Z, YANG G W, LI S X, XIE Z S, LIU L, LI B. Effects of gibberellic acid on soluble sugar content, organic acid composition, endogenous hormone levels, and carbon sink strength in shine Muscat grapes during berry development stage. Horticulturae, 2024, 10(4): 346.
[17]
DONG Y J, WU Y X, ZHANG Z X, WANG S C, CHENG J, GAO Y L, WANG W X, MA N Y, WANG Y X. Transcriptomic analysis reveals GA3 is involved in regulating flavonoid metabolism in grape development for facility cultivation. Molecular Genetics and Genomics, 2023, 298(4): 845-855.
[18]
MENESES M, GARCÍA-ROJAS M, MUÑOZ-ESPINOZA C, CARRASCO-VALENZUELA T, DEFILIPPI B, GONZÁLEZ- AGÜERO M, MENESES C, INFANTE R, HINRICHSEN P. Transcriptomic study of pedicels from GA3-treated table grape genotypes with different susceptibility to berry drop reveals responses elicited in cell wall yield, primary growth and phenylpropanoids synthesis. BMC Plant Biology, 2020, 20(1): 66.
[19]
PARK J, JUNG M, PARK H S. Occurrence of skin browning according to cluster weight and the gibberellic acid (GA3) concentration in ‘Shine Muscat’ grapes. Horticultural Science and Technology, 2023, 41(6): 645-655.
[20]
YU Y H, LI X F, YANG S D, BIAN L, YU K K, MENG X X, LIU H N, PEI M S, WEI T L, GUO D L. CPPU-induced changes in energy status and respiration metabolism of grape young berry development in relation to Berry setting. Scientia Horticulturae, 2021, 283: 110084.
[21]
OLMEDO P, NÚÑEZ-LILLO G, VIDAL J, LEIVA C, ROJAS B, SAGREDO K, ARRIAGADA C, DEFILIPPI B G, PÉREZ-DONOSO A G, MENESES C, CARPENTIER S, PEDRESCHI R, CAMPOS-VARGAS R. Proteomic and metabolomic integration reveals the effects of pre-flowering cytokinin applications on central carbon metabolism in table grape berries. Food Chemistry, 2023, 411: 135498.
[22]
ROJAS B, SUÁREZ-VEGA F, SAEZ-AGUAYO S, OLMEDO P, ZEPEDA B, DELGADO-RIOSECO J, DEFILIPPI B G, PEDRESCHI R, MENESES C, PÉREZ-DONOSO A G, CAMPOS-VARGAS R. Pre-anthesis cytokinin applications increase table grape berry firmness by modulating cell wall polysaccharides. Plants, 2021, 10(12): 2642.
[23]
SUN Y D, YUE Y H, LI X F, LI S Q, SHI Q F, YU Y H. Transcription factor VviWOX13C regulates fruit set by directly activating VviEXPA37/38/39 in grape (Vitis vinifera L). Plant Cell Reports, 2023, 43(1): 19.
[24]
SHI Q F, LI X F, YANG S D, ZHAO X C, YUE Y H, YANG Y J, YU Y H. Dynamic temporal transcriptome analysis reveals grape VlMYB59- VlCKX4 regulatory module controls fruit set. Horticulture Research, 2024, 11(9): uhae183.
[25]
BIAN L, SHI B X, YU K K, GUO D L, JI X R, NI P Y, YANG Y J, ZHANG G H, YU Y H. Genome-wide characterization of cytokinin response regulator in grape and expression analyses during berry set process. Russian Journal of Plant Physiology, 2022, 69(3): 46.
[26]
YU K K, YU Y H, BIAN L, NI P Y, JI X R, GUO D L, ZHANG G H, YANG Y J. Genome-wide identification of cytokinin oxidases/ dehydrogenase (CKXs) in grape and expression during berry set. Scientia Horticulturae, 2021, 280: 109917.
[27]
WANG L L, SHI Q F, JING P W, WANG R X, ZHANG H M, LIU Y T, LI C Y, SHI T Z, ZHANG L X, YU Y H. VlMYB4 and VlCDF3 co-targeted the VlLOG11 promoter to regulate fruit setting in grape (Vitis vinifera L). Plant Cell Reports, 2024, 43(8): 194.
[28]
TYAGI K, MAOZ I, KOCHANEK B, SELA N, LERNO L, EBELER S E, LICHTER A. Cytokinin but not gibberellin application had major impact on the phenylpropanoid pathway in grape. Horticulture Research, 2021, 8: 51.

doi: 10.1038/s41438-021-00488-0 pmid: 33642590
[29]
DU C L, CAI C L, LU Y, LI Y M, XIE Z S. Identification and expression analysis of invertase family genes during grape (Vitis vinifera L.) berry development under CPPU and GA treatment. Molecular Genetics and Genomics, 2023, 298(3): 777-789.
[30]
王文鹤. 三种植物生长调节剂对‘10-7’葡萄果实无核化及品质的影响[D]. 秦皇岛: 河北科技师范学院, 2020.
WANG W H. Effects of three plant growth regulators on seedlessness and quality in ‘10-7’ grape fruit[D]. Qinhuangdao: Hebei Normal University of Science & Technology, 2020. (in Chinese)
[31]
应永涛. 喷施外源硒对‘阳光玫瑰’果实品质的影响[D]. 南京: 南京农业大学, 2022.
YING Y T. Effects of spraying selenium on fruit quality of ‘Shine Muscat’[D]. Nanjing: Nanjing Agricultural University, 2022. (in Chinese)
[32]
张鹏, 文跃, 周国朝, 房玉林, 鞠延仑, 徐炎. 不同果袋对‘阳光玫瑰’葡萄果实品质和香气物质的影响. 中外葡萄与葡萄酒, 2024(5): 30-37.
ZHANG P, WEN Y, ZHOU G C, FANG Y L, JU Y L, XU Y. The Influence of different bag treatments on fruit quality and aroma substances of ‘Shine Muscat’ grapes. Sino-Overseas Grapevine & Wine, 2024(5): 30-37. (in Chinese)
[33]
李海燕, 张丽平, 王莉, 殷益明, 贾惠娟. 2种植物生长调节剂对阳光玫瑰葡萄品质的影响. 浙江大学学报(农业与生命科学版), 2016, 42(4): 419-426.
LI H Y, ZHANG L P, WANG L, YIN Y M, JIA H J. Effects of two kinds of plant growth regulators on fruit quality of Shine Muscat grape. Journal of Zhejiang University (Agriculture and Life Sciences), 2016, 42(4): 419-426. (in Chinese)
[34]
孙艳, 尹永刚, 贾楠, 李敏敏, 刘长江, 田坤岐, 王英杰, 韩斌. 鲜食葡萄无核化研究进展. 中外葡萄与葡萄酒, 2024(2): 92-97.
SUN Y, YIN Y G, JIA N, LI M M, LIU C J, TIAN K Q, WANG Y J, HAN B. Research progress for seedlessness of table grapes. Sino-Overseas Grapevine & Wine, 2024(2): 92-97. (in Chinese)
[35]
苏晓兰, 童巧云, 张雪梅, 冯美, 姚文孔, 张宁. CPPU对设施栽培玫瑰香葡萄无核化及果实品质的影响. 山西农业科学, 2023, 51(11): 1290-1298.
SU X L, TONG Q Y, ZHANG X M, FENG M, YAO W K, ZHANG N. Effects of CPPU on seedless and fruit quality of Muscat Hamburg grape in greenhouse. Journal of Shanxi Agricultural Sciences, 2023, 51(11): 1290-1298. (in Chinese)
[36]
贺保国, 郭全新, 马朝旺, 李智辉, 王重锋, 郑先福. GA3和CPPU对‘巨峰’葡萄无核诱导及品质的影响. 中外葡萄与葡萄酒, 2019(3): 37-42.
HE B G, GUO Q X, MA Z W, LI Z H, WANG C F, ZHENG X F. Effects of GA3 and CPPU on inducing seedless fruit and quality of ‘Kyoho’ grapevine. Sino-Overseas Grapevine & Wine, 2019(3): 37-42. (in Chinese)
[37]
农慧兰, 董阳, 刘静, 余欣, 黄丽媛, 郑焕, 洪奔, 陶建敏. GA3和TDZ处理对‘阳光玫瑰’葡萄果实形状的影响. 分子植物育种, 2022: 1-8.
NONG H L, DONG Y, LIU J, YU X, HUANG L Y, ZHENG H, HONG B, TAO J M. The Effect of GA3 and TDZ treatment on fruit shape of ‘Shine Muscat’ grape. Molecular Plant Breeding, 2022: 1-8. (in Chinese)
[38]
史文婷, 王磊, 李淑红, 王振平, 王世平. 赤霉素和氯吡脲对‘阳光玫瑰’葡萄果实无核化及品质的影响. 北方园艺, 2017(16): 19-24.
SHI W T, WANG L, LI S H, WANG Z P, WANG S P. Effects of GA3 and CPPU treatment on seedlessness and fruit quality of ‘Shine Muscat’ grapevine. Northern Horticulture, 2017(16): 19-24. (in Chinese)
[39]
姜福莉, 李琛, 赵紫蝶, 张超, 王娜, 秦子禹. 生长调节剂对‘金田蓝宝石’葡萄无核化和品质的影响. 中外葡萄与葡萄酒, 2023(5): 54-59.
JIANG F L, LI C, ZHAO Z D, ZHANG C, WANG N, QIN Z Y. Effects of growth regulator on seedless induction and quality of ‘Jintian lanbaoshi’ grape. Sino-Overseas Grapevine & Wine, 2023(5): 54-59. (in Chinese)
[40]
王悦. GA3和SM对‘阳光玫瑰’葡萄果实无核形成过程观察及机理分析[D]. 扬州: 扬州大学, 2023.
WANG Y. Observation and mechanism analysis of seedless formation process of grape fruit in ‘Shine Muscat’ by GA3 and SM[D]. Yangzhou: Yangzhou University, 2023. (in Chinese)
[41]
UPADHYAY A, MASKE S, JOGAIAH S, KADOO N Y, GUPTA V S. GA3 application in grapes (Vitis vinifera L.) modulates different sets of genes at cluster emergence, full bloom, and berry stage as revealed by RNA sequence-based transcriptome analysis. Functional & Integrative Genomics, 2018, 18(4): 439-455.
[42]
周琪. GA3处理对葡萄果实水分及发育的调控机理研究[D]. 兰州: 甘肃农业大学, 2021.
ZHOU Q. Regulation mechanism of GA3 treatments on water and development of grape (V.vinifera L.) berry[D]. Lanzhou: Gansu Agricultural University, 2021. (in Chinese)
[43]
郭淑萍, 杨顺林, 杨玉皎, 张永辉, 孟富宣, 何建军, 张俊松, 金杰. GA3和CPPU对无核翠宝葡萄果实品质的影响. 果树学报, 2022, 39(10): 1834-1844.
GUO S P, YANG S L, YANG Y J, ZHANG Y H, MENG F X, HE J J, ZHANG J S, JIN J. Effect of GA3 and CPPU treatments on fruit quality of Wuhe Cuibao grape. Journal of Fruit Science, 2022, 39(10): 1834-1844. (in Chinese)
[44]
侯旭东, 谭佳欣. CPPU与GA3对‘妮娜皇后’葡萄果实品质的影响. 安徽农业科学, 2021, 49(21):65-69.
HOU X D, TAN J X. Effect of CPPU and GA3 treatments on fruit quality of ‘Queen Nina’ grape. Journal of Anhui Agricultural Sciences, 2021, 49(21): 65-69. (in Chinese)
[45]
吴玉森. 鲜食葡萄特征香气物质及根域限制栽培与植物生长调节剂对其影响[D]. 上海: 上海交通大学, 2019.
WU Y S. Characteristic aroma compounds in table grapes and the effects of root restriction and plant growth regulators on aroma compounds[D]. Shanghai: Shanghai Jiao Tong University, 2019. (in Chinese)
[46]
问亚琴. 酿酒葡萄果实游离态和糖苷结合态萜烯的积累及其转录调控[D]. 北京: 中国农业大学, 2015.
WEN Y Q. Accumulation of free and glycosidically-bound terpenes and its transcriptional regulation in wine grapes[D]. Beijing: China Agricultural University, 2015. (in Chinese)
[47]
朱学慧. 不同栽培环境下激素对无核白鸡心葡萄果实品质特性的影响[D]. 乌鲁木齐: 新疆农业大学, 2022.
ZHU X H. Effects of spraying hormones on fruit quality characteristics of centennial seedless grape under different cultivation environments[D]. Urumqi: Xinjiang Agricultural University, 2022. (in Chinese)
[48]
王莎. SM、GA3和CPPU对‘阳光玫瑰’葡萄无核化和果实品质的影响[D]. 北京: 中国农业科学院, 2020.
WANG S. Effects of SM, GA3 and CPPU on seedless inductionand fruit quality of ‘Shine Muscat’ grape (Vitis labrusca L.)[D]. Beijing: Chinese Academy of Agricultural Sciences, 2020. (in Chinese)
[49]
刘莹. 植物生长调节剂对葡萄果实品质的影响[D]. 沈阳: 沈阳农业大学, 2023.
LIU Y. Effects of plant growth regulators on grape berries quality[D]. Shenyang: Shenyang Agricultural University, 2023. (in Chinese)
[50]
HU B, LI J Q, WANG D, WANG H C, QIN Y H, HU G B, ZHAO J T. Transcriptome profiling of Litchi chinensis pericarp in response to exogenous cytokinins and abscisic acid. Plant Growth Regulation, 2018, 84(3): 437-450.
[51]
WU L, LAN J B, XIANG X X, XIANG H Y, JIN Z, KHAN S, LIU Y Q. Transcriptome sequencing and endogenous phytohormone analysis reveal new insights in CPPU controlling fruit development in kiwifruit (Actinidia chinensis). PLoS ONE, 2020, 15(10): e0240355.
[52]
CONG L, WU T, LIU H T, WANG H B, ZHANG H Q, ZHAO G P, WEN Y, SHI Q R, XU L F, WANG Z G. CPPU may induce gibberellin-independent parthenocarpy associated with PbRR9 in ‘Dangshansu’ pear. Horticulture Research, 2020, 7: 68.
[53]
王继源. CPPU和不同果袋对‘阳光玫瑰’葡萄香气组分及合成相关基因表达的影响[D]. 南京: 南京农业大学, 2016.
WANG J Y. The Effects of CPPU and different fruit bags on aroma component and biosynthetic genes expression in ‘Shine Muscat’ grapes[D]. Nanjing: Nanjing Agricultural University, 2016. (in Chinese)
[54]
张梦莹. 摘叶、UV滤膜和激素处理对赤霞珠葡萄GLVs代谢产物的影响[D]. 杨凌: 西北农林科技大学, 2017.
ZHANG M Y. Effect of leaf removal, UV filter and hormone treatment on Glvs metabolism of Cabernet Sauvignon grape berries[D]. Yangling: Northwest A&F University, 2017. (in Chinese)
[55]
权桂蓉. 摘叶和疏穗处理对酿酒葡萄西拉糖酸代谢的影响[D]. 杨凌: 西北农林科技大学, 2019.
QUAN G R. Effect of leaf defoliations and cluster thinning on the sucrose and acid metabolism of Syrah[D]. Yangling: Northwest A&F University, 2019. (in Chinese)
[1] YANG CaiLi, LI YongZhou, HE LiangLiang, SONG YinHua, ZHANG Peng, LIU ZhaoXian, LI PengHui, LIU SanJun. Genome-Wide Identification and Analysis of TPS Gene Family and Functional Verification of VvTPS4 in the Formation of Monoterpenes in Grape [J]. Scientia Agricultura Sinica, 2025, 58(7): 1397-1417.
[2] ZHANG SiNing, ZHANG XingRui, WU DongXuan, KANG JingBo, CHEN XiaoLin, GENG LiJun, YIN GuangMin, CHEN JiaJing, GAO JunYan, CAI ZhongHu, LIU Yuan, XU Juan. Aroma Quality Analysis of Guangdongxiangshui Lemon Based on Molecular Sensory Technology [J]. Scientia Agricultura Sinica, 2025, 58(1): 141-155.
[3] FENG Fan, JIANG XingRui, WANG LingYun, ZHANG YongGang, LI AiHua, TAO YongSheng. The Stabilization of Aroma and Color During Hutai-8 Rose Winemaking by Gallic Acid Treatment [J]. Scientia Agricultura Sinica, 2024, 57(8): 1592-1605.
[4] LUO Qin, MAO FangHua, CHEN XieYong, CHEN Jing, HUANG Biao, YE NaiXing, ZHENG DeYong, WEI Hang, YAO QingHua. Analysis of Aroma Characteristics and Origin Discrimination of White Peony Tea in Different Origins [J]. Scientia Agricultura Sinica, 2024, 57(23): 4774-4793.
[5] ZHAO HaiJuan, ZHANG YuPing, ZHANG YuJun, LIU Ning, XU Ming, LIU JiaCheng, WANG BiJun, LIU WeiSheng, LIU Shuo. Evaluation of Fruit Aroma in Chinese Plum Germplasm Based on Electronic Nose Technology [J]. Scientia Agricultura Sinica, 2024, 57(21): 4328-4341.
[6] WANG JianFeng, HAN YuQi, WANG Kai, ZHAO Man, LI JiXin, FENG LiDan, ZHANG Bo, ZHAO Yong, JIANG YuMei. Influence of Pre-Harvest Application of Benzothiadiazole on Color and Aroma of Cabernet Gernischt Grapes During Fruit Development [J]. Scientia Agricultura Sinica, 2024, 57(19): 3870-3893.
[7] XU MengYu, WANG JiaYang, WANG JiangBo, TANG Wen, CHEN YiHeng, SHANGGUAN LingFei, FANG JingGui, LU SuWen. Differential Analysis of Aroma Substance Content and Gene Expression in the Berry Skins of Different Grape Germplasms [J]. Scientia Agricultura Sinica, 2024, 57(13): 2635-2650.
[8] WANG ChunXiao, YU JunZhu, ZHOU WenYa, XU YinHu. Research Progress on the Application of Non-Saccharomyces During Wine Fermentation [J]. Scientia Agricultura Sinica, 2023, 56(3): 529-548.
[9] LI MeiXuan, ZHANG XiangKun, WANG Li, QIAO YueLian, SHI XiaoXin, DU GuoQiang. The Variation of GRSPaV in Different Parts of Shine Muscat Grapevines During Their Phenological Periods [J]. Scientia Agricultura Sinica, 2023, 56(21): 4234-4244.
[10] ZHANG KeKun,CHEN KeQin,LI WanPing,QIAO HaoRong,ZHANG JunXia,LIU FengZhi,FANG YuLin,WANG HaiBo. Effects of Irrigation Amount on Berry Development and Aroma Components Accumulation of Shine Muscat Grape in Root-Restricted Cultivation [J]. Scientia Agricultura Sinica, 2023, 56(1): 129-143.
[11] LU Xiang, GAO Yuan, WANG Kun, SUN SiMiao, LI LianWen, LI HaiFei, LI QingShan, FENG JianRong, WANG DaJiang. Analysis of Aroma Characteristics in Different Cultivated Apple Strains [J]. Scientia Agricultura Sinica, 2022, 55(3): 543-557.
[12] WANG Bo,QIN FuQiang,DENG FengYing,LUO HuiGe,CHEN XiangFei,CHENG Guo,BAI Yang,HUANG XiaoYun,HAN JiaYu,CAO XiongJun,BAI XianJin. Difference in Flavonoid Composition and Content Between Summer and Winter Grape Berries of Shine Muscat Under Two-Crop-a-Year Cultivation [J]. Scientia Agricultura Sinica, 2022, 55(22): 4473-4486.
[13] HAO Yan,LI XiaoYing,YE Mao,LIU YaTing,WANG TianYu,WANG HaiJing,ZHANG LiBin,XIAO Xiao,WU JunKai. Characteristics of Volatile Components in Peach Fruits of 21shiji and Jiucui and Their Hybrid Progenies [J]. Scientia Agricultura Sinica, 2022, 55(22): 4487-4499.
[14] JI XiaoHao,LIU FengZhi,WANG BaoLiang,LIU PeiPei,WANG HaiBo. Genetic Variation of Alcohol Acyltransferase Encoding Gene in Grape [J]. Scientia Agricultura Sinica, 2022, 55(14): 2797-2811.
[15] ZHANG YuanYuan,LIU WenJing,ZHANG BinBin,CAI ZhiXiang,SONG HongFeng,YU MingLiang,MA RuiJuan. Characterization of the Lactone Volatile Compounds in Different Types of Peach (Prunus persica L.) Fruit and Evaluations of Their Contributions to Fruit Overall Aroma [J]. Scientia Agricultura Sinica, 2022, 55(10): 2026-2037.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!