Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (9): 1767-1778.doi: 10.3864/j.issn.0578-1752.2025.09.007

• PLANT PROTECTION • Previous Articles     Next Articles

Changes of Secondary Metabolites in Grapes with Different Resistance Levels in Response to White Rot Infection

TAN XiBei1(), LAN XuYing2, LIU ChongHuai1, FAN XiuCai1, JIANG JianFu1, SUN Lei1, LI Peng1, YU ShuXin1, ZHANG Ying1,3()   

  1. 1 Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009
    2 College of Plant Sciences, Xizang Agricultural and Animal Husbandry University, Linzhi 860000, Xizang
    3 Chuxiong Yunguo Agriculture Technology Research Institute, Chuxiong 675000, Yunnan
  • Received:2024-12-17 Accepted:2025-02-18 Online:2025-05-08 Published:2025-05-08
  • Contact: ZHANG Ying

Abstract:

【Objective】 This study aims to explore the role of secondary metabolites in grape resistance to white rot, and to identify the metabolites associated with grape resistance to white rot.【Method】 The fruits of disease resistant Vitis davidii 0941 (Vd) and the disease susceptible Vitis vinifera Manicure Finger (Vv) at color transition stage were used as experimental materials. The fruit pedicel was pricked to create a wound and inoculated with the white rot pathogen. Fruits were collected at different time points (0, 24, 48 h) after the removal of infected parts following pathogen inoculation, and a broad-targeted metabolomics approach was employed to analyze the metabolites in the resistant and susceptible varieties.【Result】 A total of 960 metabolites were detected in the metabolome, which were divided into 12 major categories, such as amino acids and their derivatives, phenolic acids, nucleotides and their derivatives, flavonoids, and lipids. Principal component analysis (PCA) and hierarchical cluster analysis (HCA) showed significant differences in metabolites between the resistant variety Vd and the susceptible variety Vv before and after infection with white rot. Using |log2 fold change|≥1 and P-value≤0.01 as the threshold for screening differential metabolites, a total of 501 differential metabolites were identified. After infection with white rot, Vd and Vv exhibited different metabolic responses, especially at 24 and 48 hours post-infection, where the number and magnitude of changes in differential metabolites were more significant in the susceptible variety. KEGG enrichment analysis showed that these differential metabolites were mainly enriched in the metabolic pathways of biosynthesis of secondary metabolites, flavone and flavonol biosynthesis, ABC transporters, ascorbate and aldarate metabolism, and biosynthesis of amino acids. WGCNA identified metabolites significantly related to disease resistance, obtaining 10 secondary metabolites that may be related to disease resistance, including one amino acid and its derivative (O-acetylserine), one phenolic acid (arbutin), one flavonoid (cyanidin-3-O-(6''-O-caffeoyl)glucoside), and seven terpenoids (α-amyrenone, botulin, 3-epiursolic acid, 2-hydroxyoleanolic acid, maslinic acid, alphitolic acid, 3,24-dihydroxy-17,21-semiacetal-12(13)oleanolic acid).【Conclusion】 This study reveals the changes in grape metabolites under white rot infection, and these secondary metabolites (amino acids and their derivatives, phenolic acids, flavonoids, and terpenoids) that are up regulated in the resistant variety V. davidi 0941 may play a significant role in the resistance to white rot.

Key words: grape, white rot, disease resistance, metabolomics, secondary metabolite

Table 1

Classification of 960 metabolites detected in grape fruits"

序号
Code
代谢物种类
Species of metabolites
数量
Number
1 氨基酸及其衍生物Amino acids and their derivatives 94
2 酚酸类Phenolic acids 121
3 核苷酸及其衍生物Nucleotides and their derivatives 54
4 黄酮类Flavonoids 225
5 醌类Quinones 4
6 木脂素和香豆素Lignin and coumarin 19
7 鞣质Tannin 21
8 生物碱Alkaloid 64
9 萜类Terpenoids 65
10 有机酸Organic acid 57
11 脂质类Lipids 124
12 其他类Others 112

Fig. 1

Impact of white rot infection on grape metabolic components"

Fig. 2

Statistics of differential metabolite numbers in resistant and susceptible grape varieties during white rot infection"

Fig. 3

Volcano plot of differential metabolites in grape fruits after white rot infection A: Vdmock vs Vd24h; B: Vdmock vs Vd48h; C: Vvmock vs Vv24h; D: Vvmock vs Vv48h"

Table 2

Metabolic pathways for major enrichment of differential metabolites"

组别
Group
ID 名称
Name
数量
Number
Vvmock vs Vv24h ko00270 半胱氨酸和蛋氨酸的代谢Cysteine and methionine metabolism 3
ko00970 氨基酸-tRNA的生物合成Aminoacyl-tRNA biosynthesis 3
ko01100 代谢途径Metabolic pathway 32
ko01110 次生代谢物的生物合成Biosynthesis of secondary metabolites 21
ko01230 氨基酸的生物合成Biosynthesis of amino acids 4
ko02010 ABC转运蛋白ABC transporters 6
ko00330 精氨酸和脯氨酸的代谢Arginine and proline metabolism 3
ko00040 戊糖和葡萄糖醛酸的相互转化Pentose and glucuronate interconversions 3
ko00053 抗坏血酸和醛酸代谢Ascorbate and aldarate metabolism 4
ko00945 芪类、二芳基庚烷类和姜醇的生物合成Stilbenoid, diarylheptanoid and gingerol biosynthesis 3
ko00944 黄酮和黄酮醇的生物合成Flavone and flavonol biosynthesis 8
Vvmock vs Vv48h ko00970 氨基酸-tRNA的生物合成Aminoacyl-tRNA biosynthesis 4
ko01100 代谢途径Metabolic pathway 30
ko01110 次生代谢物的生物合成Biosynthesis of secondary metabolites 16
ko01200 碳代谢Carbon metabolism 3
ko01230 氨基酸的生物合成Biosynthesis of amino acids 5
ko02010 ABC转运蛋白ABC transporters 5
ko00330 精氨酸和脯氨酸的代谢Arginine and proline metabolism 3
ko00944 黄酮和黄酮醇的生物合成Flavone and flavonol biosynthesis 5
Vdmock vs Vd24h ko00960 托烷、哌啶和吡啶类生物碱的生物合成Tropane, piperidine and pyridine alkaloid biosynthesis 3
ko01100 代谢途径Metabolic pathway 17
ko01110 次生代谢物的生物合成Biosynthesis of secondary metabolites 13
ko02010 ABC转运蛋白ABC transporters 7
ko00970 氨基酸tRNA的生物合成Aminoacyl-tRNA biosynthesis 3
ko01210 2-氧代羧酸的代谢2-Oxocarboxylic acid metabolism 3
ko01230 氨基酸的生物合成Biosynthesis of amino acids 4
ko00945 芪类、二芳基庚烷类和姜醇的生物合成Stilbenoid, diarylheptanoid and gingerol biosynthesis 3
ko00941 类黄酮的生物合成Flavonoid biosynthesis 3
Vdmock vs Vd48h ko00260 甘氨酸、丝氨酸和苏氨酸的代谢Glycine, serine and threonine metabolism 3
ko00261 单内酰胺的生物合成Monobactam biosynthesis 3
ko00970 氨基酸-tRNA的生物合成Aminoacyl-tRNA biosynthesis 6
ko01100 代谢途径Metabolic pathway 34
ko01110 次生代谢物的生物合成Biosynthesis of secondary metabolites 26
ko01230 氨基酸的生物合成Biosynthesis of amino acids 8
ko02010 ABC转运蛋白ABC transporters 10
ko00330 精氨酸和脯氨酸的代谢Arginine and proline metabolism 5
ko00290 缬氨酸、亮氨酸和异亮氨酸的生物合成Valine, leucine and isoleucine biosynthesis 3
ko01210 2-氧代羧酸的代谢2-Oxocarboxylic acid metabolism 3
ko04075 植物激素信号转导Plant hormone signal transduction 3
ko00220 精氨酸的生物合成Arginine biosynthesis 3
ko00230 嘌呤代谢Purine metabolism 3
ko00941 类黄酮的生物合成Flavonoid biosynthesis 6

Fig. 4

Key metabolites in V. davidii against white rot identified by WGCNA"

Table 3

Metabolites significantly associated with disease resistance"

指标Index 物质Compound 物质分类Compound class
mws1050 O-乙酰丝氨酸O-Acetylserine 氨基酸及其衍生物Amino acids and their derivatives
pme3472 熊果苷Arbutin 酚酸类Phenolic acids
Hmcp005535 α-香树脂酮α-Amyrenone 萜类Terpenoids
pmp000438 白桦脂醇Betulin
MWSmce052 3-表熊果酸3-Epiursolic acid
pmn001706 2-羟基齐墩果酸2-Hydroxyoleanolic acid
mws1610 山楂酸Maslinic acid
Lmzn106284 麦珠子酸Alphitolic acid
pmn001705 3,24-二羟基-17,21-半缩醛基-12(13)齐墩果酸
3,24-Dihydroxy-17,21-semiacetal-12(13)oleanolic acid
Lmcp004436 矢车菊素-3-O-(6''-O-咖啡酰)葡萄糖苷Cyanidin-3-O-(6''-O-caffeoyl)glucoside 黄酮类Flavonoids

Fig. 5

Changes in differential metabolites during infection with white rot in resistant and susceptible varieties"

[1]
LIU R, WANG Y, LI P, SUN L, JIANG J F, FAN X C, LIU C H, ZHANG Y. Genome assembly and transcriptome analysis of the fungus Coniella diplodiella during infection on grapevine (Vitis vinifera L.). Frontiers in Microbiology, 2021, 11: 599150.
[2]
张颖, 樊秀彩, 孙海生, 姜建福, 刘崇怀. 葡萄种质资源对叶片白腐病的抗性鉴定及评价. 果树学报, 2017, 34(9): 1095-1105.
ZHANG Y, FAN X C, SUN H S, JIANG J F, LIU C H. Identification and evaluation of resistance to white rot in grape resources. Journal of Fruit Science, 2017, 34(9): 1095-1105. (in Chinese)
[3]
李峰, 樊秀彩, 刘崇怀, 张颖, 姜建福, 李民. 葡萄种质资源对葡萄白腐病抗性调查. 中国果树, 2012(3): 72-74.
LI F, FAN X C, LIU C H, ZHANG Y, JIANG J F, LI M. Survey of grape germplasm resources for resistance to white rot. China Fruits, 2012(3): 72-74. (in Chinese)
[4]
尹向田, 季萍, 袁丽芳, 魏彦锋, 李廷刚, 蒋锡龙, 吴新颖. 葡萄白腐病研究进展. 落叶果树, 2023, 55(6): 71-74.
YIN X T, JI P, YUAN L F, WEI Y F, LI T G, JIANG X L, WU X Y. Research progress on white rot disease in grapes. Deciduous Fruits, 2023, 55(6): 71-74. (in Chinese)
[5]
刘丽婷. 葡萄品种资源叶片白腐病和灰霉病的抗病鉴定及评价[D]. 沈阳: 沈阳农业大学, 2018.
LIU L T. Identification and evaluation of resistance to white rot and Botrytis cinerea in the leaf of grape varietal resources[D]. Shenyang: Shenyang Agricultural University, 2018. (in Chinese)
[6]
JI T, LANGUASCO L, LI M, ROSSI V. Effects of temperature and wetness duration on infection by Coniella diplodiella, the fungus causing white rot of grape berries. Plants, 2021, 10(8): 1696.
[7]
CHEN W, GONG L, GUO Z, WANG W S, ZHANG H Y, LIU X Q, YU S B, XIONG L Z, LUO J. A novel integrated method for large-scale detection, identification, and quantification of widely targeted metabolites: Application in the study of rice metabolomics. Molecular Plant, 2013, 6(6): 1769-1780.

doi: 10.1093/mp/sst080 pmid: 23702596
[8]
CASTRO-MORETTI F R, GENTZEL I N, MACKEY D, ALONSO A P. Metabolomics as an emerging tool for the study of plant- pathogen interactions. Metabolites, 2020, 10(2): 52.
[9]
王莉, 史玲玲, 张艳霞, 刘玉军. 植物次生代谢物途径及其研究进展. 武汉植物学研究, 2007, 25(5): 500-508.
WANG L, SHI L L, ZHANG Y X, LIU Y J. Biosynthesis and regulation of the secondary metabolites in plants. Journal of Wuhan Botanical Research, 2007, 25(5): 500-508. (in Chinese)
[10]
王凌健, 方欣, 杨长青, 李建戌, 陈晓亚. 植物萜类次生代谢及其调控. 中国科学(生命科学), 2013, 43(12): 1030-1046.
WANG L J, FANG X, YANG C Q, LI J X, CHEN X Y. Biosynthesis and regulation of secondary terpenoid metabolism in plants. Scientia Sinica (Vitae), 2013, 43(12): 1030-1046. (in Chinese)
[11]
HUFFAKER A, KAPLAN F, VAUGHAN M M, DAFOE N J, NI X Z, ROCCA J R, ALBORN H T, TEAL P E A, SCHMELZ E A. Novel acidic sesquiterpenoids constitute a dominant class of pathogen- induced phytoalexins in maize. Plant Physiology, 2011, 156(4): 2082-2097.
[12]
MARTINI C, MARI M. Monilinia fructicola, Monilinia laxa (monilinia rot, brown rot)// BAUTISTA-BANOS S. Postharvest Decay. Amsterdam: Elsevier, 2014: 233-265.
[13]
YOSHITOMI K, TANIGUCHI S, TANAKA K, UJI Y, AKIMITSU K, GOMI K. Rice terpene synthase 24 (OsTPS24) encodes a jasmonate-responsive monoterpene synthase that produces an antibacterial γ-terpinene against rice pathogen. Journal of Plant Physiology, 2016, 191: 120-126.
[14]
HE Y W, WU J E, CHA J S, ZHANG L H. Rice bacterial blight pathogen Xanthomonas oryzae pv. oryzae produces multiple DSF- family signals in regulation of virulence factor production. BMC Microbiology, 2010, 10: 187.
[15]
TANIGUCHI S, MIYOSHI S, TAMAOKI D, YAMADA S, TANAKA K, UJI Y, TANAKA S, AKIMITSU K, GOMI K. Isolation of jasmonate-induced sesquiterpene synthase of rice: Product of which has an antifungal activity against Magnaporthe oryzae. Journal of Plant Physiology, 2014, 171(8): 625-632.
[16]
LIU R L, ZHANG L P, XIAO S Y, CHEN H J, HAN Y C, NIU B, WU W J, GAO H Y. Ursolic acid, the main component of blueberry cuticular wax, inhibits Botrytis cinerea growth by damaging cell membrane integrity. Food Chemistry, 2023, 415: 135753.
[17]
韩彤, 于姝莉, 江英. 灰霉菌侵染对红提葡萄表皮蜡质结构和化学组分的影响. 食品安全质量检测学报, 2024, 15(3): 248-255.
HAN T, YU S L, JIANG Y. Effects of Botrytis cinerea infection on waxy structure and chemical components of red globe grape epidermis. Journal of Food Safety & Quality, 2024, 15(3): 248-255. (in Chinese)
[18]
林小财. 两种柑橘及山苍子精油的化学成分、抑菌及抗氧化活性研究[D]. 赣州: 赣南师范大学, 2023.
LIN X C. Chemical composition, antibacterial and antioxidant activities of essential oils from two types of citrus and Litsea cubeba[D]. Ganzhou: Gannan Normal University, 2023. (in Chinese)
[19]
BURDZIEJ A, BELLÉE A, BODIN E, FONAYET J V, MAGNIN N, SZAKIEL A, RICHARD T, CLUZET S, CORIO-COSTET M. Three types of elicitors induce grapevine resistance against downy mildew via common and specific immune responses. Journal of Agricultural and Food Chemistry, 2021, 69(6): 1781-1795.

doi: 10.1021/acs.jafc.0c06103 pmid: 33529021
[20]
陈洪强, 夏惠, 王进, 邓群仙, 梁东, 吕秀兰, 唐礼平. 葡萄果皮类黄酮含量的变化及其相关基因表达. 湖南农业大学学报(自然科学版), 2020, 46(2): 165-170.
CHEN H Q, XIA H, WANG J, DENG Q X, LIANG D, X L, TANG L P. Change of flavonoid content and relevant genes expression in grape peel during berries development. Journal of Hunan Agricultural University (Natural Sciences), 2020, 46(2): 165-170. (in Chinese)
[21]
GOETZ G, FKYERAT A, METAIS N, KUNZ M, TABACCHI R, PEZET R, PONT V. Resistance factors to grey mould in grape berries: Identification of some phenolics inhibitors of Botrytis cinerea stilbene oxidase. Phytochemistry, 1999, 52(5): 759-767.
[22]
王跃进, 徐炎, 张剑侠, 周鹏. 中国野生葡萄果实抗炭疽病基因的RAPD标记. 中国农业科学, 2002, 35(5): 536-540.
WANG Y J, XU Y, ZHANG J X, ZHOU P. Identification of RAPD markers linked to ripe rot resistant gene in wild grapes native to China. Scientia Agricultura Sinica, 2002, 35(5): 536-540. (in Chinese)
[23]
王超霞. 葡萄霜霉病程中白藜芦醇及其衍生物的积累及抗病机制[D]. 北京: 中国农业大学, 2017.
WANG C X. Accumulation and resistant mechanism of resveratrol and derivatives during grape defense to downy mildew[D]. Beijing: China Agricultural University, 2017. (in Chinese)
[24]
MAIA M, FERREIRA A E N, NASCIMENTO R, MONTEIRO F, TRAQUETE F, MARQUES A P, CUNHA J, EIRAS-DIAS J E, CORDEIRO C, FIGUEIREDO A, SILVA M S. Integrating metabolomics and targeted gene expression to uncover potential biomarkers of fungal/oomycetes-associated disease susceptibility in grapevine. Scientific Reports, 2020, 10(1): 15688.

doi: 10.1038/s41598-020-72781-2 pmid: 32973337
[25]
YU H, LI H Y, WEI R F, CHENG G, ZHOU Y M, LIU J B, XIE T L, GUO R R, ZHOU S H. Widely targeted metabolomics profiling reveals the effect of powdery mildew on wine grape varieties with different levels of tolerance to the disease. Foods, 2022, 11(16): 2461.
[26]
张颖, 孙海生, 樊秀彩, 姜建福, 刘崇怀. 中国野生葡萄资源抗白腐病鉴定及抗性种质筛选. 果树学报, 2013, 30(2): 191-196.
ZHANG Y, SUN H S, FAN X C, JIANG J F, LIU C H. Identification and evaluation of resistance of Vitis to grape white rot. Journal of Fruit Science, 2013, 30(2): 191-196. (in Chinese)
[27]
CHONG J, XIA J. MetaboAnalystR: An R package for flexible and reproducible analysis of metabolomics data. Bioinformatics, 2018, 34(24): 4313-4314.

doi: 10.1093/bioinformatics/bty528 pmid: 29955821
[28]
DŽAMIĆ A M, SOKOVIC M D, NOVAKOVIC M, JADRANIN M, RISTIC M, TESEVIC V, MARIN P. Composition, antifungal and antioxidant properties of Hyssopus officinalis L. subsp. pilifer (Pant.) Murb. essential oil and deodorized extracts. Industrial Crops and Products, 2013, 51: 401-407.
[29]
AHUJA I, KISSEN R, BONES A M. Phytoalexins in defense against pathogens. Trends in Plant Science, 2012, 17(2): 73-90.

doi: 10.1016/j.tplants.2011.11.002 pmid: 22209038
[30]
PEDRAS M S C, ZHENG Q, GADAGI R S, RIMMER S R. Phytoalexins and polar metabolites from the oilseeds canola and rapeseed: Differential metabolic responses to the biotroph Albugo candida and to abiotic stress. Phytochemistry, 2008, 69(4): 894-910.
[31]
PEDRAS M S C, CHUMALA P B, JIN W, ISLAM M S, HAUCK D W. The phytopathogenic fungus Alternaria brassicicola: Phytotoxin production and phytoalexin elicitation. Phytochemistry, 2009, 70(3): 394-402.
[32]
SAUNDERS J, O’NEILL N. The characterization of defense responses to fungal infection in alfalfa. BioControl, 2004, 49(6): 715-728.
[33]
SOBOLEV V S, NEFF S A, GLOER J B. New stilbenoids from peanut (Arachis hypogaea) seeds challenged by an Aspergillus caelatus strain. Journal of Agricultural and Food Chemistry, 2009, 57(1): 62-68.
[34]
LYGIN A V, HILL C B, ZERNOVA O V, CRULL L, WIDHOLM J M, HARTMAN G L, LOZOVAYA V V. Response of soybean pathogens to glyceollin. Phytopathology, 2010, 100(9): 897-903.

doi: 10.1094/PHYTO-100-9-0897 pmid: 20701487
[35]
VESTERGAARD M, INGMER H. Antibacterial and antifungal properties of resveratrol. International Journal of Antimicrobial Agents, 2019, 53(6): 716-723.

doi: S0924-8579(19)30045-7 pmid: 30825504
[36]
XU D, QIAO F, XI P, LIN Z, JIANG Z, ROMANAZZI G, GAO L. Efficacy of pterostilbene suppression of postharvest gray mold in table grapes and potential mechanisms. Postharvest Biology and Technology, 2022, 183: 111745.
[37]
韦春玲, 肖瑾, 肖珊, 崔培梧, 刘向前. 具有抗菌活性的天然五环三萜类化合物研究进展. 中成药, 2023, 45(4): 1231-1240.
WEI C L, XIAO J, XIAO S, CUI P W, LIU X Q. Research progress on antibacterial activity of natural pentacyclic triterpenes. Chinese Traditional Patent Medicine, 2023, 45(4): 1231-1240. (in Chinese)
[38]
TIMPERIO A M, D’ALESSANDRO A, FAGIONI M, MAGRO P, ZOLLA L. Production of the phytoalexins trans-resveratrol and delta-viniferin in two economy-relevant grape cultivars upon infection with Botrytis cinerea in field conditions. Plant Physiology and Biochemistry, 2012, 50: 65-71.
[39]
VAN DAMME M, ZEILMAKER T, ELBERSE J, ANDEL A, VELDEN M S, ACKERVEKEN G. Downy mildew resistance in Arabidopsis by mutation of HOMOSERINE KINASE. The Plant Cell, 2009, 21(7): 2179-2189.
[1] TANG XueShen, DANG ShiZhuo, ZHOU Juan, LI JiaHao, LI MeiHua, HU Hao, ZHANG YaHong. Analysis of VvBES1-1 Involvement in Flower Bud Differentiation of Red Globe Grape Based on Red and Blue Light Regulation [J]. Scientia Agricultura Sinica, 2025, 58(8): 1650-1662.
[2] YANG CaiLi, LI YongZhou, HE LiangLiang, SONG YinHua, ZHANG Peng, LIU ZhaoXian, LI PengHui, LIU SanJun. Genome-Wide Identification and Analysis of TPS Gene Family and Functional Verification of VvTPS4 in the Formation of Monoterpenes in Grape [J]. Scientia Agricultura Sinica, 2025, 58(7): 1397-1417.
[3] GUO AoLin, LIN JunXuan, LAI GongTi, HE LiYuan, CHE JianMei, PAN Ruo, YANG FangXue, HUANG YuJi, CHEN GuiXin, LAI ChengChun. Effect of VdF3′5′H2 Overexpression on the Accumulation of Anthocyanin Composition in Spine Grape Cells [J]. Scientia Agricultura Sinica, 2025, 58(4): 802-818.
[4] LUO ChaoDan, FENG ChunMei, LI JianQiang, LI XinRong, WEI Yong, YANG LiYi, LIU XiaoJin, TAN He, REN ErFang, LUO XiaoJie. Analysis of Differential Aroma Volatiles of Tainong No.1 Mango of Different Ripeness by Non-Targeted Metabolomics Based on Gas Chromatography-Mass Spectrometry [J]. Scientia Agricultura Sinica, 2025, 58(3): 564-581.
[5] GE Yi, ZHENG QiuLing, CHEN MengXia, XIA JiaXin, FANG Xiang, TANG MeiLing, FANG JingGui, SHANGGUAN LingFei. Cloning and Functional Analysis of the Autophagy Gene ATG8f in the Grapevine [J]. Scientia Agricultura Sinica, 2025, 58(1): 156-169.
[6] FENG Fan, JIANG XingRui, WANG LingYun, ZHANG YongGang, LI AiHua, TAO YongSheng. The Stabilization of Aroma and Color During Hutai-8 Rose Winemaking by Gallic Acid Treatment [J]. Scientia Agricultura Sinica, 2024, 57(8): 1592-1605.
[7] YUAN Miao, ZHOU Juan, DANG ShiZhuo, TANG XueShen, ZHANG YaHong. Functional Analysis of VvARF18 Gene in Red Globe Grape [J]. Scientia Agricultura Sinica, 2024, 57(7): 1363-1376.
[8] ZHAO Jie, ZHAO LongYuan, PAN NingHui, GUAN LiRong, DU YunLong, LI ChengYun, WANG YunYue, XIE Yong. Hydrolase Gene BGIOSGA023826 Involved in Regulation of Resistance Process to Rice Blast [J]. Scientia Agricultura Sinica, 2024, 57(23): 4607-4618.
[9] LI Jie, LIANG ZhiLin, SUN Yan, TAN GenJia, HUAI BaoYu. Functional Analysis of SlSnRK1.2 in Regulating Tomato Resistance to Grey Mould [J]. Scientia Agricultura Sinica, 2024, 57(21): 4238-4247.
[10] DAI YingZi, GUO HongYang, YANG ZhiFeng, WANG XianPu, XU LiLi. Identification of Salt Resistance Functional of Grape Transcription Factor VvERF2 [J]. Scientia Agricultura Sinica, 2024, 57(2): 336-348.
[11] XIE Qian, JIANG Lai, DING MingYue, LIU LingLing, CHEN QingXi. Metabolomic Analysis of Canarium album Fresh Food Quality Differences Based on Sensory Evaluation [J]. Scientia Agricultura Sinica, 2024, 57(2): 363-378.
[12] WANG JianFeng, HAN YuQi, WANG Kai, ZHAO Man, LI JiXin, FENG LiDan, ZHANG Bo, ZHAO Yong, JIANG YuMei. Influence of Pre-Harvest Application of Benzothiadiazole on Color and Aroma of Cabernet Gernischt Grapes During Fruit Development [J]. Scientia Agricultura Sinica, 2024, 57(19): 3870-3893.
[13] QI XiaoYu, KONG XiaoPing, ZHOU HongWei, YAN XiangPing. Crucial Factors Impacting Carrot Flavor Analysis Based on Broad Target Metabolomics [J]. Scientia Agricultura Sinica, 2024, 57(16): 3250-3263.
[14] ZHANG Ying, YUAN QingYun, REN Fang, HU GuoJun, FAN XuDong, DONG YaFeng. Establishment of RT-qPCR Detection Technology for GINV and Its Spatial and Temporal Distribution in Different Grape Rootstocks [J]. Scientia Agricultura Sinica, 2024, 57(14): 2771-2780.
[15] XU MengYu, WANG JiaYang, WANG JiangBo, TANG Wen, CHEN YiHeng, SHANGGUAN LingFei, FANG JingGui, LU SuWen. Differential Analysis of Aroma Substance Content and Gene Expression in the Berry Skins of Different Grape Germplasms [J]. Scientia Agricultura Sinica, 2024, 57(13): 2635-2650.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!