Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (8): 1650-1662.doi: 10.3864/j.issn.0578-1752.2025.08.015

• RESEARCH NOTES • Previous Articles    

Analysis of VvBES1-1 Involvement in Flower Bud Differentiation of Red Globe Grape Based on Red and Blue Light Regulation

TANG XueShen(), DANG ShiZhuo, ZHOU Juan, LI JiaHao, LI MeiHua, HU Hao, ZHANG YaHong()   

  1. School of Enology and Horticulture, Ningxia University, Yinchuan 750021
  • Received:2024-09-09 Accepted:2024-12-23 Online:2025-04-16 Published:2025-04-21
  • Contact: ZHANG YaHong

Abstract:

【Objective】 BRI1-EMS-Suppressor 1 (BES1), a key transcription factor in brassinosteroid (BR) signaling, regulates plant photomorphogenesis and photoperiodic flowering. This study aimed to investigate the role of BES1 in flower bud differentiation of Vitis vinifera Red Globe under red and blue light regulation, thereby elucidating the BR-mediated mechanisms driven by light quality and providing insights into flowering regulation in other woody fruit trees.【Method】 Bioinformatics analysis was performed to characterize the protein structure and sequence alignment of VvBES1-1. Flower buds of Red Globe grape were collected under greenhouse natural light (CK, control) and red:blue=4:1 (R4B1) light treatment. qPCR was used to analyze the spatiotemporal expression patterns and tissue specificity of VvBES1-1 during flower bud differentiation. Subcellular localization was determined via tobacco (Nicotiana benthamiana) transient transformation. Protein-protein interactions were examined using bimolecular fluorescence complementation (BiFC), and transcriptional activation activity was assessed via yeast autoactivation assays. 【Result】VvBES1-1 contains a BES1_N domain and belongs to the BES1-S-type protein family, showing the closest phylogenetic relationship with Populus trichocarpa BES1. It is expressed throughout all developmental stages of Red Globe grapevines. During R4B1 treatment, the expression level of VvBES1-1 was significantly reduced compared to the control. Its expression peaked during the development of secondary inflorescence axes. Additionally, treatment with 10 mmol·L-¹ EBR enhanced VvBES1-1 expression in Red Globe grape flower buds. Yeast autoactivation assays demonstrated that VvBES1-1 possesses self-activation activity. Subcellular localization analysis revealed that VvBES1-1 is localized in the nucleus. Overexpression of VvBES1-1 in tobacco delayed flowering time, promoted stem elongation, and increased meristem number. Downregulation of VvBES1-1 expression integrated brassinosteroid (BR) and photoperiod signaling pathways to promote flower bud differentiation in Red Globe grapes. During flower bud differentiation, VvBES1-1 expression was significantly regulated by red and blue light. Under R4B1 treatment, its expression peaked after 6 hours of 10 mmol·L-¹ EBR exposure.【Conclusion】VvBES1-1 plays a critical role in flower bud differentiation of Red Globe grapes. It integrates BR and photoperiod signals to inhibit grape flower bud differentiation. However, under red and blue light conditions, the expression of VvBES1-1 is effectively downregulated, thereby promoting flower bud differentiation. This study provides insights into the regulatory mechanisms of light and phytohormones in grape reproductive development.

Key words: Red Globe grape, VvBES1-1, red and blue light, BR, bud differentiation

Table 1

The relevant primers required for this study"

功能
Function
引物名称
Primer name
引物序列
Primer sequence (5′-3′)
编码区(CDS)扩增
Coding region (CDS) amplification
VvBES1-1-1-pCR-F ATGACAGGAACGAGGCTCCC
VvBES1-1-pCR-R TCTGGTTCTAGAGCTCCCAAGG
亚细胞定位载体构建
Subcellular localization vector construction
VvBES1-221-F ATGACAGGAACGAGGCTCCCAACATG
VvBES1-221-R TCTGGTTCTAGAGCTCCCAAGG
酵母自激活载体构建
Yeast self-activating vector construction
VvBES1-BD-F ATGACAGGAACGAGGCTCCC
VvBES1-BD-R TCTGGTTCTAGAGCTCCCAAGG
葡萄内参基因
Internal reference genes of grape
VvActin-F GATTCTGGTGATGGTGTGAGT
VvActin-R GACAATTTCCCGTTCAGCAGT
VvBES1表达模式分析(葡萄)
VvBES1 expression pattern (Vitis vinifera)
VvBES1-1-F TGGACGGTTGAAGAAGACGG
VvBES1-1-R TGGGCTTGGCTGGTATGATG
烟草荧光定量内参基因
Internal reference genes of tobacco
NT-Actin-F GGCTTACATTGCTCTTGACTATGAAC
NT-Actin-R ATCAGGCAGCTCTGTAGCTCTCTCT
VvBES1表达模式分析(烟草)
VvBES1 Expression Pattern (Tobacco)
VvBES1-1-NT-F GCTAGTGCTGATGCCAATGC
VvBES1-1-NT-R GTGGGGGAACTTGGATGAGG

Table 2

Physicochemical properties of VvBES1-1 protein in Red Globe grape"

蛋白质
Protein
开放阅读框
Reading frame
(bp)
氨基酸数
Amino acids number
分子量
Molecular weight (kDa)
等电点
pI
蛋白质疏水性
Grand average of hydropathy
亚细胞定位预测
Subcellular localization prediction
VvBES1-1 1026 341 3.629628 8.53 -0.611 细胞核Nucleus

Fig. 1

Bioinformatics analysis of the VvBES1-1 protein in Red Globe grape A: Secondary structure; B: NLS sequence prediction; C: Tertiary structure"

Fig. 2

A rootless phylogenetic tree of grape VvBES1-1 and 5 other plant BES1 proteins"

Fig. 3

Sequence comparison of VVBES1-1 protein with BES1 protein in other plant species Red boxes highlight the BES1-N structural domains"

Fig. 4

Analysis of VvBES1-1 expression levels in Red Globe grape A: Analysis of VvBES1-1 expression under different light qualities at various grape flower bud stages; B: Expression levels of VvBES1-1 in different tissues; C: Expression analysis of VvBES1-1 under different EBR (Epibrassinolide) concentrations. Different lowercase letters indicate significant differences at P<0.05. The same as below"

Fig. 5

Subcellular localization of VvBES1-1 protein in the Red Globe grape"

Fig. 6

Auto-activation activity analysis of VvBES1-1n the Red Globe grape"

Fig. 7

BiFC analysis of VvBES1-1 and VvFT"

[1]
JAILLON O, AURY J, NOEL B, POLICRITI A, CLÉPET C, CASAGRANDE A, CHOISNE N, AUBOURG S, VITULO N, JUBIN C, et al. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm Phyla. Nature, 2007, 449: 463-467.
[2]
NORIEGA X, PÉREZ F J. Cell cycle genes are activated earlier than respiratory genes during release of grapevine buds from endodormancy. Plant Signaling & Behavior, 2017, 12(10): e1321189.
[3]
VICTORINO G F, BRAGA R, SANTOS-VICTOR J, LOPES C M. Yield components detection and image-based indicators for non-invasive grapevine yield prediction at different phenological phases. OENO ONE, 2020, 54(4): 833-848.
[4]
WAN S B, LI W L, ZHU Y Y, LIU Z M, HUANG W D, ZHAN J C. Genome-wide identification, characterization and expression analysis of the auxin response factor gene family in Vitis vinifera. Plant Cell Reports, 2014, 33(8): 1365-1375.

doi: 10.1007/s00299-014-1622-7 pmid: 24792421
[5]
LI-MALLET A, RABOT A, GENY L. Factors controlling inflorescence primordia formation of grapevine: Their role in latent bud fruitfulness? A review. Botany, 2016, 94(3): 147-163.
[6]
BOSS P K, THOMAS M R. Association of dwarfism and floral induction with a grape green revolution mutation. Nature, 2002, 416(6883): 847-850.
[7]
LIU X, YUAN M, DANG S Z, ZHOU J, ZHANG Y H. Comparative transcriptomic analysis of transcription factors and hormones during flower bud differentiation in ‘Red Globe’ grape under red-blue light. Scientific Reports, 2023, 13(1): 8932.
[8]
CARMONA M J, CHAÏB J, MARTÍNEZ-ZAPATER J M, THOMAS M R. A molecular genetic perspective of reproductive development in grapevine. Journal of Experimental Botany, 2008, 59(10): 2579-2596.

doi: 10.1093/jxb/ern160 pmid: 18596111
[9]
CACKETT L, LUGINBUEHL L H, SCHREIER T B, LOPEZ-JUEZ E, HIBBERD J M. Chloroplast development in green plant tissues: The interplay between light, hormone, and transcriptional regulation. New Phytologist, 2022, 233(5): 2000-2016.
[10]
LAVEE S. Necrosis in grapevine buds (Vitis vinifera cv. Queen of Vineyard) III. Endogenous gibberellin levels in leaves and buds. Vitis: Journal of Grapevine Research, 2015, 26: 225.
[11]
CHEN Y Q, TAI S S, WANG D W, DING A M, SUN T T, WANG W F, SUN Y H. Homology-based analysis of the GRAS gene family in tobacco. Genetics and Molecular Research, 2015, 14(4): 15188-15200.

doi: 10.4238/2015.November.25.7 pmid: 26634482
[12]
DE WIT M, GALVÃO V C, FANKHAUSER C. Light-mediated hormonal regulation of plant growth and development. Annual Review of Plant Biology, 2016, 67: 513-537.

doi: 10.1146/annurev-arplant-043015-112252 pmid: 26905653
[13]
SU D D, XIANG W, LIANG Q, WEN L, SHI Y, SONG B Q, LIU Y D, XIAN Z Q, LI Z G. Tomato SlBES1.8 influences leaf morphogenesis by mediating gibberellin metabolism and signaling. Plant & Cell Physiology, 2022, 63(4): 535-549.
[14]
LIU Y, JAFARI F, WANG H Y. Integration of light and hormone signaling pathways in the regulation of plant shade avoidance syndrome. aBIOTECH, 2021, 2(2): 131-145.

doi: 10.1007/s42994-021-00038-1 pmid: 36304753
[15]
LI J, TERZAGHI W, GONG Y Y, LI C R, LING J J, FAN Y Y, QIN N X, GONG X Q, ZHU D M, DENG X W. Modulation of BIN2 kinase activity by HY5 controls hypocotyl elongation in the light. Nature Communications, 2020, 11(1): 1592.

doi: 10.1038/s41467-020-15394-7 pmid: 32221308
[16]
ZHU J, JUTHAMAS S S, WANG Z. Brassinosteroid signalling. Development, 2013, 140: 1615-1620.
[17]
XIA X J, FANG P P, GUO X, QIAN X J, ZHOU J, SHI K, ZHOU Y H, YU J Q. Brassinosteroid-mediated apoplastic H2O2-glutaredoxin 12/14 cascade regulates antioxidant capacity in response to chilling in tomato. Plant, Cell & Environment, 2018, 41(5): 1052-1064.
[18]
SYMONS G M, DAVIES C, SHAVRUKOV Y, DRY I B, REID J B, THOMAS M R. Grapes on steroids. Brassinosteroids are involved in grape berry ripening. Plant Physiology, 2006, 140(1): 150-158.

doi: 10.1104/pp.105.070706 pmid: 16361521
[19]
陈慧泽, 刁丽曼, 周佳佳, 韩榕, 杜美婷. 油菜素内酯与其他植物激素互作调控植物生长发育及胁迫响应的研究进展. 植物研究, 2024, 44(6): 812-821.

doi: 10.7525/j.issn.1673-5102.2024.06.002
CHEN H Z, DIAO L M, ZHOU J J, HAN R, DU M T. Research advances in brassinosteroids interaction with other phytohormones regulating plant growth, development and stress responses. Bulletin of Botanical Research, 2024, 44(6): 812-821. (in Chinese)
[20]
RUAN J X, CHEN H H, ZHU T, YU Y G, LEI Y W, YUAN L B, LIU J, WANG Z Y, KUANG J F, LU W J, HUANG S Z, LI C L. Brassinosteroids repress the seed maturation program during the seed-to-seedling transition. Plant Physiology, 2021, 186(1): 534-548.

doi: 10.1093/plphys/kiab089 pmid: 33620498
[21]
SHIGETA T, ZAIZEN Y, SUGIMOTO Y, NAKAMURA Y, MATSUO T, OKAMOTO S. Heat shock protein 90 acts in brassinosteroid signaling through interaction with BES1/BZR1 transcription factor. Journal of Plant Physiology, 2015, 178: 69-73.

doi: 10.1016/j.jplph.2015.02.003 pmid: 25778412
[22]
CHEN W Y, LV M H, WANG Y Z, WANG P G, CUI Y W, LI M Z, WANG R S, GOU X P, LI J. BES1 is activated by EMS1-TPD1- SERK1/2-mediated signaling to control tapetum development in Arabidopsis thaliana. Nature Communications, 2019, 10(1): 4164.
[23]
CHENG P L, LIU Y N, YANG Y M, CHEN H, CHENG H, HU Q, ZHANG Z X, GAO J J, ZHANG J X, DING L, FANG W M, CHEN S M, CHEN F D, JIANG J F. CmBES1 is a regulator of boundary formation in Chrysanthemum ray florets. Horticulture Research, 2020, 7(1): 129.
[24]
MECCHIA M A, GARCÍA-HOURQUET M, LOZANO-ELENA F, PLANAS-RIVEROLA A, BLASCO-ESCAMEZ D, MARQUÈS- BUENO M, MORA-GARCÍA S, CAÑO-DELGADO A I. The BES1/BZR1-family transcription factor MpBES1 regulates cell division and differentiation in Marchantia polymorpha. Current Biology, 2021, 31(21): 4860-4869.e8.
[25]
MARTÍNEZ C, ESPINOSA-RUÍZ A, DE LUCAS M, BERNARDO- GARCÍA S, FRANCO-ZORRILLA J M, PRAT S. PIF4-induced BR synthesis is critical to diurnal and thermomorphogenic growth. The EMBO Journal, 2018, 37(23): e99552.
[26]
WANG F, GAO Y S, LIU Y W, ZHANG X, GU X X, MA D B, ZHAO Z W, YUAN Z J, XUE H W, LIU H T. BES1-regulated BEE1 controls photoperiodic flowering downstream of blue light signaling pathway in Arabidopsis. New Phytologist, 2019, 223(3): 1407-1419.
[27]
FELLER A, MACHEMER K, BRAUN E L, GROTEWOLD E. Evolutionary and comparative analysis of MYB and bHLH plant transcription factors. The Plant Journal, 2011, 66(1): 94-116.

doi: 10.1111/j.1365-313X.2010.04459.x pmid: 21443626
[28]
TOLEDO-ORTIZ G, HUQ E, QUAIL P H. The Arabidopsis basic/ helix-loop-helix transcription factor family. The Plant Cell, 2003, 15(8): 1749-1770.
[29]
FRIEDRICHSEN D M, NEMHAUSER J, MURAMITSU T, MALOOF J N, ALONSO J, ECKER J R, FURUYA M, CHORY J. Three redundant brassinosteroid early response genes encode putative bHLH transcription factors required for normal growth. Genetics, 2002, 162(3): 1445-1456.

doi: 10.1093/genetics/162.3.1445 pmid: 12454087
[30]
LEE M H, KIM B, SONG S K, HEO J O, YU N N, LEE S A, KIM M, KIM D G, SOHN S O, LIM C E, CHANG K S, LEE M M, LIM J. Large-scale analysis of the GRAS gene family in Arabidopsis thaliana. Plant Molecular Biology, 2008, 67(6): 659-670.
[31]
SONG X M, LIU T K, DUAN W K, MA Q H, REN J, WANG Z, LI Y, HOU X L. Genome-wide analysis of the GRAS gene family in Chinese cabbage (Brassica rapa ssp. pekinensis). Genomics, 2014, 103(1): 135-146.
[32]
FANG P P, YAN M Y, CHI C, WANG M Q, ZHOU Y H, ZHOU J, SHI K, XIA X J, FOYER C H, YU J Q. Brassinosteroids act as a positive regulator of photoprotection in response to chilling stress. Plant Physiology, 2019, 180(4): 2061-2076.

doi: 10.1104/pp.19.00088 pmid: 31189657
[33]
SYMONS G M, REID J B. Hormone levels and response during de-etiolation in pea. Planta, 2003, 216(3): 422-431.

doi: 10.1007/s00425-002-0860-z pmid: 12520333
[34]
LI J M, CHORY J. A putative leucine-rich repeat receptor kinase involved in brassinosteroid signal transduction. Cell, 1997, 90(5): 929-938.

doi: 10.1016/s0092-8674(00)80357-8 pmid: 9298904
[35]
JIANG J J, ZHANG C, WANG X L. A recently evolved isoform of the transcription factor BES1 promotes brassinosteroid signaling and development in Arabidopsis thaliana. The Plant Cell, 2015, 27(2): 361-374.
[36]
LI J M, NAM K H. Regulation of brassinosteroid signaling by a GSK3/SHAGGY-like kinase. Science, 2002, 295(5558): 1299-1301.

doi: 10.1126/science.1065769 pmid: 11847343
[37]
ZHAO J, PENG P, SCHMITZ R J, DECKER A D, TAX F E, LI J M. Two putative BIN2 substrates are nuclear components of brassinosteroid signaling. Plant Physiology, 2002, 130(3): 1221-1229.

doi: 10.1104/pp.102.010918 pmid: 12427989
[38]
VERT G, CHORY J. Downstream nuclear events in brassinosteroid signalling. Nature, 2006, 441(7089): 96-100.
[39]
WANG Z Y, NAKANO T, GENDRON J, HE J X, CHEN M, VAFEADOS D, YANG Y L, FUJIOKA S, YOSHIDA S, ASAMI T, CHORY J. Nuclear-localized BZR1 mediates brassinosteroid-induced growth and feedback suppression of brassinosteroid biosynthesis. Developmental Cell, 2002, 2(4): 505-513.

doi: 10.1016/s1534-5807(02)00153-3 pmid: 11970900
[40]
LI J J, WANG L, LENG F, MA C, ZHANG C X, WANG S P. Genome-wide identification, characterization and gene expression of BES1 transcription factor family in grapevine (Vitis vinifera L.). Scientific Reports, 2023, 13(1): 240.
[41]
LIU Z, QANMBER G, LU L L, QIN W Q, LIU J, LI J, MA S Y, YANG Z E, YANG Z R. Genome-wide analysis of BES1 genes in Gossypium revealed their evolutionary conserved roles in brassinosteroid signaling. Science China Life Sciences, 2018, 61(12): 1566-1582.
[42]
GAO A J, WENG W F, YAO X, WU W J, BAI Q, XIONG R Q, MA C, CHENG J P, RUAN J J. Genome-wide identification, structural characterization, and gene expression analysis of BES1 transcription factor family in Tartary buckwheat (Fagopyrum tataricum). Agronomy, 2022, 12(11): 2729.
[43]
CAO X, KHALIQ A, LU S, XIE M, MA Z, MAO J, CHEN B. Genome-wide identification and characterization of the BES1 gene family in apple (Malus domestica). Plant Biology, 2020, 22(4): 723-733.

doi: 10.1111/plb.13109 pmid: 32141196
[44]
CAO X J, MA W F, ZENG F W, CHENG Y J, MA Z H, MAO J, CHEN B H. Grape BES1 transcription factor gene VvBES1-3 confers salt tolerance in transgenic Arabidopsis. Gene, 2023, 854: 147059.
[45]
HAMASAKI H, AYANO M, NAKAMURA A, FUJIOKA S, ASAMI T, TAKATSUTO S, YOSHIDA S, OKA Y, MATSUI M, SHIMADA Y. Light activates brassinosteroid biosynthesis to promote hook opening and petiole development in Arabidopsis thaliana. Plant & Cell Physiology, 2020, 61(7): 1239-1251.
[46]
郭飞梅, 吕铭辉, 黎家. 油菜素甾醇的稳态与信号转导调控研究进展. 植物生理学报, 2023, 59(12): 2217-2240.
GUO F M, M H, LI J. research advances in the homeostasis and signal transduction regulation of brassinosteroids. Plant Physiology Journal, 2023, 59(12): 2217-2240. (in Chinese)
[47]
CONWAY S J, WALCHER-CHEVILLET C L, SALOME BARBOUR K, KRAMER E M. Brassinosteroids regulate petal spur length in Aquilegia by controlling cell elongation. Annals of Botany, 2021, 128(7): 931-942.
[48]
YU H Q, FENG W Q, SUN F A, ZHANG Y Y, QU J T, LIU B L, LU F Z, YANG L, FU F L, LI W C. Cloning and characterization of BES1/BZR1 transcription factor genes in maize. Plant Growth Regulation, 2018, 86(2): 235-249.
[1] ZHANG HaoXin, YU ShengYue, LEI QiuLiang, DU XinZhong, ZHANG Jizong, AN MiaoYing, FAN BingQian, LUO JiaFa, LIU HongBin. Simulating Soil Organic Carbon Dynamic Changes in Dryland and Paddy Field of Northeast China Using RothC Model [J]. Scientia Agricultura Sinica, 2025, 58(8): 1564-1578.
[2] BAI YuXin, LIU LingZhi, AN TingTing, LI ShuangYi, WANG JingKuan. Eeffects of Long-Term Fertilization on Bacterial Community Structure and Carbon Metabolic Functions in Brown Soil [J]. Scientia Agricultura Sinica, 2025, 58(8): 1579-1590.
[3] ZHAO YuXuan, MIAO JiYuan, HU Wei, ZHOU ZhiGuo. Effects of Low Temperature at Seedling Stage on Cotton Floral Bud Differentiation and Cotton Plant Yield [J]. Scientia Agricultura Sinica, 2025, 58(7): 1311-1320.
[4] HE JiaoPing, HAN Meng, ZHOU Ting, GU Gang, LAI YuFei, LAI RongQuan. Effects of Wild Populations for Hybridization and Outdoor Population Exercise on the Parasitic Ability of Aphidius gifuensis and Enzymes Related to the Growth and Development [J]. Scientia Agricultura Sinica, 2025, 58(7): 1344-1354.
[5] TENG MengXin, XU Ya, HE Jing, WANG Qi, QIAO Fei, LI JingYang, LI XinGuo. Identification and Functional Analysis of Ca2+-ATPase Gene Family in Banana [J]. Scientia Agricultura Sinica, 2025, 58(7): 1418-1433.
[6] WANG Wei, LUO ChunHai, JIA HongDou, LIU JiaJin, LI DanYang, FU ShiXin. Effect of Gln on Endoplasmic Reticulum Stress in Retained Fetal Membranes Cows Under Oxidative Stress via the PI3K/AKT Pathway [J]. Scientia Agricultura Sinica, 2025, 58(7): 1451-1462.
[7] JU XiaoJun, ZHANG Ming, LIU YiFan, JI GaiGe, SHAN YanJu, TU YunJie, ZOU JianMin, ZHANG HaiTao, BIAN LiangYong, SHU JingTing. Integration of Intestinal Flora and Small Molecule Metabolite to Analyze the Role of Factors Regulating Feed Conversion in Broiler Chickens [J]. Scientia Agricultura Sinica, 2025, 58(6): 1223-1238.
[8] HUANG ShaoHui, YANG HuiMin, YANG JunFang, YANG WenFang, NIE HaoLiang, ZHANG Jing, XING SuLi, WANG JingXia, YANG YunMa, JIA LiangLiang. Effects of Long-Term Chemical Phosphorus Application on Phosphorus Morphology and Phosphatase Activity of Different Aggregates Sizes in Calcareous Brown Soil [J]. Scientia Agricultura Sinica, 2025, 58(5): 943-955.
[9] SHE WenTing, SUN RuiQing, DANG HaiYan, LI WenHu, ZHANG Feng, TIAN Yi, XU JunFeng, DING YuLan, WANG ZhaoHui. Sulfur Concentration and Distribution in Wheat Grain Sampled from Farmers’ Fields in Main Wheat Production Regions of China and Its Affecting Factors [J]. Scientia Agricultura Sinica, 2025, 58(5): 956-974.
[10] ZHENG YaQin, LIU XueQing, WU SiWen, TANG XiaoYan, YANG DanNi, WANG YongKang, AHMAD Aftab, KHAN Afrsyab, WANG ChengGang, CHEN GuoHu. Cloning and Expression of BcDET2 Gene and Functional of Its Regulatory Effect on Bolting and Flowering in Wucai (Brassica campestris L.) [J]. Scientia Agricultura Sinica, 2025, 58(5): 991-1003.
[11] ZHANG Tao, WANG Huan, XIE HongKai, CHEN YinJi. Formation and Structure of Wheat Bran Polysaccharide-Golden Threadfin Bream Surimi Blended Gel [J]. Scientia Agricultura Sinica, 2025, 58(5): 1004-1016.
[12] SUN YanYan, NI AiXin, YANG HanHan, YUAN JingWei, CHEN JiLan. Research Progress on Mechanisms Interpretation and Prediction Methods for Heterosis of Livestock [J]. Scientia Agricultura Sinica, 2025, 58(5): 1017-1031.
[13] LI JianKun, PENG Chao, ZHANG ZiYang, LIANG Xi, WEI MingKang, YANG Qiang, LI BinQi, Muhammad Moaaz Ali, Viola Kayima, CHEN FaXing, DENG HongHong. Dynamics of Fruit Hollowness and Browning and Associated Lignin Accumulation and Its Genome-Wide Identification of Ps4CL Gene Family in Huangguan Plum [J]. Scientia Agricultura Sinica, 2025, 58(4): 759-778.
[14] SUN RuiQing, DANG HaiYan, SHE WenTing, WANG XingShu, CHU HongXin, WANG Tao, DING YuLan, LUO YiNuo, XU JunFeng, LI XiaoHan, WANG ZhaoHui. Yield Components and Soil Factors Affecting Zinc Concentration in Wheat Grain and Flour in Major Wheat Production Regions of China [J]. Scientia Agricultura Sinica, 2025, 58(2): 291-306.
[15] FENG Xiao, WEI JianFeng, FU LiXiao, WU ChaoSheng, YANG YuLing, TANG XiaoZhi. Effects of Alcalase Hydrolysis on the Structure, Aggregation Behavior and Gelling Properties of Quinoa Protein Isolate [J]. Scientia Agricultura Sinica, 2025, 58(1): 170-181.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!