Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (21): 4245-4258.doi: 10.3864/j.issn.0578-1752.2023.21.009

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Characteristics and Succession of Rhizosphere Soil Microbial Communities in Continuous Cropping Watermelon

GUO HanYue1(), WANG DongSheng2, RUAN Yang1, QIAO YiZhu1, ZHANG YunTao1, LI Ling1, HUANG QiWei1, GUO ShiWei1, LING Ning1(), SHEN QiRong1   

  1. 1 College of Resources and Environment Science, Nanjing Agricultural University/Key Laboratory of Organic-based Fertilizers of China/Jiangsu Provincial Key Laboratory for Solid Organic Waste Utilization, Nanjing 210095
    2 Nanjing Institute of Vegetable Science, Nanjing 210042
  • Received:2022-11-19 Accepted:2023-01-09 Online:2023-11-01 Published:2023-11-06
  • Contact: LING Ning

Abstract:

【Objective】The aim of this study was to investigate the effects of continuous cropping on the construction and potential functions of bacterial and fungal communities in the rhizosphere soil of watermelon, and to clarify the adaptability of rhizosphere microorganisms to environmental changes, so as to provide a theoretical basis for ecological control of watermelon continuous cropping obstacles and healthy maintenance of farmland.【Method】In this study, the rhizosphere soil of watermelon without continuous cropping (CK), continuous cropping for 2 times and continuous cropping for 6 times was used as the research object. 16S rRNA and ITS high-throughput sequencing were used to analyze the effects of continuous cropping on the bacterial and fungal communities of rhizosphere soil of watermelon.【Result】With the increasing continuous cropping times, the bacterial diversity index in the rhizosphere soil of watermelon showed a trend of first decreasing and then increasing, while the fungal diversity index decreased significantly. At the bacterial genus level, multiple times of continuous cropping decreased the relative abundance of Sphingomonas and Lysobacter in watermelon rhizosphere soil; at the fungal genus level, the relative abundance of Fusarium increased with the continuous cropping times. Compared with CK, the network complexity of continuous cropping was higher, but the stability of network structure was lower. In addition, compared with CK, the relative abundance of biodegradation pathways of harmful substances and metabolic pathways of amino acids could be significantly reduced after continuous cropping for 6 times; the relative abundance of pathogenic fungi significantly increased in the fungal community after continuous cropping for 6 times. During community succession, the stochastic processes dominated rhizosphere bacterial community construction in watermelon under continuous cropping, while the deterministic processes dominated rhizosphere fungal community construction in watermelon.【Conclusion】Continuous cropping caused changes in community characteristics, functional composition and succession process of rhizosphere bacteria and fungi. The decrease of key functions of bacterial community, the increase of pathologic fungi and the decrease of stability of microbial community network might be the important factors leading to occurrence of watermelon continuous cropping obstacles.

Key words: watermelon, continuous cropping soil, rhizosphere microbial community, function prediction, community succession

Fig. 1

Alpha diversity index of rhizosphere microbial community under different times of continuous cropping A: The Chao1, richness and shannon indexes of rhizosphere bacterial communities under different times of continuous cropping; B: The rhizosphere fungal community richness and richness and shannon indexes under different times of continuous cropping. Different letters indicated significant differences in bacterial and fungal abundance between treatments (P<0.05)"

Fig. 2

Beta diversity and species composition of rhizosphere microbial community under different times of continuous cropping A: Principal coordinate analysis of rhizosphere bacterial community (PCoA) under different times of continuous cropping; B: Principal coordinate analysis (PCoA) of rhizosphere fungal communities under different times of continuous cropping; C: Composition of rhizosphere bacterial community at phylum levels under different times of continuous cropping; D: Composition of rhizosphere fungal community at phylum levels under different times of continuous cropping; E: Composition of rhizosphere bacterial community at genus levels under different times of continuous cropping; F: Composition of rhizosphere fungal community at genus levels under different times of continuous cropping"

Fig. 3

Prediction function of rhizosphere microbial community in different times of continuous cropping a: Changes in the relative abundance of KEGG tertiary metabolic pathways in different times of continuous cropping. The numbers in parentheses represent the number of metabolic pathways significantly enriched compared with the other two treatments and the predicted total number of metabolic pathways, respectively; b: Differential analysis in the relative abundance of rhizosphere mycotrophic types in different times of continuous cropping, with the numbers in brackets representing the number of mycotrophic types significantly enriched compared with the other two treatments; c: The pie chart indicates that the tertiary metabolic pathways enriched in Fig. a are classified into the secondary metabolic pathways; d: Analysis of the difference in the relative abundance of rhizosphere mycotrophic subtypes in different times of continuous cropping"

Fig. 4

Analysis of rhizosphere microbial co-generation network in different times of continuous cropping a: Total bacterial network and bacterial subnetwork under CK, continuous cropping for 2 times and continuous cropping for 6 times; b: Changes in the natural connectivity of rhizosphere bacterial networks with different times of continuous cropping; c: Zi-Pi diagram of rhizosphere bacterial molecular ecological network under CK; d: Total fungal network and subnetwork under CK, continuous cropping for 2 times and continuous cropping for 6 times; e: Changes in the natural connectivity of rhizosphere fungal networks with different times of continuous cropping; f: Zi-Pi diagram of rhizosphere fungal molecular ecological network under CK. The nodes of each network are colored according to gate level classification, and the node size is determined according to the degree of connection. The edges connecting nodes are shown by green lines for co-occurring interactions (positive correlation) and red lines for mutual repulsion (negative correlation)"

Table 1

Topological properties of watermelon rhizosphere bacterial and fungal networks under different times of continuous cropping"

连作茬次
Cropping times
节点数
Total nodes
边数
Total links
平均度
Average degree
网络直径
Network diameter
模块化
Modularity
平均聚类系数
Average clustering coefficient
正相关
Positivity
(%)
负相关
Negative
(%)
细菌
Bacterial
总网络 Total 380 552 2.905 16 0.833 0.291 45.83 54.17
对照组 CK 316 384 2.43 15 0.860 0.314 48.70 51.30
连作2茬 CC2 309 395 2.557 16 0.815 0.321 56.20 43.80
连作6茬 CC6 358 522 2.916 15 0.820 0.299 45.98 54.02
真菌
Fungal
总网络 Total 202 615 6.089 15 0.468 0.253 46.67 53.33
对照组 CK 127 196 3.087 14 0.766 0.234 58.67 41.33
连作2茬 CC2 188 575 6.117 10 0.425 0.252 48.52 51.48
连作6茬 CC6 171 528 6.175 12 0.405 0.306 44.70 55.30

Fig. 5

Relative changes of deterministic and stochastic processes assessed by Modified Stochasticity Ratio (MST) over different times of continuous cropping A: MST of rhizosphere bacterial community under different consecutive cropping times; B: MST of rhizosphere fungal community under different continuous cropping times. Different letters indicate significant differences between treatments (P<0.05)"

[1]
田晴, 高丹美, 李慧, 刘守伟, 周新刚, 吴凤芝. 小麦根系分泌物对西瓜连作土壤真菌群落结构的影响. 中国农业科学, 2020, 53(5): 1018-1028. doi:10.3864/j.issn.0578-1752.2020.05.013.
TIAN Q, GAO D M, LI H, LIU S W, ZHOU X G, WU F Z. Effects of wheat root exudates on the structure of fungi community in continuous cropping watermelon soil. Scientia Agricultura Sinica, 2020, 53(5): 1018-1028. doi:10.3864/j.issn.0578-1752.2020.05.013. (in Chinese)
[2]
耿士均, 刘刊, 商海燕, 权俊娇, 陆小平, 王波. 园艺作物连作障碍的研究进展. 北方园艺, 2012(7): 190-195.
GENG S J, LIU K, SHANG H Y, QUAN J J, LU X P, WANG B. Research progress of continuous cropping obstacle in horticultural plants. Northern Horticulture, 2012(7): 190-195. (in Chinese)
[3]
MARTYN R. Fusarium wilt of watermelon: 120 years of research. Horticultural Reviews, 2014, 42: 349-442.
[4]
滕凯, 陈前锋, 周志成, 向青松, 张敏, 尹华群, 刘勇军. 烟草连作障碍与土壤理化性质及微生物多样性特征的关联. 微生物学通报, 2020, 47(9): 2848-2856.
TENG K, CHEN Q F, ZHOU Z C, XIANG Q S, ZHANG M, YIN H Q, LIU Y J. Effect of soil physical and chemical properties and microbial community on continuous cropping obstacles in tobacco field. Microbiology China, 2020, 47(9): 2848-2856. (in Chinese)
[5]
YUAN J, WEN T, ZHANG H, ZHAO M L, PENTON C R, THOMASHOW L S, SHEN Q R. Predicting disease occurrence with high accuracy based on soil macroecological patterns of Fusarium wilt. The ISME Journal, 2020, 14(12): 2936-2950.

doi: 10.1038/s41396-020-0720-5
[6]
DESSAUX Y, GRANDCLÉMENT C, FAURE D. Engineering the rhizosphere. Trends in Plant Science, 2016, 21(3): 266-278.

doi: S1360-1385(16)00003-0 pmid: 26818718
[7]
BORDENSTEIN S R, THEIS K R. Host biology in light of the microbiome: Ten principles of holobionts and hologenomes. PLoS Biology, 2015, 13(8): e1002226.
[8]
张树生, 杨兴明, 茆泽圣, 黄启为, 徐阳春, 沈其荣. 连作土灭菌对黄瓜(Cucumis sativus)生长和土壤微生物区系的影响. 生态学报, 2007, 27(5): 1809-1817.
ZHANG S S, YANG X M, MAO Z S, HUANG Q W, XU Y C, SHEN Q R. Effects of sterilization on growth of cucumber plants and soil microflora in a continuous mono-cropping soil. Acta Ecologica Sinica, 2007, 27(5): 1809-1817. (in Chinese)
[9]
BRADFORD M A, MCCULLEY R L, CROWTHER T W, OLDFIELD E E, WOOD S A, FIERER N. Cross-biome patterns in soil microbial respiration predictable from evolutionary theory on thermal adaptation. Nature Ecology & Evolution, 2019, 3(2): 223-231.
[10]
BAHRAM M, HILDEBRAND F, FORSLUND S K, ANDERSON J L, SOUDZILOVSKAIA N A, BODEGOM P M, BENGTSSON-PALME J, ANSLAN S, COELHO L P, HAREND H, HUERTA-CEPAS J, MEDEMA M H, MALTZ M R, MUNDRA S, OLSSON P A, PENT M, PÕLME S, SUNAGAWA S, RYBERG M, TEDERSOO L, BORK P. Structure and function of the global topsoil microbiome. Nature, 2018, 560(7717): 233-237.

doi: 10.1038/s41586-018-0386-6
[11]
GAO Z Y, HAN M K, HU Y Y, LI Z Q, LIU C F, WANG X, TIAN Q, JIAO W J, HU J M, LIU L F, GUAN Z J, MA Z M. Effects of continuous cropping of sweet potato on the fungal community structure in rhizospheric soil. Frontiers in Microbiology, 2019, 10: 2269.

doi: 10.3389/fmicb.2019.02269 pmid: 31632375
[12]
HU L F, ROBERT C A M, CADOT S, ZHANG X, YE M, LI B B, MANZO D, CHERVET N, STEINGER T, VAN DER HEIJDEN M G A, SCHLAEPPI K, ERB M. Root exudate metabolites drive plant-soil feedbacks on growth and defense by shaping the rhizosphere microbiota. Nature Communications, 2018, 9: 2738.

doi: 10.1038/s41467-018-05122-7 pmid: 30013066
[13]
LI X G, DING C F, HUA K, ZHANG T L, ZHANG Y N, ZHAO L, YANG Y R, LIU J G, WANG X X. Soil sickness of peanuts is attributable to modifications in soil microbes induced by peanut root exudates rather than to direct allelopathy. Soil Biology and Biochemistry, 2014, 78: 149-159.

doi: 10.1016/j.soilbio.2014.07.019
[14]
XU W H, LIU D, WU F Z, LIU S W. Root exudates of wheat are involved in suppression of Fusarium wilt in watermelon in watermelon-wheat companion cropping. European Journal of Plant Pathology, 2015, 141(1): 209-216.

doi: 10.1007/s10658-014-0528-0
[15]
曾维爱, 杨昭玥, 黄洋, 谷亚冰, 陶界锰, 刘勇军, 谢鹏飞, 蔡海林, 尹华群. 长期连作农田土壤细菌群落结构和共现网络拓扑性质对土壤理化性质的响应. 微生物学报, 2022, 62(6): 2403-2416.
ZENG W A, YANG Z Y, HUANG Y, GU Y B, TAO J M, LIU Y J, XIE P F, CAI H L, YIN H Q. Response of soil bacterial community structure and co-occurrence network topology properties to soil physicochemical properties in long-term continuous cropping farmland. Acta Microbiologica Sinica, 2022, 62(6): 2403-2416. (in Chinese)
[16]
NING D L, DENG Y, TIEDJE J M, ZHOU J Z. A general framework for quantitatively assessing ecological stochasticity. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(34): 16892-16898.
[17]
GRYTA A, FRĄC M, OSZUST K. The application of the biolog EcoPlate approach in ecotoxicological evaluation of dairy sewage sludge. Applied Biochemistry and Biotechnology, 2014, 174(4): 1434-1443.

doi: 10.1007/s12010-014-1131-8 pmid: 25119549
[18]
GUO J J, LIU W B, ZHU C, LUO G W, KONG Y L, LING N, WANG M, DAI J Y, SHEN Q R, GUO S W. Bacterial rather than fungal community composition is associated with microbial activities and nutrient-use efficiencies in a paddy soil with short-term organic amendments. Plant and Soil, 2018, 424(1): 335-349.

doi: 10.1007/s11104-017-3547-8
[19]
GUO H P, DONG P S, GAO F, HUANG L, WANG S P, WANG R Y, YAN M C, ZHANG D M. Sucrose addition directionally enhances bacterial community convergence and network stability of the shrimp culture system. NPJ Biofilms and Microbiomes, 2022, 8: 22.

doi: 10.1038/s41522-022-00288-x pmid: 35410335
[20]
CHEN Q L, HU H W, YAN Z Z, LI C Y, NGUYEN B A T, SUN A Q, ZHU Y G, HE J Z. Deterministic selection dominates microbial community assembly in termite mounds. Soil Biology and Biochemistry, 2021, 152: 108073.

doi: 10.1016/j.soilbio.2020.108073
[21]
BURNS A R, STEPHENS W Z, STAGAMAN K, WONG S, RAWLS J F, GUILLEMIN K, BOHANNAN B J. Contribution of neutral processes to the assembly of gut microbial communities in the zebrafish over host development. The ISME Journal, 2016, 10(3): 655-664.

doi: 10.1038/ismej.2015.142
[22]
TOJU H, OKAYASU K, NOTAGUCHI M. Leaf-associated microbiomes of grafted tomato plants. Scientific Reports, 2019, 9: 1787.

doi: 10.1038/s41598-018-38344-2 pmid: 30741982
[23]
LING N, SONG Y, RAZA W, HUANG Q W, GUO S W, SHEN Q R. The response of root-associated bacterial community to the grafting of watermelon. Plant and Soil, 2015, 391(1): 253-264.

doi: 10.1007/s11104-015-2399-3
[24]
SCHLOSS P D, WESTCOTT S L, RYABIN T, HALL J R, HARTMANN M, HOLLISTER E B, LESNIEWSKI R A, OAKLEY B B, PARKS D H, ROBINSON C J, SAHL J W, STRES B, THALLINGER G G, VAN HORN D J, WEBER C F. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology, 2009, 75(23): 7537-7541.

doi: 10.1128/AEM.01541-09 pmid: 19801464
[25]
NGUYEN N H, SONG Z W, BATES S T, BRANCO S, TEDERSOO L, MENKE J, SCHILLING J S, KENNEDY P G. FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecology, 2016, 20: 241-248.

doi: 10.1016/j.funeco.2015.06.006
[26]
DENG Y, JIANG Y H, YANG Y F, HE Z L, LUO F, ZHOU J Z. Molecular ecological network analyses. BMC Bioinformatics, 2012, 13: 113.

doi: 10.1186/1471-2105-13-113 pmid: 22646978
[27]
SHI S J, NUCCIO E E, SHI Z J, HE Z L, ZHOU J Z, FIRESTONE M K. The interconnected rhizosphere: high network complexity dominates rhizosphere assemblages. Ecology Letters, 2016, 19(8): 926-936.

doi: 10.1111/ele.12630 pmid: 27264635
[28]
PENG G S, WU J. Optimal network topology for structural robustness based on natural connectivity. Physica A: Statistical Mechanics and Its Applications, 2016, 443: 212-220.

doi: 10.1016/j.physa.2015.09.023
[29]
LI X G, JOUSSET A, DE BOER W, CARRIÓN V J, ZHANG T L, WANG X X, KURAMAE E E. Legacy of land use history determines reprogramming of plant physiology by soil microbiome. The ISME Journal, 2019, 13(3): 738-751.

doi: 10.1038/s41396-018-0300-0
[30]
ZHU S Y, WANG Y Z, XU X M, LIU T M, WU D Q, ZHENG X, TANG S W, DAI Q Z. Potential use of high-throughput sequencing of soil microbial communities for estimating the adverse effects of continuous cropping on ramie (Boehmeria nivea L. Gaud). PLoS ONE, 2018, 13(5): e0197095.
[31]
李晶晶, 续勇波. 连作年限对设施百合土壤微生物多样性的影响. 土壤通报, 2020, 51(2): 343-351.
LI J J, XU Y B. Effects of continuous cropping years of lily on soil microbial diversities under greenhouse cultivation. Chinese Journal of Soil Science, 2020, 51(2): 343-351. (in Chinese)
[32]
VAN BRUGGEN A H C, SEMENOV A M. In search of biological indicators for soil health and disease suppression. Applied Soil Ecology, 2000, 15(1): 13-24.

doi: 10.1016/S0929-1393(00)00068-8
[33]
ZHANG Y, CAO C Y, PENG M, XU X J, ZHANG P, YU Q J, SUN T. Diversity of nitrogen-fixing, ammonia-oxidizing, and denitrifying bacteria in biological soil crusts of a revegetation area in Horqin Sandy Land, Northeast China. Ecological Engineering, 2014, 71: 71-79.

doi: 10.1016/j.ecoleng.2014.07.032
[34]
MUNOZ R, TEELING H, AMANN R, ROSSELLÓ-MÓRA R. Ancestry and adaptive radiation of Bacteroidetes as assessed by comparative genomics. Systematic and Applied Microbiology, 2020, 43(2): 126065.

doi: 10.1016/j.syapm.2020.126065
[35]
KWAK M J, KONG H G, CHOI K, KWON S K, SONG J Y, LEE J, LEE P A, CHOI S Y, SEO M, LEE H J, JUNG E J, PARK H, ROY N, KIM H, LEE M M, RUBIN E M, LEE S W, KIM J F. Rhizosphere microbiome structure alters to enable wilt resistance in tomato. Nature Biotechnology, 2018, 36(11): 1100-1109.

doi: 10.1038/nbt.4232
[36]
王涛, 蓝慧, 田云, 卢向阳. 多环芳烃的微生物降解机制研究进展. 化学与生物工程, 2016, 33(2): 8-14.
WANG T, LAN H, TIAN Y, LU X Y. Research progress on microbial degradation mechanisms for polycyclic aromatic hydrocarbons. Chemistry & Bioengineering, 2016, 33(2): 8-14. (in Chinese)
[37]
姜英华, 胡白石, 刘凤权. 植物土传病原菌拮抗细菌的筛选与鉴定. 中国生物防治, 2005, 21(4): 260-264.
JIANG Y H, HU B S, LIU F Q. Selection and identification of antagonistic bacteria against soil-borne plant pathogens. Chinese Journal of Biological Control, 2005, 21(4): 260-264. (in Chinese)
[38]
吴凤芝, 王学征. 设施黄瓜连作和轮作中土壤微生物群落多样性的变化及其与产量品质的关系. 中国农业科学, 2007, 40(10): 2274-2280. doi:10.3321/j.issn:0578-1752.2007.10.021.
WU F Z, WANG X Z. Effect of monocropping and rotation on soil microbial community diversity and cucumber yield, quality under protected cultivation. Scientia Agricultura Sinica, 2007, 40(10): 2274-2280. doi:10.3321/j.issn:0578-1752.2007.10.021. (in Chinese)
[39]
PLIEGO C, RAMOS C, DE VICENTE A, CAZORLA F M. Screening for candidate bacterial biocontrol agents against soilborne fungal plant pathogens. Plant and Soil, 2011, 340(1): 505-520.

doi: 10.1007/s11104-010-0615-8
[40]
ČÍŽKOVÁ D, ŠRŮTKA P, KOLAŘÍK M, KUBÁTOVÁ A, PAŽOUTOVÁ S. Assessing the pathogenic effect of Fusarium, Geosmithia and Ophiostoma fungi from broad-leaved trees. Folia Microbiologica, 2005, 50(1): 59-62.

pmid: 15954534
[41]
CHEN M N, LI X, YANG Q L, CHI X Y, PAN L J, CHEN N, YANG Z, WANG T, WANG M, YU S L. Soil eukaryotic microorganism succession as affected by continuous cropping of peanut: Pathogenic and beneficial fungi were selected. PLoS ONE, 2012, 7(7): e40659.
[42]
徐伟, 葛阳阳, 陈翠婷, 马婷婷. 基于宏基因组技术分析传统红茶菌中菌群组成及其主要代谢通路. 食品工业科技, 2018, 39(5): 119-123, 129.
XU W, GE Y Y, CHEN C T, MA T T. Microorganism composition and main metabolic pathways analysis of traditional Kombucha by metagenomic technology. Science and Technology of Food Industry, 2018, 39(5): 119-123, 129. (in Chinese)
[43]
丁钰珮, 杜宇佳, 高广磊, 张英, 曹红雨, 朱宾宾, 杨思远, 张儆醒, 邱业, 刘惠林. 呼伦贝尔沙地樟子松人工林土壤细菌群落结构与功能预测. 生态学报, 2021, 41(10): 4131-4139.
DING Y P, DU Y J, GAO G L, ZHANG Y, CAO H Y, ZHU B B, YANG S Y, ZHANG J X, QIU Y, LIU H L. Soil bacterial community structure and functional prediction of Pinus sylvestris var. mongolica plantations in the Hulun Buir Sandy Land. Acta Ecologica Sinica, 2021, 41(10): 4131-4139. (in Chinese)
[44]
李晓雪. 辣椒对土壤连作障碍的响应及其成因研究[D]. 保定: 河北农业大学, 2021.
LI X X. The mechanisms of continuous cropping obstacle formation of chilli pepper and the response of chilli pepper to continuously mono-cropped system[D]. Baoding: Hebei Agricultural University, 2021. (in Chinese)
[45]
TOJU H, KISHIDA O, KATAYAMA N, TAKAGI K. Networks depicting the fine-scale co-occurrences of fungi in soil horizons. PLoS ONE, 2016, 11(11): e0165987.
[46]
KONOPKA A, LINDEMANN S, FREDRICKSON J. Dynamics in microbial communities: Unraveling mechanisms to identify principles. The ISME Journal, 2015, 9(7): 1488-1495.

doi: 10.1038/ismej.2014.251
[47]
LAYEGHIFARD M, HWANG D M, GUTTMAN D S. Disentangling interactions in the microbiome: A network perspective. Trends in Microbiology, 2017, 25(3): 217-228.

doi: S0966-842X(16)30185-8 pmid: 27916383
[48]
NUCCIO E E, STARR E, KARAOZ U, BRODIE E L, ZHOU J Z, TRINGE S G, MALMSTROM R R, WOYKE T, BANFIELD J F, FIRESTONE M K, PETT-RIDGE J. Niche differentiation is spatially and temporally regulated in the rhizosphere. The ISME Journal, 2020, 14(4): 999-1014.

doi: 10.1038/s41396-019-0582-x
[49]
YUAN M M, GUO X, WU L W, ZHANG Y, XIAO N J, NING D L, SHI Z, ZHOU X S, WU L Y, YANG Y F, TIEDJE J M, ZHOU J Z. Climate warming enhances microbial network complexity and stability. Nature Climate Change, 2021, 11(4): 343-348.

doi: 10.1038/s41558-021-00989-9
[50]
HERREN C M, MCMAHON K D. Keystone taxa predict compositional change in microbial communities. Environmental Microbiology, 2018, 20(6): 2207-2217.

doi: 10.1111/1462-2920.14257 pmid: 29708645
[51]
CHEN L J, JIANG Y J, LIANG C, LUO Y, XU Q S, HAN C, ZHAO Q G, SUN B. Competitive interaction with keystone taxa induced negative priming under biochar amendments. Microbiome, 2019, 7(1): 77.

doi: 10.1186/s40168-019-0693-7 pmid: 31109381
[52]
SUN X L, XU Z H, XIE J Y, HESSELBERG-THOMSEN V, TAN T M, ZHENG D Y, STRUBE M L, DRAGOŠ A, SHEN Q R, ZHANG R F, KOVÁCS Á T. Bacillus velezensis stimulates resident rhizosphere Pseudomonas stutzeri for plant health through metabolic interactions. The ISME Journal, 2022, 16(3): 774-787.

doi: 10.1038/s41396-021-01125-3
[53]
WHITE D C, SUTTON S D, RINGELBERG D B. The genus Sphingomonas: Physiology and ecology. Current Opinion in Biotechnology, 1996, 7(3): 301-306.

pmid: 8785434
[54]
阎洁, 余雪巍, 李鉴博, 顾海萍, 郭二辉. 一株菲降解细菌产生生物表面活性剂特性的研究. 生态环境学报, 2021, 30(8): 1683-1694.

doi: 10.16258/j.cnki.1674-5906.2021.08.015
YAN J, YU X W, LI J B, GU H P, GUO E H. Research on the characterization of surfactant produced by a phenanthrene-degrading strain. Ecology and Environmental Sciences, 2021, 30(8): 1683-1694. (in Chinese)
[55]
ZHOU X Y, LIANG Y, REN G F, ZHENG K W, WU Y, ZENG X Y, ZHONG Y, YU Z Q, PENG P A. Biotransformation of tris(2- chloroethyl) phosphate (TCEP) in sediment microcosms and the adaptation of microbial communities to TCEP. Environmental Science & Technology, 2020, 54(9): 5489-5497.

doi: 10.1021/acs.est.9b07042
[56]
SCHMITZ L, YAN Z C, SCHNEIJDERBERG M, DE ROIJ M, PIJNENBURG R, ZHENG Q, FRANKEN C, DECHESNE A, TRINDADE L M, VAN VELZEN R, BISSELING T, GEURTS R, CHENG X. Synthetic bacterial community derived from a desert rhizosphere confers salt stress resilience to tomato in the presence of a soil microbiome. The ISME Journal, 2022, 16(8): 1907-1920.

doi: 10.1038/s41396-022-01238-3
[57]
XU J, ZHANG Y Z, ZHANG P F, TRIVEDI P, RIERA N, WANG Y Y, LIU X, FAN G Y, TANG J L, COLETTA-FILHO H D, CUBERO J, DENG X L, ANCONA V, LU Z J, ZHONG B L, ROPER M C, CAPOTE N, CATARA V, PIETERSEN G, VERNIÈRE C, AL-SADI A M, LI L, YANG F, XU X, WANG J, YANG H M, JIN T, WANG N. The structure and function of the global citrus rhizosphere microbiome. Nature Communications, 2018, 9: 4894.

doi: 10.1038/s41467-018-07343-2 pmid: 30459421
[58]
ISABWE A, YAO H F, ZHANG S X, JIANG Y J, BREED M F, SUN X. Spatial assortment of soil organisms supports the size-plasticity hypothesis. ISME Communications, 2022, 2: 102.

doi: 10.1038/s43705-022-00185-6
[59]
WU W X, LU H P, SASTRI A, YEH Y C, GONG G C, CHOU W C, HSIEH C H. Contrasting the relative importance of species sorting and dispersal limitation in shaping marine bacterial versus protist communities. The ISME Journal, 2018, 12(2): 485-494.

doi: 10.1038/ismej.2017.183
[60]
DELGADO-BAQUERIZO M, MAESTRE F T, REICH P B, JEFFRIES T C, GAITAN J J, ENCINAR D, BERDUGO M, CAMPBELL C D, SINGH B K. Microbial diversity drives multifunctionality in terrestrial ecosystems. Nature Communications, 2016, 7: 10541.

doi: 10.1038/ncomms10541
[1] DUAN YaRu,GAO MeiLing,GUO Yu,LIANG XiaoXue,LIU XiuJie,XU HongGuo,LIU JiXiu,GAO Yue,LUAN Feishi. Map-Based Cloning and Molecular Marker Development of Watermelon Fruit Shape Gene [J]. Scientia Agricultura Sinica, 2022, 55(14): 2812-2824.
[2] DIAO WeiNan,YUAN PingLi,GONG ChengSheng,ZHAO ShengJie,ZHU HongJu,LU XuQiang,HE Nan,YANG DongDong,LIU WenGe. Genetic Analysis and Gene Mapping of Canary Yellow in Watermelon Flesh [J]. Scientia Agricultura Sinica, 2021, 54(18): 3945-3958.
[3] XIE KunLun,LIU LiMing,LIU Mei,PENG Bin,WU HuiJie,GU QinSheng. Prokaryotic Expression of dsRNA of Zucchini yellow mosaic virus and Its Control Efficacy on ZYMV [J]. Scientia Agricultura Sinica, 2020, 53(8): 1583-1593.
[4] TIAN Qing,GAO DanMei,LI Hui,LIU ShouWei,ZHOU XinGang,WU FengZhi. Effects of Wheat Root Exudates on the Structure of Fungi Community in Continuous Cropping Watermelon Soil [J]. Scientia Agricultura Sinica, 2020, 53(5): 1018-1028.
[5] GONG ChengSheng, ZHAO ShengJie, LU XuQiang, HE Nan, ZHU HongJu, DOU JunLing, YUAN PingLi, LI BingBing, LIU WenGe. Chemical Compositions and Gene Mapping of Wax Powder on Watermelon Fruit Epidermis [J]. Scientia Agricultura Sinica, 2019, 52(9): 1587-1600.
[6] JI WanLi, ZHU HongJu, LU XuQiang, ZHAO ShengJie, HE Nan, GENG LiHua, LIU WenGe. The Mechanism of Resistance to Fusarium oxysporum f. sp. niveum Race 1 in Tetraploid Watermelon [J]. Scientia Agricultura Sinica, 2018, 51(19): 3750-3765.
[7] CHI YingYing, GAO Peng, ZHU ZiCheng, LUAN FeiShi, LI GuiYing, YU Peng. The QTL Analysis of Fruit and Seed Associated Traits in Watermelon Based on CAPS Markers [J]. Scientia Agricultura Sinica, 2017, 50(7): 1282-1293.
[8] LI Na, WANG JiMing, SHANG JianLi, LI NanNan, XU YongYang, MA ShuangWu. Fine-mapping of QTL and Development of InDel Markers for Fusarium oxysporum Race 1 Resistance in Watermelon [J]. Scientia Agricultura Sinica, 2017, 50(1): 131-141.
[9] HAN Zhe, XU Li-hong, LIU Cong, KONG Ling-kun, WU Feng-zhi, PAN Kai. Effect of Wheat Residues on Growth and Rhizosphere Microorganisms of Continuously Monocropped Watermelon [J]. Scientia Agricultura Sinica, 2016, 49(5): 952-960.
[10] HAN Jin-huan, WANG Li-xia, GAO Hong-bo, Lü Gui-yun. Cloning and Expression Analysis of Fusarium Wilt Resistance- Related Gene ClMYB Transcription Factor from Citrullus lanatus [J]. Scientia Agricultura Sinica, 2016, 49(17): 3359-3369.
[11] CHEN Zhe, SONG Ge, ZHOU Xue-ping, WU Jian-xiang. Preparation and Application of Monoclonal Antibodies Against Watermelon mosaic virus (WMV) [J]. Scientia Agricultura Sinica, 2016, 49(14): 2711-2724.
[12] CHU Qun, DONG Chun-juan, SHANG Qing-mao. Effects of γ-Poly Glutamic Acid on Mineral Nutrient Supply in Substrate and Growth and Development of Watermelon Plug Seedlings [J]. Scientia Agricultura Sinica, 2015, 48(S): 40-48.
[13] MA Zhong-ming, BAI Yu-long, XUE Liang, DU Shao-ping. Effects of Different Plastic Film Mulching Methods on Soil Water and Temperature as well as Watermelon Yield in Loess Dryland [J]. Scientia Agricultura Sinica, 2015, 48(3): 514-522.
[14] ZHU Hong-ju, LIU Wen-ge, ZHAO Sheng-jie, LU Xu-qiang, HE Nan, DOU Jun-ling, GAO Lei. Comparison Between Tetraploid Watermelon(Citrullus lanatus) and Its Diploid Progenitor of DNA Methylation Under NaCl Stress [J]. Scientia Agricultura Sinica, 2014, 47(20): 4045-4055.
[15] WANG Jing, BI Yang, ZHU Yan, HAN Shun-Yu, ZHU Xia, SHENG Wen-Jun, LI Min. Nested-PCR Rapidly Detecte Acidovorax avenae subsp. citrulli from Watermelon Seeds [J]. Scientia Agricultura Sinica, 2014, 47(2): 284-291.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!