Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (3): 431-442.doi: 10.3864/j.issn.0578-1752.2025.03.003

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Genome-Wide Association Study of Husk Traits in Maize

ZHOU GuangFei1(), MA Liang1, MA Lu1, ZHANG ShuYu1, ZHANG HuiMin1, SONG XuDong1, ZHANG ZhenLiang1, LU HuHua1, HAO DeRong1, MAO YuXiang1, XUE Lin1,2, CHEN GuoQing1,2()   

  1. 1 Jiangsu Yanjiang Institute of Agricultural Science, Nantong 226012, Jiangsu
    2 Jiangsu Collaborative Innovation Centre for Modern Crop Production, Nanjing 210095
  • Received:2024-07-05 Accepted:2024-08-19 Online:2025-02-01 Published:2025-02-11
  • Contact: CHEN GuoQing

Abstract:

【Objective】Husk is an important trait that affects the mechanical harvesting of maize grain, and identification of the genetic loci and candidate genes can provide theoretical basis for genetic improvement of maize husk traits. 【Method】To identify significantly associated single nucleotide polymorphisms (SNPs) and predict candidate genes for three husk traits, 251 maize inbred lines were used as plant materials and evaluated for husk number (HN), length (HL), and coverage (HC) in two environments. The genome-wide association study (GWAS) was conducted by multi-locus random-SNP-effect mixed linear model (mrMLM) with 32 853 SNPs across entire genome. 【Result】The three husk traits exhibited abundant variation among 251 maize inbred lines with 10.65%-40.60% of phenotypic variation coefficients. The variances of genotype, environment, and the genotype×environment interactions were significant at P<0.01 for each trait, and the broad-sense heritability for each trait was more than 80%. A total 92 SNPs significantly associated with three husk traits were identified in two environmental and best linear unbiased predictors (BLUP) across two environments values by GWAS. Among these SNPs, 35 SNPs were significantly associated with HN, and the phenotypic variance explained by single SNP ranged from 1.48% to 10.53%. 33 SNPs were significantly associated with HL, and the phenotypic variance explained by single SNP ranged from 1.61% to 21.69%. 24 SNPs were significantly associated with HC, and the phenotypic variance explained by single SNP ranged from 2.17% to 20.86%. However, none of SNP could be significantly associated with two husk traits. Five of 92 SNPs were stable, as they were repeatedly detected in two environments and BLUP, also they were novel loci for first reported in this study. Based on the five stable SNPs and qRT-PCR analysis for husk tissue of 17 maize inbred lines, three candidate genes (Zm00001d003850, Zm00001d033706 and Zm00001d025612) related to maize husk were screeded out, which encoded BOI-related E3 ubiquitin-protein ligase, GeBP transcription factor, and protein of unknown function, respectively. 【Conclusion】A total of 92 SNPs significantly associated with three husk traits were identified, including five stable SNPs. Three candidate genes were predicted that might be involved in maize husk growth and development.

Key words: maize, husk traits, genome-wide association study, elite allele, candidate gene

Table 1

Statistical analysis of maize husk traits"

性状
Trait
环境
Environment
均值±标准差
Mean±SD
变异范围
Range
变异系数
CV (%)
偏度
Skewness
峰度
Kurtosis
苞叶数目
HN
NT 8.09±1.57 4.60-14.50 19.38 0.87 1.50
SY 7.09±1.62 3.50-14.13 22.88 0.98 1.61
BLUP 7.59±1.19 5.22-12.04 15.69 0.95 1.30
苞叶长度
HL
NT 23.03±2.81 16.83-32.84 12.19 0.35 0.32
SY 20.42±2.94 12.32-30.17 14.41 0.05 0.36
BLUP 21.73±2.31 16.12-29.15 10.65 0.29 0.22
苞叶包裹度
HC
NT 3.06±0.10 1.00-5.00 32.33 -0.04 -0.58
SY 2.51±1.02 1.00-5.00 40.60 0.14 -0.78
BLUP 2.78±0.28 1.30-4.63 27.71 0.10 -0.68

Fig. 1

Frequency distribution of maize husk traits"

Table 2

Correlation analysis of maize husk traits and kernel moisture content"

性状Trait 苞叶数目HN 苞叶长度HL 苞叶包裹度HC 籽粒含水量KMC
苞叶数目HN 1
苞叶长度HL -0.06 1
苞叶包裹度HC -0.06 0.70** 1
籽粒含水量KMC 0.26** 0.24** 0.20** 1

Table 3

Analysis of variance and broad-sense heritability of maize husk traits"

方差Variance 苞叶数目HN 苞叶长度HL 苞叶包裹度HC
基因型Genotype (G) 1.74** 6.22** 0.72**
环境Environment (E) 0.50** 3.39** 0.15**
基因型×环境G×E 0.50** 2.38** 0.29**
误差Error 0.61 3.32 0.38
广义遗传率H2 (%) 86.72 82.22 81.69

Fig. 2

Manhattan (left) and QQ (right) plots of genome-wide association study for maize husk traits A, B and C were Manhattan and QQ plots of genome-wide association study for husk number, length and coverage, respectively"

Fig. 3

Allelic effect analysis of five stable SNPs for maize husk traits *, ** and *** represented significant at P<0.05, P<0.01 and P<0.001 level"

Table 4

The screened gene based on five stable SNPs"

性状
Trait
标记
Marker
基因
Gene
染色体
Chr.
位置a
Position (bp)
功能注释
Function annotation
苞叶数目
HN
AX-86238852 Zm00001d003850 2 62448255..62449800 BOI相关E3泛素蛋白连接酶
BOI-related E3 ubiquitin-protein ligase
Zm00001d003851 2 62503425..62507705 S-核糖核酸酶结合蛋白S-ribonuclease binding protein
AX-86269638 Zm00001d044686 3 234930037..234930396 脂质转运蛋白Lipid transfer protein
Zm00001d044689 3 234975746..234982139 PAP/OAS1底物结合结构域超家族
PAP/OAS1 substrate-binding domain superfamily
Zm00001d044690 3 234987257..234989609 双向氨基酸转运蛋白1 Bidirectional amino acid transporter 1
Zm00001d044691 3 234992683..234993820 甲基转移酶相关蛋白Methyltransferase-related protein
Zm00001d044692 3 235008717..235013278 未知蛋白Unknow protein
Zm00001d044693 3 235061755..235065086 双特异性蛋白磷酸酶家族蛋白
Dual specificity protein phosphatase family protein
Zm00001d044694 3 235066012..235068964 含Saposin B结构域的蛋白
Saposin B domain-containing protein
苞叶长度
HL
AX-86308176 Zm00001d033704 1 271704791..271710881 FKBP样肽基脯氨酰顺式-反式异构酶家族蛋白
FKBP-like peptidyl-prolyl cis-trans isomerase family protein
Zm00001d033705 1 271743416..271748692 未知功能蛋白Protein of unknown function
Zm00001d033706 1 271804516..271808051 GeBP转录因子GeBP transcription factor
Zm00001d033707 1 271815374..271818063 微粒体谷胱甘肽S转移酶3
Microsomal glutathione S-transferase3
Zm00001d033708 1 271819145..271823452 mRNA cap甲基转移酶mRNA cap methyltransferase
AX-86262393 Zm00001d040214 3 32351595..32353238 糖基转移酶家族61蛋白Glycosyltransferase family 61 protein
Zm00001d040215 3 32388537..32391284 DNAJ-like蛋白DNAJ-like protein
Zm00001d040216 3 32393165..32395998 核糖体蛋白S8 Ribosomal protein S8
苞叶包裹度
HC
AX-86322933 Zm00001d025611 10 123861237..123862772 ATP依赖的RNA解旋酶ATP-dependent RNA helicase
Zm00001d025612 10 123896700..123897435 未知功能蛋白Protein of unknown function
Zm00001d025613 10 123904290..123905104 胱天蛋白酶条膜蛋白2 Casparian strip membrane protein 2
Zm00001d025614 10 123911243..123912298 具IQ基序的钙调素结合蛋白
IQ motif-containing calmodulin-binding protein
Zm00001d025615 10 123993115..123994083 未知功能蛋白Protein of unknown function

Fig. 4

The regression analysis between expression of nine genes and husk traits in 17 maize inbred lines Expression level for each gene from B73 was set at 1"

[1]
ABADASSI J. Maize agronomic traits needed in tropical zone. International Journal of Science, Environment and Technology, 2015, 4(2): 371-392.
[2]
WIDSTROM N W, BUTRON A, GUO B Z, WILSON D M, SNOOK M E, CLEVELAND T E, LYNCH R E. Control of preharvest aflatoxin contamination in maize by pyramiding QTL involved in resistance to ear-feeding insects and invasion by Aspergillus spp. European Journal of Agronomy, 2003, 19(4): 563-572.
[3]
王克如, 李少昆. 玉米籽粒脱水速率影响因素分析. 中国农业科学, 2017, 50(11): 2027-2035. doi: 10.3864/j.issn.0578-1752.2017.11.008.
WANG K R, LI S K. Analysis of influencing factors on kernel dehydration rate of maize hybrids. Scientia Agricultura Sinica, 2017, 50(11): 2027-2035. doi: 10.3864/j.issn.0578-1752.2017.11.008. (in Chinese)
[4]
ZHOU G F, HAO D R, CHEN G Q, LU H H, SHI M L, MAO Y X, ZHANG Z L, HUANG X L, XUE L. Genome-wide association study of the husk number and weight in maize (Zea mays L.). Euphytica, 2016, 210(2): 195-205.
[5]
CUI Z H, LUO J H, QI C Y, RUAN Y Y, LI J, ZHANG A, YANG X H, HE Y. Genome-wide association study (GWAS) reveals the genetic architecture of four husk traits in maize. BMC Genomics, 2016, 17(1): 946.

pmid: 27871222
[6]
CUI Z H, DONG H X, ZHANG A, RUAN Y Y, JIANG S Q, HE Y, ZHANG Z W. Denser markers and advanced statistical method identified more genetic loci associated with husk traits in maize. Scientific Reports, 2020, 10(1): 8165.

doi: 10.1038/s41598-020-65164-0 pmid: 32424146
[7]
ZHOU G F, MAO Y X, XUE L, CHEN G Q, LU H H, SHI M L, ZHANG Z L, HUANG X L, SONG X D, HAO D R. Genetic dissection of husk number and length across multiple environments and fine-mapping of a major-effect QTL for husk number in maize (Zea mays L.). The Crop Journal, 2020, 8(6): 1071-1080.
[8]
ZHANG X L, LU M, XIA A A, XU T, CUI Z H, ZHANG R Y, LIU W G, HE Y. Genetic analysis of three maize husk traits by QTL mapping in a maize-teosinte population. BMC Genomics, 2021, 22(1): 386.

doi: 10.1186/s12864-021-07723-x pmid: 34034669
[9]
ZHANG J, ZHANG F Q, TIAN L, DING Y, QI J S, ZHANG H F, MU X Y, MA Z Y, XIA L K, TANG B J. Molecular mapping of quantitative trait loci for 3 husk traits using genotyping by sequencing in maize (Zea mays L.). G3, 2022, 12(10): jkac198.
[10]
朱秋丽, 张舒钰, 章慧敏, 宋旭东, 张振良, 陆虎华, 陈国清, 郝德荣, 冒宇翔, 石明亮, 薛林, 周广飞. 玉米果穗苞叶包裹度的QTL分析. 农业生物技术学报, 2023, 31(11): 2231-2238.
ZHU Q L, ZHANG S Y, ZHANG H M, SONG X D, ZHANG Z L, LU H H, CHEN G Q, HAO D R, MAO Y X, SHI M L, XUE L, ZHOU G F. QTL analysis of husk coverage on maize (Zea mays) ear. Journal of Agricultural Biotechnology, 2023, 31(11): 2231-2238. (in Chinese)
[11]
XIA A A, ZHENG L M, WANG Z, WANG Q, LU M, CUI Z H, HE Y. The RHW1-ZCN4 regulatory pathway confers natural variation of husk leaf width in maize. The New Phytologist, 2023, 239(6): 2367-2381.
[12]
WANG Z, XIA A A, WANG Q, CUI Z H, LU M, YE Y S, WANG Y B, HE Y. Natural polymorphisms in ZMET2 encoding a DNA methyltransferase modulate the number of husk layers in maize. Plant Physiology, 2024, 195(3): 2129-2142.
[13]
ZHOU G F, ZHU Q L, MAO Y X, CHEN G Q, XUE L, LU H H, SHI M L, ZHANG Z L, SONG X D, ZHANG H M, HAO D R. Multi-locus genome-wide association study and genomic selection of kernel moisture content at the harvest stage in maize. Frontiers in Plant Science, 2021, 12: 697688.
[14]
KNAPP S J, STROUP W W, ROSS W M. Exact confidence intervals for heritability on a progeny mean basis. Crop Science, 1985, 25(1): 192-194.
[15]
WANG S B, FENG J Y, REN W L, HUANG B, ZHOU L, WEN Y J, ZHANG J, DUNWELL J M, XU S Z, ZHANG Y M. Improving power and accuracy of genome-wide association studies via a multi-locus mixed linear model methodology. Scientific Reports, 2016, 6: 19444.
[16]
ZHANG Y L, LIU P, ZHANG X X, ZHENG Q, CHEN M, GE F, LI Z L, SUN W T, GUAN Z R, LIANG T H, ZHENG Y, TAN X L, ZOU C Y, PENG H W, PAN G T, SHEN Y O. Multi-locus genome-wide association study reveals the genetic architecture of stalk lodging resistance-related traits in maize. Frontiers in Plant Science, 2018, 9: 611.

doi: 10.3389/fpls.2018.00611 pmid: 29868068
[17]
AN Y X, CHEN L, LI Y X, LI C H, SHI Y S, ZHANG D F, LI Y, WANG T Y. Genome-wide association studies and whole-genome prediction reveal the genetic architecture of KRN in maize. BMC Plant Biology, 2020, 20(1): 490.

doi: 10.1186/s12870-020-02676-x pmid: 33109077
[18]
CUI Z H, XIA A A, ZHANG A, LUO J H, YANG X H, ZHANG L J, RUAN Y Y, HE Y. Linkage mapping combined with association analysis reveals QTL and candidate genes for three husk traits in maize. Theoretical and Applied Genetics, 2018, 131(10): 2131-2144.

doi: 10.1007/s00122-018-3142-2 pmid: 30043259
[19]
LIU L, DU Y F, SHEN X M, LI M F, SUN W, HUANG J, LIU Z J, TAO Y S, ZHENG Y L, YAN J B, ZHANG Z X. KRN4 controls quantitative variation in maize kernel row number. PLoS Genetics, 2015, 11(11): e1005670.
[20]
CHEN W K, CHEN L, ZHANG X, YANG N, GUO J H, WANG M, JI S H, ZHAO X Y, YIN P F, CAI L C, XU J, ZHANG L L, HAN Y J, XIAO Y N, XU G, WANG Y B, WANG S H, WU S, YANG F, JACKSON D, CHENG J K, CHEN S H, SUN C Q, QIN F, TIAN F, FERNIE A R, LI J S, YAN J B, YANG X H. Convergent selection of a WD40 protein that enhances grain yield in maize and rice. Science, 2022, 375(6587): eabg7985.
[21]
JIA H T, LI M F, LI W Y, LIU L, JIAN Y N, YANG Z X, SHEN X M, NING Q, DU Y F, ZHAO R, JACKSON D, YANG X H, ZHANG Z X. A serine/threonine protein kinase encoding gene KERNEL NUMBER PER ROW6 regulates maize grain yield. Nature Communications, 2020, 11(1): 988.
[22]
NING Q, JIAN Y N, DU Y F, LI Y F, SHEN X M, JIA H T, ZHAO R, ZHAN J M, YANG F, JACKSON D, LIU L, ZHANG Z X. An ethylene biosynthesis enzyme controls quantitative variation in maize ear length and kernel yield. Nature Communications, 2021, 12(1): 5832.

doi: 10.1038/s41467-021-26123-z pmid: 34611160
[23]
ZHANG Y M, JIA Z Y, DUNWELL J M. Editorial: The applications of new multi-locus GWAS methodologies in the genetic dissection of complex traits. Frontiers in Plant Science, 2003, 14: 1340767.
[24]
WANG B B, HOU M, SHI J P, KU L X, SONG W, LI C H, NING Q, LI X, LI C Y, ZHAO B B, ZHANG R Y, XU H, BAI Z J, XIA Z C, WANG H, KONG D X, WEI H B, JING Y F, DAI Z Y, WANG H H, ZHU X Y, LI C H, SUN X, WANG S S, YAO W, HOU G G, QI Z, DAI H, LI X M, ZHENG H K, ZHANG Z X, LI Y, WANG T Y, JIANG T J, WAN Z M, CHEN Y H, ZHAO J R, LAI J S, WANG H Y. De novo genome assembly and analyses of 12 founder inbred lines provide insights into maize heterosis. Nature Genetics, 2023, 55(2): 312-323.

doi: 10.1038/s41588-022-01283-w pmid: 36646891
[25]
田爱梅, 于晖, 曹家树. 植物E3泛素连接酶的分类与功能. 中国细胞生物学学报, 2020, 42(5): 907-915.
TIAN A M, YU H, CAO J S. Classification and function of E3 ubiquitin ligase in plants. Chinese Journal of Cell Biology, 2020, 42(5): 907-915. (in Chinese)
[26]
LUO H L, LALUK K, LAI Z B, VERONESE P, SONG F M, MENGISTE T. The Arabidopsis botrytis Susceptible1 Interactor defines a subclass of RING E3 ligases that regulate pathogen and stress responses. Plant Physiology, 2010, 154(4): 1766-1782.
[27]
SONG X J, HUANG W, SHI M, ZHU M Z, LIN H X. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nature Genetics, 2007, 39(5): 623-630.
[28]
ZENDA T, LIU S T, WANG X, LIU G, JIN H Y, DONG A Y, YANG Y T, DUAN H J. Key maize drought-responsive genes and pathways revealed by comparative transcriptome and physiological analyses of contrasting inbred lines. International Journal of Molecular Sciences, 2019, 20(6): 1268.
[29]
RIDA S, MAAFI O, LÓPEZ-MALVAR A, REVILLA P, RIACHE M, DJEMEL A. Genetics of germination and seedling traits under drought stress in a MAGIC population of maize. Plants, 2021, 10(9): 1786.
[30]
段灿星, 王晓鸣, 宋凤景, 孙素丽, 周丹妮, 朱振东. 玉米抗穗腐病研究进展. 中国农业科学, 2015, 48(11): 2152-2164. doi: 10.3864/j.issn.0578-1752.2015.11.007.
DUAN C X, WANG X M, SONG F J, SUN S L, ZHOU D N, ZHU Z D. Advances in research on maize resistance to ear rot. Scientia Agricultura Sinica, 2015, 48(11): 2152-2164. doi: 10.3864/j.issn.0578-1752.2015.11.007. (in Chinese)
[31]
MARTIN M, MIEDANER T, DHILLON B S, UFERMANN U, KESSEL B, OUZUNOVA M, SCHIPPRACK W, MELCHINGER A E. Colocalization of QTL for Gibberella ear rot resistance and low mycotoxin contamination in early European maize. Crop Science, 2011, 51(5): 1935-1945.
[32]
WEN J, SHEN Y Q, XING Y X, WANG Z Y, HAN S P, LI S J, YANG C M, HAO D Y, ZHANG Y. QTL mapping of resistance to Gibberella ear rot in maize. Molecular Breeding, 2020, 40(10): 94.
[33]
CURABA J, HERZOG M, VACHON G. GeBP, the first member of a new gene family in Arabidopsis, encodes a nuclear protein with DNA-binding activity and is regulated by KNAT1. The Plant Journal: for Cell and Molecular Biology, 2003, 33(2): 305-317.
[34]
CHEVALIER F, PERAZZA D, LAPORTE F, LE HÉNANFF G, HORNITSCHEK P, BONNEVILLE J M, HERZOG M, VACHON G. GeBP and GeBP-like proteins are noncanonical leucine-zipper transcription factors that regulate cytokinin response in Arabidopsis. Plant Physiology, 2008, 146(3): 1142-1154.
[35]
LUO Y, ZHANG M L, LIU Y, LIU J, LI W Q, CHEN G S, PENG Y, JIN M, WEI W J, JIAN L M, YAN J, FERNIE A R, YAN J B. Genetic variation in YIGE1 contributes to ear length and grain yield in maize. The New Phytologist, 2022, 234(2): 513-526.
[1] WANG JiaXin, HU JingYi, ZHANG Wei, WEI Qian, WANG Tao, WANG XiaoLin, ZHANG Xiong, ZHANG PanPan. Effects of Different Mulching Methods on the Production of Photosynthetic Substances and Water Use Efficiency of Intercropped Maize [J]. Scientia Agricultura Sinica, 2025, 58(3): 460-477.
[2] ZHANG FangFang, SONG QiLong, GAO Na, BAI Ju, LI Yang, YUE ShanChao, LI ShiQing. Effects of Long-Term Mulching Practices on Maize Yield, Soil Organic Carbon and Nitrogen Fractions and Indexes Related to Carbon and Nitrogen Pool on the Loess Plateau [J]. Scientia Agricultura Sinica, 2025, 58(3): 507-519.
[3] CAO ShiLiang, ZHANG JianGuo, YU Tao, YANG GengBin, LI WenYue, MA XueNa, SUN YanJie, HAN WeiBo, TANG Gui, SHAN DaPeng. Heterosis Groups Research in Maize Inbred Lines Based on Machine Learning [J]. Scientia Agricultura Sinica, 2025, 58(2): 203-213.
[4] ZHANG SiJia, YANG Jie, ZHAO Shuai, LI LiWei, WANG GuiYan. The Impact of Diversified Crops and Wheat-Maize Rotations on Soil Quality in the North China Plain [J]. Scientia Agricultura Sinica, 2025, 58(2): 238-251.
[5] CAO YanYong, CHENG ZeQiang, MA Juan, YANG WenBo, ZHU WeiHong, SUN XinYan, LI HuiMin, XIA LaiKun, DUAN CanXing. Integrating Transcriptomic and Metabolomic Analyses Reveals Maize Responses to Stalk Rot Caused by Fusarium proliferatum [J]. Scientia Agricultura Sinica, 2025, 58(1): 75-90.
[6] LÜ JinLing, YOU Ke, WANG XiaoFei, XIAO Qiang, LI WenFeng, MA Jin, YANG Qing, ZHANG JinPing, KONG HaiJiang, CHANG YunHua. Variation Characteristics and Key Influencing Factors of Near-Surface Ambient Ammonia Concentration in Typical Cropland Areas in Henan Province [J]. Scientia Agricultura Sinica, 2025, 58(1): 127-140.
[7] ZHANG Ying, SHI TingRui, CAO Rui, PAN WenQiu, SONG WeiNing, WANG Li, NIE XiaoJun. Genome-Wide Association Study of Drought Tolerance at Seedling Stage in ICARDA-Introduced Wheat [J]. Scientia Agricultura Sinica, 2024, 57(9): 1658-1673.
[8] FAN Hong, YIN Wen, HU FaLong, FAN ZhiLong, ZHAO Cai, YU AiZhong, HE Wei, SUN YaLi, WANG Feng, CHAI Qiang. Compensation Potential of Dense Planting on Nitrogen Reduction in Maize Yield in Oasis Irrigation Area [J]. Scientia Agricultura Sinica, 2024, 57(9): 1709-1721.
[9] XU Na, TANG Ying, XU ZhengJin, SUN Jian, XU Quan. Genetic Analysis and Candidate Gene Identification on Fertility and Inheritance of Hybrid Sterility of XI and GJ Cross [J]. Scientia Agricultura Sinica, 2024, 57(8): 1417-1429.
[10] WANG ChengZe, ZHANG Yan, FU Wei, JIA JingZhe, DONG JinGao, SHEN Shen, HAO ZhiMin. Bioinformatics and Expression Pattern Analysis of Maize ACO Gene Family [J]. Scientia Agricultura Sinica, 2024, 57(7): 1308-1318.
[11] ZHAO ZhenJian, WANG Kai, CHEN Dong, SHEN Qi, YU Yang, CUI ShengDi, WANG JunGe, CHEN ZiYang, YU ShiXin, CHEN JiaMiao, WANG XiangFeng, TANG GuoQing. Integrated Aanalysis of Genome and DNA Methylation for Screening Key Genes Related to Pork Quality Traits [J]. Scientia Agricultura Sinica, 2024, 57(7): 1394-1406.
[12] GAO ChenXi, HAO LuYang, HU Yue, LI YongXiang, ZHANG DengFeng, LI ChunHui, SONG YanChun, SHI YunSu, WANG TianYu, LI Yu, LIU XuYang. Analysis of Transposable Element Associated Epigenetic Regulation under Drought in Maize [J]. Scientia Agricultura Sinica, 2024, 57(6): 1034-1048.
[13] ZHAO KaiNan, DING Hao, LIU AKang, JIANG ZongHao, CHEN GuangZhou, FENG Bo, WANG ZongShuai, LI HuaWei, SI JiSheng, ZHANG Bin, BI XiangJun, LI Yong, LI ShengDong, WANG FaHong. Nitrogen Fertilizer Reduction and Postponing for Improving Plant Photosynthetic Physiological Characteristics to Increase Wheat- Maize and Annual Yield and Economic Return [J]. Scientia Agricultura Sinica, 2024, 57(5): 868-884.
[14] WANG Yu, ZHANG YuPeng, ZHU GuanYa, LIAO HangXi, HOU WenFeng, GAO Qiang, WANG Yin. Effects of Localized Nitrogen Supply on Plant Growth and Water and Nitrogen Use Efficiencies of Maize Seedling Under Drought Stress [J]. Scientia Agricultura Sinica, 2024, 57(5): 919-934.
[15] GAO ShangJie, LIU XingRen, LI YingChun, LIU XiaoWan. Effects of Biochar and Straw Return on Greenhouse Gas Emissions and Global Warming Potential in the Farmland [J]. Scientia Agricultura Sinica, 2024, 57(5): 935-949.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!