Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (3): 582-599.doi: 10.3864/j.issn.0578-1752.2025.03.013

• FOOD SCIENCE AND ENGINEERING • Previous Articles     Next Articles

Variation of Different Drying Methods on the Quality of Capsicum annuum L.

WU LiDong(), LIN ShuTing(), QIU YinHui, LIU YaTing, ZHANG Rui, LI YongQing, SHANG Wei, ZHONG LiuQing   

  1. Sanming Academy of Agricultural Sciences/Fujian Key Laboratory of Crop Genetic Improvement and Innovative Utilization for Mountain Area, Sanming 365500, Fujian
  • Received:2024-06-18 Accepted:2024-08-10 Online:2025-02-01 Published:2025-02-11
  • Contact: LIN ShuTing

Abstract:

【Objective】In order to provide a theoretical basis for the processing and industrialization of dried capsicum products, the differences of different drying methods on the quality characteristics of capsicum were explored. 【Method】With self breeding MJ7 and MJ8 as test materials, differences in their appearance, nutritional components, and volatile components were analyzed based on 3 different methods: natural drying (ND), hot air drying (HAD), and vacuum freeze drying (VFD), and the topsis method was used for comprehensive evaluation. 【Result】With an overall performance of HAD>ND>VFD, capsicum by VFD had the closest appearance to fresh, and the values of L*, a* (red pepper)/b* (yellow pepper), and C were significantly(P<0.05) higher than those of ND and HAD. The content of HAD dihydrocapsaicin were lowest at 1.82和2.06 g·kg-1, which was significantly different from ND and VFD (P<0.05). VFD had a a good yield of capsaicin in MJ7 with content of 7.01 g·kg-1. In contrary to red pepper, yellow pepper had a significant difference(P<0.05) in color value, VFD exhibited a highest value of 2.48, which were twice and 1.84 times higher than that of ND and HAD. HAD retained theirs fat and protein better, while ND and VFD difference were marked. ND had the highest retention of sugars at 41.38 and 35.36 mg·g-1, which were higher than VFD and HAD for 1.03 and 1.1 times. The crude fiber of both two types capsicums showed no obvious significant difference with content at 20.56%-20.61% and 21.91%-21.95%. Meanwhile, 73 volatile components were identified in two types of capsicums, including esters, ketones, alcohols, aldehydes, acids and terpenes. Volatile components in three types of dried capsicums were the same, esters were the main volatile components in capsicums. But their content was different, ND accounted for 40.35% and 58.66%, while HAD and VFD up to 72%, mainly included Hexyl 2-methylbutanoate (D), Hexyl 2-methylpropanoate (D), and n-octyl acetate (D). The result of cluster analysis was consistent with principal component analysis, the three drying methods of capsicums are classified separately. 19 characteristic differential metabolites were identified by partial least squares analysis, among which Hexyl 2-methylbutanoate (D), Hexyl 2-methylpropanoate (D), Acetic acid butyl ester (D), and 4-Methyl-2-pentanone (D) contributed the most. The topsis comprehensive evaluation analysis showed that VFD was the best in quality performance, followed by HAD, and ND had the worst performance. 【Conclusion】The effects of different drying methods exhibited various influences on the appearance, nutritional components, and volatile components of capsicums. Due to its good performance in overall quality, VFD can be used as an ideal drying method for capsicums.

Key words: Capsicum annuum L., drying methods, phenotypic characteristics, volatile components, quality assessment

Fig. 1

Phenotypic characteristics of capsicum by different drying methods ND: Natural drying; HAD: Hot air drying; VFD: Vacuum freeze drying. The same as below"

Table 1

Measurement results of color difference of capsicum by different drying methods"

名称Name 类别 Type L* a* b* C H
明椒7号
MJ7
ND 52.64±0.52b 24.34±0.29b 24.71±0.53b 34.68±0.45b 45.43±0.65a
HAD 50.55±0.27a 20.24±0.08a 23.47±0.87a 31.00±0.63a 49.20±1.10b
VFD 56.71±0.64c 28.51±0.83c 31.91±0.17c 42.80±0.57c 48.22±0.84b
RSD 2.69 3.53 3.89 5.13 1.85
明椒8号
MJ8
ND 63.98±0.30b 15.60±0.12a 34.42±0.16b 37.79±0.11b 65.65±0.24b
HAD 54.33±0.37a 16.30±0.12b 26.89±0.46a 31.45±0.42a 58.77±0.41a
VFD 71.47±0.17c 16.74±0.51c 47.11±0.60c 49.99±0.72c 70.45±0.36c
RSD 7.27 0.56 8.65 7.98 4.97

Table 2

Effects of different drying methods on nutritional components of capsicum"

成分
Component
明椒7号MJ7 明椒8号MJ8
ND HAD VFD ND HAD VFD
二氢辣椒素Dihydrocapsaicin (g·kg-1) 2.09±0.03c 1.82±0.04a 1.95±0.04b 2.41±0.04b 2.06±0.04a 2.36±0.06b
辣椒素Capsaicin (g·kg-1) 6.70±0.09a 6.57±0.10a 7.01±0.15b 8.07±0.09a 8.13±0.19a 8.31±0.22a
辣椒素总量Total amount of capsaicin (g·kg-1) 9.77±0.14b 9.33±0.15a 9.95±0.21b 11.64±0.14ab 11.32±0.25a 11.85±0.31b
色价Color value 3.61±0.28a 3.54±0.11a 3.63±0.30a 1.24±0.02a 1.35±0.03b 2.48±0.01c
脂肪Crude fat (%) 4.45±0.03a 5.65±0.28c 5.12±0.31b 6.29±0.28a 9.42±0.03b 6.29±0.30a
蛋白质Protein (g/100 g) 8.34±0.09a 9.19±0.02b 8.53±0.32a 8.26±0.09a 9.90±0.12b 8.28±0.14a
粗纤维Crude fiber (%) 20.56±0.14a 20.61±0.02a 20.56±0.13a 21.95±0.06a 21.91±0.03a 21.92±0.09a
总糖Total sugar (mg·g-1) 41.38±0.35c 37.76±0.11a 40.16±0.35b 35.36±0.35c 32.41±0.11a 34.26±0.35b

Fig. 2

Three-dimensional GC-IMS spectra of volatile components in capsicum by different drying methods The red vertical line in the figure represents the peak of reactive ions (RIP), and each point on both sides of RIP represents a volatile component. The depth of the point color represents the strength of the signal, and the darker the color, the higher the concentration of the substance"

Fig. 3

Two-dimensional GC-IMS spectra of volatile components in capsicum by different drying methods A: Vertical view; B: MJ7 differential spectrogram; C: MJ8 differential spectrogram"

Table 3

The list of volatile components in capsicum"

编号
No.
名称
Name
CAS# 保留
时间
Rt (s)
相对迁
移时间
Rdt
组分峰体积Component peak volume (V.s.ms)
MJ7-ND MJ7-HAD MJ7-VFD MJ8-ND MJ8-HAD MJ8-VFD
酯类Esters
F1 苯甲酸异戊酯Isoamyl benzoate C94-46-2 2445.698 1.47551 1544.78±23.52 1881.78±193.12 1729.20±47.44 1797.89±103.21 2224.20±6.57 2477.04±336.28
F7 乙酸正辛酯(D)n-octyl acetate (D) C112-14-1 1020.841 2.13136 2646.34±726.23 20095.85±2687.54 17298.85±667.12 5180.22±1482 24274.52±1802.33 30651.45±3250.68
F8 乙酸正辛酯(M)n-octyl acetate (M) C112-14-1 1003.022 1.51912 1432.05±391.41 1501.94±184.21 1937.05±84.44 1858.03±126.06 1094.97±122.22 1011.00±81.79
F9 异戊酸己酯(D)Hexyl 2-methylbutanoate (D) C10032-15-2 884.970 2.18421 29612.47±8153.88 88303.64±3980.93 83309.84±1579.16 58338.75±5547.59 90472.75±1720.25 93091.80±3038.9
F10 异戊酸己酯(M)Hexyl 2-methylbutanoate (M) C10032-15-2 905.564 1.51902 7547.28±413.16 5085.85±566.89 5851.94±219.66 7331.37±133.76 4469.13±405.58 4326.33±481.15
F11 丁内酯(M)Butyrolactone (M) C96-48-0 1344.926 1.08947 390.45±68.60 704.26±76.44 1708.36±383.48 1264.01±376.30 662.00±29.50 883.20±111.63
F12 丁内酯(D)Butyrolactone (D) C96-48-0 1346.538 1.31169 154.82±12.68 110.88±16.84 269.57±70.53 193.42±57.39 128.45±10.53 221.87±26.45
F23 异丁酸己酯(D)Hexyl 2-methylpropanoate (D) C2349-07-7 747.654 2.07726 5965.20±1469.89 50968.67±3601.46 55580.09±996.72 19902.97±3500.11 54206.29±1326.17 64141.88±3867.96
F24 异丁酸己酯(M)Hexyl 2-methylpropanoate (M) C2349-07-7 745.033 1.45957 732.51±174.13 2456.20±185.41 2290.00±76.61 1563.58±152.28 2263.41±102.90 2027.34±274.54
F25 异戊酸异戊酯(D)Isoamyl 3-methylbutyrate (D) C659-70-1 655.051 2.04927 1338.10±387.55 11349.38±1147.88 11598.79±258.65 3877.19±501.14 13587.08±532.15 17066.69±1488.53
F26 异戊酸异戊酯(M)Isoamyl 3-methylbutyrate (M) C659-70-1 662.913 1.46704 179.99±13.75 74.32±7.83 61.13±2.28 139.69±9.60 49.27±6.53 45.74±10.49
F29 醋酸丁酯(D)Acetic acid butyl ester (D) C123-86-4 360.017 1.63333 332.95±28.30 4704.50±380.85 1152.27±67.29 166.82±15.17 3814.86±71.46 547.07±45.03
F30 醋酸丁酯(M)Acetic acid butyl ester (M) C123-86-4 360.017 1.24777 1355.56±85.80 1912.69±153.65 2138.36±54.97 545.24±24.01 2045.11±33.25 1354.32±42.86
F40 异戊酸丁酯butyl 3-methylbutanoate C109-19-3 687.787 1.88082 823.54±178.80 2613.86±276.39 1681.73±22.35 1981.79±39.66 2743.96±125.08 1543.17±94.34
F49 丁酸乙酯(M)Butanoic acid ethyl ester (M) C105-54-4 341.396 1.21081 1404.38±31.83 559.19±37.88 315.86±10.37 1403.68±18.71 756.74±23.42 406.93±42.02
F50 丁酸乙酯(D)Butanoic acid ethyl ester (D) C105-54-4 335.812 1.56265 155.73±12.44 62.56±3.80 323.78±32.03 323.33±8.61 136.28±6.32 367.97±10.99
F55 乙酸乙酯(D)Acetic acid ethyl ester (D) C141-78-6 247.012 1.34975 1910.61±58.32 141.57±11.57 2098.30±433.30 740.56±20.63 80.07±7.56 379.01±9.06
F56 乙酸乙酯(M)Acetic acid ethyl ester (M) C141-78-6 239.148 1.09900 132.06±6.87 322.26±18.99 173.45±5.93 112.31±1.08 234.97±25.12 103.09±5.65
F63 乙酸香叶酯Geranyl acetate C105-87-3 1769.832 1.21657 891.04±218.13 1639.61±91.73 1669.89±37.35 1374.90±107.81 1507.15±122.42 1489.86±78.09
F72 2-甲基丁酸丁酯(D)Butyl 2-methylbutanoate (D) C15706-73-7 569.944 1.91134 758.54±115.76 353.19±61.81 507.82±63.46 226.49±7.58 852.23±121.89 2936.72±849.82
F73 2-甲基丁酸丁酯(M)Butyl 2-methylbutanoate(M) C15706-73-7 574.345 1.39338 517.3±28.26 320.85±15.88 355.80±7.84 296.28±8.13 464.16±16.30 812.19±32.29
酮类Ketones
F19 3-甲基-2-环戊烯-1-酮
3-Methyl-2-cyclopenten-1-one
C2758-18-1 1045.631 1.10911 196.81±16.31 743.06±89.49 239.16±70.28 135.94±5.34 546.98±13.57 132.20±38.76
F20 3-壬烯-2-酮3-nonen-2-one C14309-57-0 1029.482 1.38269 174.10±24.39 566.56±41.19 644.53±38.62 455.25±58.12 846.21±34.82 1085.88±114.19
F35 2-戊酮2-Pentanone C107-87-9 292.390 1.38450 633.10±37.02 273.65±20.46 648.46±89.73 977.05±68.15 566.03±51.55 744.92±35.65
F37 羟基丙酮(D)1-hydroxy-2-propanone (D) C116-09-6 668.136 1.24327 1740.10±120.50 407.75±62.86 615.86±31.19 706.13±63.15 230.17±23.94 275.06±59.06
F38 羟基丙酮(M)1-hydroxy-2-propanone (M) C116-09-6 665.868 1.05767 876.13±97.04 507.10±129.03 368.16±14.93 690.84±19.66 441.63±36.62 312.91±41.51
F39 仲辛酮2-Octanone C111-13-7 666.624 1.34294 5472.72±503.74 1319.77±194.23 1675.35±61.27 2346.06±141.57 762.25±94.68 779.87±183.68
F53 异己酮(D)4-Methyl-2-pentanone (D) C108-10-1 302.479 1.47539 863.78±100.71 610.63±84.51 4061.72±221.76 707.77±32.40 723.29±79.30 2984.92±27.86
F54 异己酮(M)4-Methyl-2-pentanone (M) C108-10-1 304.890 1.18303 934.15±103.88 142.72±21.09 170.86±5.28 633.67±22.48 256.60±24.13 118.85±8.16
F59 丙酮Acetone C67-64-1 232.800 1.12265 6963.70±82.98 6382.20±56.84 7182.53±89.97 7962.24±14.48 7968.37±82.58 8974.84±32.30
醇类Alcohols
F2 香叶醇Geraniol C106-24-1 2103.898 1.20636 1339.78±360.79 958.87±136.45 1817.62±246.33 1049.64±221.47 938.42±30.43 1953.27±266.06
F36 反式-2-已烯-1-醇2-hexen-1-ol C2305-21-7 746.351 1.18220 1197.95±187.28 204.14±18.44 218.02±13.37 1791.30±182.15 305.83±21.24 348.80±80.22
F41 异戊醇(D)1-Butanol, 3-methyl (D) C123-51-3 539.643 1.49245 1450.45±54.54 1492.82±22.22 1600.46±5.40 1696.21±25.60 1268.88±20.27 1395.59±150.94
F42 异戊醇(M)1-Butanol, 3-methyl (M) C123-51-3 547.201 1.23983 1113.44±59.10 1436.01±39.65 1167.27±50.29 791.86±27.49 1206.20±8.58 1069.13±56.80
F45 1-戊烯-3-醇(D)1-Penten-3-ol (D) C616-25-1 477.664 1.34638 314.91±23.87 741.06±57.25 1010.15±15.56 275.35±10.94 1040.11±53.56 1436.31±11.93
F46 1-戊烯-3-醇(M)1-Penten-3-ol (M) C616-25-1 461.018 0.95139 840.28±58.40 991.88±23.35 981.36±14.45 594.12±9.83 831.41±24.30 886.76±63.45
F47 异丁醇(M)1-Propanol, 2-methyl (M) C78-83-1 392.047 1.16843 817.57±38.25 1550.37±55.54 1337.96±56.88 416.22±60.14 1281.98±18.69 1241.59±66.20
F48 异丁醇(D)1-Propanol, 2-methyl (D) C78-83-1 390.969 1.36749 2108.32±49.94 2324.87±96.82 3323.16±14.13 2135.81±34.59 1703.54±20.98 2674.88±110.47
F61 乙醇Ethanol C64-17-5 252.249 1.04054 811.22±73.38 2711.60±62.46 1783.00±206.15 851.52±14.47 2685.51±98.39 2518.53±44.28
醛类Aldehydes
F5 苯甲醛(M)Benzaldehyde (M) C100-52-7



1007.477
1.15353 19252.09±5495.84 5233.36±656.38 4145.44±451.37 9413.87±896.62 3360.07±215.38 2339.48±397.80
F6 苯甲醛(D)Benzaldehyde (D) C100-52-7 1076.526 1.46186 852.43±100.20 1115.32±125.04 1143.45±37.89 1368.65±165.43 3064.12±294.72 4177.42±693.24
F13 苯乙醛phenylacetaldehyde C122-78-1 1452.944 1.24644 1591.74±186.75 1086.87±129.78 827.47±38.64 912.60±90.27 898.68±92.91 505.37±84.67
F14 反式-2-癸烯醛(E)-2-decenal C3913-81-3 1290.805 1.46897 340.71±46.74 979.11±289.83 752.44±56.98 317.13±46.52 1189.34±140.29 1210.30±272.13
F27 壬醛(M)1-nonanal (M) C124-19-6 806.187 1.49503 2602.18±270.29 1031.63±210.20 1069.75±39.06 2432.79±231.13 961.19±116.74 702.50±133.84
F28 壬醛(D)1-nonanal (D) C124-19-6 818.417 1.94663 354.44±62.75 66.62±5.93 69.37±2.30 392.10±68.72 71.88±4.65 68.48±8.22
F31 正戊醛(D)n-Pentanal (D) C110-62-3 295.489 1.43147 880.51±29.66 1277.81±20.25 218.86±9.07 1427.80±33.24 1528.55±80.77 495.85±22.93
F32 正戊醛(M)n-Pentanal (M) C110-62-3 291.063 1.20003 477.08±15.28 375.73±6.37 1806.60±82.84 394.91±7.94 434.68±13.64 794.11±8.06
F33 异戊醛3-Methyl butanal C590-86-3 262.734 1.41866 1064.49±12.44 1972.76±22.53 984.35±13.07 1111.52±7.51 1925.76±28.76 989.02±2.96
F34 2-甲基丁醛2-methyl butanal C96-17-3 271.587 1.39218 1992.34±77.58 1351.03±35.39 2252.44±204.93 955.43±28.04 1372.94±138.84 3298.10±221.11
F43 庚醛(D)Heptaldehyde (D) C111-71-7 495.048 1.70726 1772.06±40.21 278.31±13.81 377.76±39.48 2698.02±77.67 268.09±20.87 193.68±26.49
F44 庚醛(M)Heptaldehyde (M) C111-71-7 501.851 1.32919 1310.69±96.08 442.56±7.30 802.37±8.26 1184.68±28.91 395.60±39.95 363.58±18.79
F51 正己醛(M)1-hexanal (M) C66-25-1 367.110 1.26600 791.20±48.14 468.20±47.60 692.06±27.97 537.71±33.49 636.35±28.16 710.16±99.59
F52 正己醛(D)1-hexanal (D) C66-25-1 368.798 1.57021 1081.34±11.16 929.32±127.95 579.94±68.37 1914.41±59.13 1024.43±40.81 676.67±123.82
F57 丁醛(M)Butanal (M) C123-72-8 253.155 1.11522 306.65±8.36 638.24±18.75 446.74±27.77 331.50±7.30 649.84±6.97 501.82±4.30
F58 丁醛(D)Butanal (D) C123-72-8 252.170 1.29191 679.17±22.60 132.95±7.45 476.90±46.18 406.92±2.34 109.51±4.08 203.84±10.20
F60 异丁醛2-Methyl propanal C78-84-2 215.071 1.09292 2568.23±11.43 2075.91±13.14 3412.97±27.19 1839.16±13.26 1899.50±16.29 3604.91±111.81
F76 反式-2-戊烯醛(D)(E)-2-Pentenal (D) C1576-87-0 425.839 1.35197 5901.18±324.95 4360.62±208.96 2623.37±86.55 7315.99±195.84 3975.80±95.66 3213.28±174.44
F77 反式-2-戊烯醛(M)(E)-2-Pentenal (M) C1576-87-0 425.839 1.10842 202.12±1.79 179.93±5.53 233.26±8.35 204.54±13.05 268.70±8.08 368.64±17.30
酸类Acids
F15 丁酸(D)Butanoic acid (D) C107-92-6 1287.869 1.37427 885.85±259.64 1888.15±45.47 1612.31±212.60 1070.58±144.13 1652.87±294.22 1385.60±237.68
F16 丁酸(M)Butanoic acid (M) C107-92-6 1286.401 1.14699 3336.32±977.73 4247.79±212.34 4281.40±186.18 4082.08±73.76 4425.99±145.64 4159.47±284.49
F17 丙酸(M)Propanoic acid (M) C79-09-4 1195.378 1.10701 1419.06±291.07 1062.44±30.16 911.36±127.22 1081.33±74.19 1064.76±32.10 742.75±125.22
F18 丙酸(D)Propanoic acid (D) C79-09-4 1195.378 1.26274 375.06±75.47 257.08±27.36 171.99±48.51 180.41±8.77 228.31±17.30 144.12±19.65
F65 异丁酸(M)Isobutyric acid (M) C79-31-2 1338.150 1.15766 1411.04±386.67 2293.84±195.03 1826.11±141.65 2195.92±466.24 3477.63±172.45 2439.31±239.18
F66 异丁酸(D)Isobutyric acid (D) C79-31-2 1335.391 1.37424 125.96±36.00 311.99±33.69 199.67±17.03 223.14±63.53 796.93±58.42 347.05±70.27
萜烯类Terpenes
F64 金合欢烯Farnesene C18794-84-8 1520.651 1.44803 1244.07±297.23 2259.63±549.83 1812.03±159.23 977.30±270.31 2684.77±242.53 2663.55±724.55
F69 罗勒烯(D)Ocimene (D) C13877-91-3 607.715 1.25999 2379.83±78.58 2767.93±17.72 2676.44±16.56 1636.25±100.29 2505.96±35.80 2731.44±76.16
F70 罗勒烯(M)Ocimene (M) C13877-91-3 601.848 1.21600 1065.56±37.51 995.33±69.08 974.00±9.35 732.50±70.05 1028.76±60.76 832.46±113.11
F71 罗勒烯(P)Ocimene (P) C13877-91-3 605.148 1.71551 407.22±42.49 1354.87±69.23 1279.67±10.26 153.21±22.30 779.12±30.88 1098.19±78.65
其他类Others
F3 2-乙酰基-5-甲基呋喃(D)
2-Acetyl-5-methylfuran (D)
C1193-79-9 1225.762 1.58739 532.01±96.85 2269.06±321.83 2503.30±188.81 596.36±177.78 909.26±46.36 1197.77±180.71
F4 2-乙酰基-5-甲基(M)
2-Acetyl-5-methylfuran (M)
C1193-79-9 1201.261 1.14472 1813.71±446.67 2095.53±306.58 1816.21±51.82 2215.37±229.45 2863.74±62.74 2320.01±130.71
F21 2-异丁基-3-甲氧基吡嗪(D)
2-Isobutyl-3-methoxypyrazine (D)
C24683-00-9 1044.163 1.83726 273.35±18.50 2538.97±194.97 580.73±156.80 300.01±6.29 2036.76±224.40 502.33±184.54
F22 2-异丁基-3-甲氧基吡嗪(M)
2-Isobutyl-3-methoxypyrazine (M)
C24683-00-9 1055.908 1.30272 422.93±105.15 133.77±22.26 115.13±13.83 218.69±16.94 127.80±20.94 136.91±6.74
F62 甲基糠基二硫2-furfuryl methyl disulfide C57500-00-2 1767.187 1.20202 870.98±252.32 1943.26±94.26 1991.39±104.15 1506.84±155.78 1931.91±315.40 1908.06±141.04
未知Unknown
F67 1 未知
Unidentified
1101.440 1.58489 2019.08±346.70 5382.15±228.80 6346.98±319.87 2465.02±529.30 3262.53±91.17 4058.68±432.66
F68 2 未知
Unidentified
778.768 1.27217 443.79±20.43 499.81±42.13 413.78±3.67 382.66±18.78 922.23±52.75 995.81±84.29
F74 3 未知
Unidentified
478.811 1.90457 392.55±74.72 1068.23±291.20 1971.44±123.02 344.77±19.76 2281.54±303.55 5647.39±1306.18
F75 4 未知
Unidentified
597.368 1.65430 1073.79±87.69 1578.89±73.35 1161.68±25.65 2045.2±24.91 3080.20±184.17 2188.17±117.00

Fig. 4

The content of volatile components in capsicum by different drying methods A: Content; B: Relative content"

Fig. 5

Fingerprint of volatile components in capsicum by different drying methods"

Fig. 6

Cluster analysis of capsicum with different drying methods"

Fig. 7

PCA score plot"

Fig. 8

The correlation between different drying methods and volatile components of capsicum (Bioplot) p(corr)[n], t(corr)[n] represent the correlation of variables on the principal component n"

Fig. 9

PLS-DA of volatile components in capsicum with different drying methods A: Score plot. t[1] and t[2] represent the predicted principal component scores of the first and second principal components; B: Permutation test; C: VIP results"

Table 4

List of differential metabolites"

排名Rank VIP值 VIP value 编号No. 成分Compound 气味描述Odor
1 3.19 F9 异戊酸己酯(D)Hexyl 2-methylbutanoate (D) 果香Fruit
2 3.19 F23 异丁酸己酯(D)Hexyl 2-methylpropanoate (D) 果香Fruit
3 2.35 F29 醋酸丁酯(D)Acetic acid butyl ester (D) 果香Fruit
4 2.05 F53 异己酮(D)4-Methyl-2-pentanone (D) 芳香酮味Sweet, ketone
5 1.99 F7 乙酸正辛酯(D)n-octyl acetate (D) 果香Fruit
6 1.67 F21 2-异丁基-3-甲氧基吡嗪(D)2-Isobutyl-3-methoxypyrazine(D) 泥土、香料、青椒Earth, spice, green pepper
7 1.56 F25 异戊酸异戊酯(D)Isoamyl 3-methylbutyrate (D) 苹果香Apple
8 1.51 F60 异丁醛2-Methyl propanal 麦芽Malty
9 1.47 F5 苯甲醛(M)Benzaldehyde(M) 苦杏仁、樱桃、坚果Almonds, cherrie, nut
10 1.36 F74 - -
11 1.34 F34 2-甲基丁醛2-methyl butanal 咖啡、可可Coffee, cocoa
12 1.29 F33 异戊醛3-Methyl butanal 苹果、桃子香Apple, peach
13 1.27 F31 正戊醛(D)n-Pentanal (D) 辛辣、刺激Pungent
14 1.20 F40 异戊酸丁酯butyl 3-methylbutanoate 香蕉、蓝干酪Banana, blue cheese
15 1.17 F2 香叶醇Geraniol 玫瑰Rose
16 1.16 F55 乙酸乙酯(D)Acetic acid ethyl ester (D) 果香Fruit
17 1.15 F76 反式-2-戊烯醛(D)(E)-2-Pentenal (D) 辛辣、刺激Pungent
18 1.15 F48 异丁醇(D)1-Propanol, 2-methyl (D) 辛辣、刺激Pungent
19 1.06 F32 正戊醛(M)n-Pentanal (M) 辛辣、刺激Pungent

Table 5

Topsis analysis of capsicum by different drying methods"

类别
Type
明椒7号
MJ7
明椒8号
MJ8
排名
Rank
ND 0.40 0.35 3
HAD 0.45 0.45 2
VFD 0.60 0.56 1
[1]
曹珍珍. 辣椒干燥动力学及生物活性评价研究[D]. 北京: 中国农业科学院, 2015.
CAO Z Z. Study on drying kinetics and biological activity evaluation of pepper[D]. Beijing: Chinese Academy of Agricultural Sciences, 2015. (in Chinese)
[2]
CHEN Z Y, HUANG H H, LI Q C, ZHAN F B, WANG L B, HE T, YANG C H, WANG Y, ZHANG Y, QUAN Z X. Capsaicin reduces cancer stemness and inhibits metastasis by downregulating SOX2 and EZH2 in osteosarcoma. The American Journal of Chinese Medicine, 2023, 51(4): 1041-1066.
[3]
范三红, 王娇娇, 李佳妮, 白宝清. 辣椒红色素和辣椒碱体内抗氧化活性及降血脂功能. 食品科学, 2021, 42(5): 201-207.
FAN S H, WANG J J, LI J N, BAI B Q. In vivo antioxidant activity and hypolipidemic effect of capsanthin and capsaicin. Food Science, 2021, 42(5): 201-207. (in Chinese)
[4]
SREENIVASAN L, WATSON R R. Reduction is the new youth. Bioactive Nutraceuticals and Dietary Supplements in Neurological and Brain Disease. Amsterdam: Elsevier, 2015: 137-140.
[5]
XU Y F, KONG W M, ZHAO S M, XIONG D, WANG Y J. Capsaicin enhances cisplatin-induced anti-metastasis of nasopharyngeal carcinoma by inhibiting EMT and ERK signaling via serpin family B member 2. Carcinogenesis, 2024, 45(8): 556-568.
[6]
董静, 张国辉, 王洪涛. 辣椒中辣椒碱和辣椒红色素的提取及应用. 食品科技, 2006, 31(2): 60-62.
DONG J, ZHANG G H, WANG H T. Extraction and application of capsaicin and hot pepper and red pigment in Capsicum. Food Science and Technology, 2006, 31(2): 60-62. (in Chinese)
[7]
STAHL W, SIES H. Bioactivity and protective effects of natural carotenoids. Biochimica et Biophysica Acta, 2005, 1740(2): 101-107.

pmid: 15949675
[8]
史传统. 中国辣椒行业发展现状分析及发展前景展望. [2024-06-22]. http://k.sina.com.cn/article78308003701d2c087f2001028vtk.html.
SHI C T. Analysis of the development status and prospects of China's Chili pepper industry. [2024-06-22]. http://k.sina.com.cn/article78308003701d2c087f2001028vtk.html. (in Chinese)
[9]
MAURYA V K, GOTHANDAM K M, RANJAN V, SHAKYA A, PAREEK S. Effect of drying methods (microwave vacuum, freeze, hot air and Sun drying) on physical, chemical and nutritional attributes of five pepper (Capsicum annuum var. annuum) cultivars. Journal of the Science of Food and Agriculture, 2018, 98(9): 3492-3500.
[10]
张爱民, 蓬桂华, 付文婷, 韩世玉. 不同制干方法对辣椒干品质的影响. 蔬菜, 2015(9): 14-17.
ZHANG A M, PENG G H, FU W T, HAN S Y. Effects of different drying methods on the quality of dried Chili peppers. Vegetables, 2015(9): 14-17. (in Chinese)
[11]
曹珍珍, 周林燕, 毕金峰, 李淑荣, 易建勇, 陈芹芹. 干燥方式对辣椒中活性物质含量和抗氧化能力的影响. 中国食品学报, 2017, 17(2): 173-181.
CAO Z Z, ZHOU R L, BI J F, LI S R, YI J Y, CHEN Q Q. Effect of drying technologies on the anti-oxidative substance and antioxidant capacity of red pepper. Journal of Chinese Institute of Food Science and Technology, 2017, 17(2): 173-181. (in Chinese)
[12]
SPERANZA G, SCALZO R L, MORELLI C F, RABUFFETTI M, BIANCHI G. Influence of drying techniques and growing location on the chemical composition of sweet pepper (Capsicum annuum L., var. Senise). Journal of Food Biochemistry, 2019, 43(11): e13031.
[13]
帅良, 林德胜, 廖玲燕, 刘云芬, 盘喻颜, 梁园丽, 殷菲胧, 蔡文. 不同贮藏温度对百香果果实糖酸组分变化的影响. 核农学报, 2023, 37(12): 2408-2416.

doi: 10.11869/j.issn.1000-8551.2023.12.2408
SHUAI L, LIN D S, LIAO L Y, LIU Y F, PAN Y Y, LIANG Y L, YIN F L, CAI W. Effect of different storage temperatures on the sugar and acid components of passion fruit. Journal of Nuclear Agricultural Sciences, 2023, 37(12): 2408-2416. (in Chinese)

doi: 10.11869/j.issn.1000-8551.2023.12.2408
[14]
罗思悦, 何莲, 朱开宪, 易宇文, 乔明锋, 苗保河. 5种不同干燥处理方式对玫瑰花品质的影响比较研究. 食品安全质量检测学报, 2023, 14(12): 35-45.
LUO S Y, HE L, ZHU K X, YI Y W, QIAO M F, MIAO B H. A comparative study on the effects of 5 kinds of different drying treatments on Rosa rugosa quality. Journal of Food Safety & Quality, 2023, 14(12): 35-45. (in Chinese)
[15]
孟令帅, 王瑞, 郑婷婷, 张欣慰, 牟芬, 陈光贤, 舒启成, 马超. 不同干燥方式对红托竹荪感官品质的影响. 食品与发酵工业, 2023, 49(7): 249-255.

doi: 10.13995/j.cnki.11-1802/ts.029910
MENG L S, WANG R, ZHENG T T, ZHANG X W, MU F, CHEN G X, SHU Q C, MA C. Effects of different drying methods on sensory quality of Dictyophora rubrovalvata. Food and Fermentation Industries, 2023, 49(7): 249-255. (in Chinese)
[16]
胡雨卿, 余元善, 宋贤良, 邹波, 吴继军, 徐玉娟, 肖更生, 胡腾根. 多酚对类胡萝卜素抗氧化性和稳定性的影响. 食品工业科技, 2023, 44(19): 57-67.
HU Y Q, YU Y S, SONG X L, ZOU B, WU J J, XU Y J, XIAO G S, HU T G. Effect of polyphenols on antioxidant properties and stabilities of carotenoids. Science and Technology of Food Industry, 2023, 44(19): 57-67. (in Chinese)
[17]
齐立军, 王苗, 栗永刚, 黄利勇, 连运河. 不同干燥方式对鲜辣椒组分的影响研究. 中国食品添加剂, 2022, 33(7): 158-164.
QI L J, WANG M, LI Y G, HUANG L Y, LIAN Y H. Effect of different drying methods on the components of fresh hot pepper. China Food Additives, 2022, 33(7): 158-164. (in Chinese)
[18]
LANG Y Q, YANAGAWA S, SASANUMA T, SASAKUMA T. Orange fruit color in Capsicum due to deletion of capsanthin- capsorubin synthesis gene. Breeding Science, 2004, 54(1): 33-39.
[19]
戴雄泽, 王利群, 陈文超, 张竹青, 杨博智, 刘智敏. 辣椒果实发育过程中果色与类胡萝卜素的变化. 中国农业科学, 2009, 42(11): 4004-4011. doi: 10.3864/j.issn.0578-1752.2009.11.030.
DAI X Z, WANG L Q, CHEN W C, ZHANG Z Q, YANG B Z, LIU Z M. Changes of fruit colors and carotenoid contents during the development of pepper fruit. Scientia Agricultura Sinica, 2009, 42(11): 4004-4011. doi: 10.3864/j.issn.0578-1752.2009.11.030. (in Chinese)
[20]
FEI X T, QI Y C, LEI Y, WANG S J, HU H C, WEI A Z. Transcriptome and metabolome dynamics explain aroma differences between green and red prickly ash fruit. Foods, 2021, 10(2): 391.
[21]
闫新焕, 谭梦男, 孟晓萌, 潘少香, 刘雪梅, 郑晓冬, 白瑞亮, 宋烨. 红枣片热风干制过程中特征香气活性化合物的确定及表征. 食品科学, 2022, 43(20): 222-231.
YAN X H, TAN M N, MENG X M, PAN S X, LIU X M, ZHENG X D, BAI R L, SONG Y. Characterization of key aroma-active compounds in red jujube slices during hot air drying. Food Science, 2022, 43(20): 222-231. (in Chinese)

doi: 10.7506/spkx1002-6630-20211213-140
[22]
张恩让, 任媛媛, 胡华群, 刘昱卉, 陈姗姗. 6个品种辣椒干的挥发性成分比较研究. 种子, 2009, 28(10): 88-90.
ZHANG E R, REN Y Y, HU H Q, LIU Y H, CHEN S S. Comparative studies on volatile compounds of six hotter pepper cultivars. Seed, 2009, 28(10): 88-90. (in Chinese)
[23]
范智义, 张敏, 邓维琴, 李龙, 万慧敏, 李洁芝, 王泽亮, 李恒. 不同产地辣椒挥发性成分的对比研究. 食品与发酵科技, 2022, 58(3): 113-118.
FAN Z Y, ZHANG M, DENG W Q, LI L, WAN H M, LI J Z, WANG Z L, LI H. Comparison of volatile compounds in red chilis with different origins. Food and Fermentation Sciences & Technology, 2022, 58(3): 113-118. (in Chinese)
[24]
高瑞萍, 刘嘉, 蒋智钢, 张孝刚, 王知松, 李岩. 遵义朝天红干辣椒挥发性风味物质的HS-SPME-GC-MS分析. 中国调味品, 2013, 38(10): 78-80.
GAO R P, LIU J, JIANG Z G, ZHANG X G, WANG Z S, LI Y. Headspace solid-phase micro extraction-gas chromatography-mass spectrometric analysis of volatile components in Zunyi Chaotianhong dried pepper. China Condiment, 2013, 38(10): 78-80. (in Chinese)
[25]
宋琛琛, 韩小贤, 张新阁, 郑学玲, 刘翀. 不同出粉率面粉和混合发酵剂所制馒头挥发性物质的分析. 河南工业大学学报(自然科学版), 2015, 36(5): 7-13.
SONG C C, HAN X X, ZHANG X G, ZHENG X L, LIU C. Analysis of volatile components in the steamed bread made with mixed fermenters and flour with different extraction rates. Journal of Henan University of Technology (Natural Science Edition), 2015, 36(5): 7-13. (in Chinese)
[26]
MAKHOUL S, ROMANO A, CAPOZZI V, SPANO G, APREA E, CAPPELLIN L, BENOZZI E, SCAMPICCHIO M, MÄRK T D, GASPERI F, EL-NAKAT H, GUZZO J, BIASIOLI F. Volatile compound production during the bread-making process: effect of flour, yeast and their interaction. Food and Bioprocess Technology, 2015, 8(9): 1925-1937.
[27]
刘娟, 赵欢蕊, 付咪咪, 段义忠. 基于气相色谱-离子迁移谱对百里香挥发性成分的分析. 中国调味品, 2021, 46(4): 153-156.
LIU J, ZHAO H R, FU M M, DUAN Y Z. Analysis of volatile components of Thymus vulgaris based on GC-IMS technique. China Condiment, 2021, 46(4): 153-156. (in Chinese)
[28]
BIRCH A N, PETERSEN M A, HANSEN Å S. REVIEW: Aroma of wheat bread crumb. Cereal Chemistry, 2014, 91(2): 105-114.
[29]
刘建林, 孙学颖, 张晓蓉, 王丹, 赵丽华, 靳烨. GC-MS结合电子鼻/电子舌分析发酵羊肉干的风味成分. 中国食品学报, 2021, 21(5): 348-354.
LIU J L, SUN X Y, ZHANG X R, WANG D, ZHAO L H, JIN Y. Analysis of flavor components of fermented mutton jerky by GC-MS combined with electronic nose/electronic tongue. Journal of Chinese Institute of Food Science and Technology, 2021, 21(5): 348-354. (in Chinese)
[30]
HWANG C L, YOON K. Lecture Notes in Economics and Mathematical Systems. Berlin, Heidelberg: Springer, 1981: 58-191.
[31]
AGHAJANI M, MOSTAFAZADEH-FARD B, NAVABIAN M. Assessing criteria affecting performance of the sefidroud irrigation and drainage network using TOPSIS-entropy theory. Irrigation and Drainage, 2017, 66(4): 626-635.
[32]
WANG Z G, WANG J B, ZHANG G P, WANG Z X. Evaluation of agricultural extension service for sustainable agricultural development using a hybrid entropy and TOPSIS method. Sustainability, 2021, 13(1): 347.
[33]
倪九派, 李萍, 魏朝富, 谢德体. 基于AHP和熵权法赋权的区域土地开发整理潜力评价. 农业工程学报, 2009, 25(5): 202-209.
NI J P, LI P, WEI Z F, XIE D T. Potentialities evaluation of regional land consolidation based on AHP and entropy weight method. Transactions of the Chinese Society of Agricultural Engineering, 2009, 25(5): 202-209. (in Chinese)
[1] WANG AnNa, WANG Yun, PENG XiaoWei, WU YuFang, KAN Huan, LIU Yun, QUAN Wei, LU Bin. Effects of Different Drying Methods on the Quality Characteristics of Dried Zanthoxylum armatum Leaves [J]. Scientia Agricultura Sinica, 2023, 56(18): 3655-3669.
[2] DONG SangJie,JIANG XiaoChun,WANG LingYu,LIN Rui,QI ZhenYu,YU JingQuan,ZHOU YanHong. Effects of Supplemental Far-Red Light on Growth and Abiotic Stress Tolerance of Pepper Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(6): 1189-1198.
[3] LI XiaoYing, WU JunKai, WANG HaiJing, LI MengYuan, SHEN YanHong, LIU JianZhen, ZHANG LiBin. Characterization of Volatiles Changes in Chinese Dwarf Cherry Fruit During Its Development [J]. Scientia Agricultura Sinica, 2021, 54(9): 1964-1980.
[4] ZHAO Shan,ZHONG LingLi,QIN Lin,HUANG ShiQun,LI Xi,ZHENG XingGuo,LEI XinYu,LEI ShaoRong,GUO LingAn,FENG JunYan. Effects of Different Drying Methods on Functional Components and Antioxidant Activity in Sweet Potato Leaves [J]. Scientia Agricultura Sinica, 2021, 54(21): 4650-4663.
[5] XU ChunMei,ZOU Ya,LIU ZiGang,MI WenBo,XU MingXia,DONG XiaoYun,CAO XiaoDong,ZHENG GuoQiang,FANG XinLing. Physiological and Biochemical Characteristics of Low Temperature Vernalization of Germinating Seeds of Brassica rapa [J]. Scientia Agricultura Sinica, 2020, 53(5): 929-941.
[6] MA Ning,WANG ChaoFan,FANG DongLu,DING MengTing,YAO JiaLei,YANG WenJian,HU QiuHui. Flavor Variation of Flammulina velutipes in Polyethylene Film Packaging During the Cold Storage [J]. Scientia Agricultura Sinica, 2019, 52(8): 1435-1448.
[7] LI XiaoYing,WANG HaiJing,XU NingWei,CAO CuiLing,LIU JianZhen,WU ChunCheng,ZHANG LiBin. Analysis of Volatile Components in Cerasus Humilis (Bge.) Sok by Headspace Solid Phase Microextraction-Gas Chromatography-Mass Spectrometry [J]. Scientia Agricultura Sinica, 2019, 52(19): 3448-3459.
[8] DENG YuanYuan, TANG Qin, ZHANG RuiFen, ZHANG Yan, WEI ZhenCheng, LIU Lei, MA YongXuan, ZHANG MingWei. Effects of Different Drying Methods on the Nutrition and Physical Properties of Momordica charantia [J]. Scientia Agricultura Sinica, 2017, 50(2): 362-371.
[9] WANG LiFeng, WANG HongLing, YAO YiJun, ZHANG YiYi, CHEN JingYi, WANG HaiFeng, SHI JiaYi, JU XingRong. Effects of Different Packages on Edible Quality and Volatile Components of Rice During Storage [J]. Scientia Agricultura Sinica, 2017, 50(13): 2576-2591.
[10] . Effects of Different Drying Methods on Quality Changes during Processing and Storage of Tremella fuciformis [J]. Scientia Agricultura Sinica, 2016, 49(6): 1163-1172.
[11] XIE Jian,ZHENG Sheng-xian,YANG Zeng-ping,NIE Jun,LIAO Yu-lin,WU Xiao-dan,XIANG Yan-wen
. Comprehensive Evaluation of Soil Quality in Different Productive Paddy Soils in Typical Double-Rice Cropping Regions of Hunan Province
[J]. Scientia Agricultura Sinica, 2010, 43(23): 4840-4851 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!