Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (24): 4919-4932.doi: 10.3864/j.issn.0578-1752.2024.24.008

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Effects of Cultivation and Cropland Afforestation on Soil Particle- Size Distribution and Soil Nutrients in the Typical Steppe of Xilingol League

LUO YuHong1(), HUANG YuShu2, ZHU Na1, LI Le1, CHENG YanBin3, LIU JiaHui1, ZHANG JingMin1, BAO YuFan1, XU Nuo1, YAN YuChun1()   

  1. 1 State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081
    2 School of Grassland, Beijing Forestry University, Beijing 100083
    3 Hulun Buir Agricultural Reclamation Xieertala Farm Co., Ltd., Hulun Buir 021012, Inner Mongolia
  • Received:2024-06-04 Accepted:2024-08-09 Online:2024-12-16 Published:2024-12-23
  • Contact: YAN YuChun

Abstract:

【Objective】This study aimed to explore the dynamic change of soil texture and nutrients resulting from 60 years of agricultural cultivation subsequent to the conversion of grassland to cropland in the typical steppe of Xilingol County. It also evaluated whether the 18 years cropland afforestation had effectively mitigated the negative impacts of long-term cultivation on soil particle size distribution and soil nutrients. The research sought to enhance understanding of soil quality evolution during ecological restoration processes in this region and provided a scientific basis for assessing the actual effectiveness of ecological restoration measures. 【Method】Five sites within 60 km2 of the study area as replicates were chosen to investigate the particle size distribution, bulk density, and nutrient characteristics within the 0-30 cm soil layer across four land use types, including grassland (GL), cropland (CL) and afforestation land with row spacing of 2 m (AL-2) and 5 m (AL-5). 【Result】(1) The soil particle composition across various land use types included sand (61%-82%), silt (16%-35%) and clay (less than 4%). Notably, the content of silt (2-50 μm) in cropland and afforestation land was significantly lower than that in grassland, whereas the proportion of sand (>50 μm) was markedly higher in comparison to grassland. Further, compared with natural grassland, the cultivation has resulted in a reduction of soil particles smaller than 120 μm and an increase in soil particles larger than 120 μm. However, the afforestation for 18 years has not alleviated the decrease in fine particles (≤120 μm) caused by cultivation. (2) In 0-30 cm soil layer, the composition of soil particle size in each land use type showed uniformity along the soil depth, which reflected poor sorting characteristics and a negative to extremely negative particle size distribution pattern and sharp kurtosis. Among them, the grassland had the smallest mean particle size and the highest fractal dimension. (3) The soil bulk density gradually increased with the increase in soil depth. Nutrient changes were primarily concentrated in the shallow soil layer of 0-10 cm, where cultivation activities led to significantly decrease in soil organic carbon (OC), total nitrogen (TN) and total phosphorus (TP) content. Compared with cropland, the shrubland formed after afforestation did not significantly alter the content of organic carbon and total nitrogen, but significantly reduced the total phosphorus content. (4) It A highly significant positive correlation between soil particle components smaller than 120 μm and soil organic carbon, total nitrogen and total phosphorus was found, which indicated that the decline in soil nutrients was closely linked to the loss of fine soil particles. 【Conclusion】In summary, the long-term conversion of grassland to cropland has led to the degradation of soil physical structure, with the loss of soil fine particles has affected the enrichment of nutrients. Moreover, the effects of afforestation after 18 years on improving soil texture and restoring nutrient levels were not significant.

Key words: natural grassland, cultivation, cropland afforestation, soil particle size distribution, particle size parameters, soil nutrients, typical steppe of Xilingol League

Table 1

Background characteristics of different land use types at the five sampling sites"

样地
Site
草地 Grassland 耕地Cropland 退耕造林地 Afforestation land
优势种
Dominant species a)
管理方式
Management b)
开垦年限
Cultivation duration (a)
作物类型
Crop type
管理方式
Management
土地利用历史
Land use history
林下草地优势种
Understory dominant
species a)
管理方式
Management
样地1 Site1
43°56'10"N,
116°20'48"E
羊草 Leymus chinensis
苔草 Carex duriuscula
克氏针茅 Stipa krylovii
披碱草 Elymus dahuricus
黄蒿 Artemisia scoparia
放牧
Grazing
60 向日葵
Helianthus annuus
1960-2013:小麦-燕麦轮作Triticum aestivum- Avena sativa rotation from 1960 to 2013
2013-2020:小麦-燕麦-向日葵轮作 Triticum aestivum-Avena sativa and Helianthus annuus rotation from 2013 to 2020
灌溉 Irrigation c)
施肥Fertilization d)
开垦43年后退耕造林17年
Afforestation for 17 years following a 43-year cultivation
黄蒿 Artemisia scoparia
披碱草 Elymus dahuricus
糙隐子草 Cleistogenes
squarrosa
羊草 Leymus chinensis
克氏针茅 Stipa krylovii
刈割
Mowing f)
样地2 Site2
43°52'31"N,
116°57'8"E
苔草 Carex duriuscula
羊草 Leymus chinensis
克氏针茅 Stipa krylovii
糙隐子草 Cleistogenes squarrosa
轴藜 Axyris maranthoides
放牧
Grazing
60 小麦
Triticum aestivum
1960-2020:小麦-燕麦轮作
Triticum aestivum-Avena sativa rotation from 1960 to 2020
施肥Fertilization e)
开垦43年后退耕造林17年
Afforestation for 17 years following a 43-year cultivation
大针茅 Stipa grandis
黄蒿 Artemisia scoparia
大籽蒿 Artemisia
sieversiana
羊草 Leymus chinensis
轴藜 Axyris amaranthoides
刈割
Mowing f)
样地3 Site3
43°52'4"N,
116°59'31"E
羊草 Leymus chinensis
糙隐子草Cleistogenes squarrosa
冰草 Agropyron cristatum
羊茅 Festuca ovina
苔草 Carex duriuscula
刈割
Mowing
60 小麦
Triticum aestivum
1960-2020:小麦-燕麦轮作
Triticum aestivum-Avena sativa rotation from 1960 to 2020
施肥Fertilization e)
开垦43年后退耕造林17年
Afforestation for 17 years following a 43-year cultivation
大针茅 Stipa grandis
黄蒿 Artemisia scoparia
无芒雀麦 Bromus inermis
糙隐子草 Cleistogenes
squarrosa
披碱草 Elymus dahuricus
放牧
Grazing g)
样地4 Site4
43°55'35"N
116°24'48"E
羊草 Leymus chinensis
菊叶委陵菜 Potentilla tanacetifolia
糙隐子草 Cleistogenes squarrosa
矮葱 Allium anisopodium
黄蒿 Artemisia scoparia
刈割
Mowing
60 小麦
Triticum aestivum
1960-2020:小麦-燕麦轮作
Triticum aestivum-Avena sativa rotation from 1960 to 2020
施肥Fertilization e)
开垦43年后退耕造林17年
Afforestation for 17 years following a 43-year cultivation
羊草 Leymus chinensis
黄蒿 Artemisia scoparia
糙隐子草 Cleistogenes
squarrosa
轴藜 Axyris amaranthoides
矮韭 Allium anisopodium
刈割
Mowing f)
样地5 Site5
43°47'3"N
116°21'51"E
大针茅 Stipa grandis
克氏针茅 Stipa krylovii
糙隐子草 Cleistogenes squarrosa
黄蒿 Artemisia scoparia
苔草 Carex duriuscula
刈割
Mowing
60 苜蓿
Medicago sativa
1960-2017:小麦
Triticum aestivum planting from 1960 to 2017
2017-2020:苜蓿
Medicago sativa planting from 2017 to 2020
灌溉 Irrigation c)
施肥 Fertilization e)
开垦42年后退耕造林18年
Afforestation for 18 years following a 42-year cultivation
糙隐子草 Cleistogenes squarrosa
披碱草 Elymus dahuricus,阿尔泰狗娃花 Heteropappus altaicus, 羊草 Leymus chinensis,刺藜 Chenopodium aristatum
放牧
Grazing g)

Fig. 1

Overview of land use types"

Table 2

Soil particle size distribution of different land use types"

土层深度
Soil depth (cm)
土地利用方式
Land use type
土壤粒径分布 Soil particle size distribution (%)
黏粒 Clay (<2 μm) 粉粒 Silt (2-50 μm) 砂粒 Sand (>50 μm)
0-10 GL 2.58±0.34Aa 32.20±2.15Aa 65.11±2.16Ab
CL 2.72±0.70Aa 22.26±2.28Ab 75.02±2.81Aa
AL-2 2.17±0.27Aa 22.28±1.47Ab 75.55±1.63Aa
AL-5 2.52±0.28Aa 22.92±1.86Ab 74.56±2.06Aa
10-20 GL 2.16±0.34Aa 27.41±1.48Ba 70.43±1.54Ab
CL 2.49±0.65Aa 21.62±2.43Ab 75.89±2.87Aa
AL-2 1.86±0.28Aa 19.24±1.46Ab 78.90±1.69Aa
AL-5 1.89±0.24Aa 20.92±1.30Ab 77.19±1.46Aa
20-30 GL 2.83±0.37Aa 30.61±1.65ABa 66.56±1.80Ab
CL 2.59±0.58Aa 24.53±2.68Ab 72.88±3.04Aab
AL-2 2.04±0.37Aa 19.48±1.58Abc 78.48±1.92Aa
AL-5 2.39±0.38Aa 18.43±1.89Ac 79.19±2.19Aa
0-30 GL 2.53±0.2a 30.12±1.04a 67.34±1.09b
CL 2.59±0.36a 22.84±1.41b 74.55±1.65a
AL-2 2.02±0.17a 20.33±0.87b 77.64±1.01a
AL-5 2.26±0.17a 20.75±1b 76.97±1.12a

Fig. 2

Soil particle size distribution (a), cumulative particle size distribution (b) and differences of particle size distribution between grassland and other land use types (c) GL: Grassland; CL: Cropland; AL-2: Afforestation land with row spacing of 2 m, AL-5: Afforestation land with row spacing of 5 m"

Fig. 3

Soil particle size parameters of different land use types Different letters mean significant differences in different land use types under the same soil layer (P<0.05)"

Table 3

Soil bulk density and nutrients of different land use types"

土层深度
Soil depth (cm)
土地利用方式
Land use type
容重
Bulk density (g·cm-3)
有机碳
Soil organic carbon (g·kg-1)
全氮
Total nitrogen (g·kg-1)
全磷
Total phosphorus (g·kg-1)
0-10 GL 1.34±0.05Bc 17.61±2.08Aa 2.06±0.2Aa 0.35±0.03Aa
CL 1.43±0.03Ab 10.34±0.68Ab 1.22±0.08Ab 0.28±0.01Ab
AL-2 1.40±0.02Bbc 11.98±0.85Ab 1.33±0.11Ab 0.23±0.01Ab
AL-5 1.5±0.03Aa 12.01±0.99Ab 1.34±0.1Ab 0.25±0.02Ab
10-20 GL 1.45±0.03Ab 12.34±0.90Ba 1.48±0.11Ba 0.28±0.02Ba
CL 1.46±0.04Aab 10.19±0.77Aa 1.19±0.09ABb 0.27±0.01Aab
AL-2 1.43±0.02ABb 10.11±0.68Ba 1.25±0.07Ab 0.21±0.01Ab
AL-5 1.52±0.02Aa 9.88±0.58Ba 1.09±0.11Bb 0.21±0.01Bb
20-30 GL 1.49±0.03Aa 9.7±0.75Aa 1.24±0.09Aa 0.25±0.02Ba
CL 1.48±0.04Aa 9.2±0.65Ba 1.11±0.08Bab 0.25±0.02Aa
AL-2 1.47±0.02Aa 8.32±0.58Ca 1.03±0.06Bb 0.18±0.01Bb
AL-5 1.53±0.03Aa 8.02±0.57Ca 0.98±0.07Bb 0.18±0.01Bb
0-30 GL 1.43±0.02b 13.22±0.92a 1.59±0.10a 0.29±0.02a
CL 1.45±0.02b 9.91±0.4a 1.17±0.05b 0.27±0.01a
AL-2 1.43±0.01b 10.14±0.46a 1.21±0.05b 0.21±0.01b
AL-5 1.52±0.02a 9.97±0.48a 1.14±0.06b 0.21±0.01b

Fig. 4

Correlation analysis of soil physical characteristics and nutrient"

[1]
沈海花, 朱言坤, 赵霞, 耿晓庆, 高树琴, 方精云. 中国草地资源的现状分析. 科学通报, 2016, 61(2): 139-154.
SHEN H H, ZHU Y K, ZHAO X, GENG X Q, GAO S Q, FANG J Y. Analysis of current grassland resources in China. Chinese Science Bulletin, 2016, 61(2): 139-154. (in Chinese)
[2]
宋明华, 刘丽萍, 陈锦, 张宪洲. 草地生态系统生物和功能多样性及其优化管理. 生态环境学报, 2018, 27(6): 1179-1188.

doi: 10.16258/j.cnki.1674-5906.2018.06.025
SONG M H, LIU L P, CHEN J, ZHANG X Z. Biology, multi- function and optimized management in grassland ecosystem. Ecology and Environmental Sciences, 2018, 27(6): 1179-1188. (in Chinese)
[3]
潘庆民, 孙佳美, 杨元合, 刘伟, 李昂, 彭云峰, 薛建国, 夏昊, 黄建辉. 我国草原恢复与保护的问题与对策. 中国科学院院刊, 2021, 36(6): 666-674.
PAN Q M, SUN J M, YANG Y H, LIU W, LI A, PENG Y F, XUE J G, XIA H, HUANG J H. Issues and solutions on grassland restoration and conservation in China. Bulletin of Chinese Academy of Sciences, 2021, 36(6): 666-674. (in Chinese)
[4]
付东升, 任晓萌, 王燕玲, 张翠英, 蒙仲举. 农牧交错带不同利用方式土壤粒径分布特征: 以呼和浩特市武川县为例. 干旱区研究, 2022, 39(4): 1322-1332.

doi: 10.13866/j.azr.2022.04.32
FU D S, REN X M, WANG Y L, ZHANG C Y, MENG Z J. Distribution characteristics of soil particle size in farming-pastoral ecotone: A case study of Wuchuan County in Inner Mongolia. Arid Zone Research, 2022, 39(4): 1322-1332. (in Chinese)

doi: 10.13866/j.azr.2022.04.32
[5]
宋大刚, 潘开文. 我国退耕还林工程生态效益评价的研究进展. 四川林业科技, 2015, 36(3): 45-49.
SONG D G, PAN K W. Advances in research on ecological benefit evaluation of the defarming-and-reafforestation program in China. Journal of Sichuan Forestry Science and Technology, 2015, 36(3): 45-49. (in Chinese)
[6]
王珠娜, 潘磊, 余雪标, 史玉虎. 退耕还林生态效益评价研究进展. 西南林学院学报, 2007, 27(1): 91-96.
WANG Z N, PAN L, YU X B, SHI Y H. Research advances in evaluation on ecological benefits on “grain for green” program. Journal of Southwest Forestry University, 2007, 27(1): 91-96. (in Chinese)
[7]
ARBELO C D, RODRÍGUEZ-RODRÍGUEZ A, GUERRA J A, MORA J L, NOTARIO J S, FUENTES F. Soil degradation processes and plant colonization in abandoned terraced fields overlying pumice tuffs. Land Degradation & Development, 2006, 17(6): 571-588.
[8]
VELLEND M, VERHEYEN K, FLINN K M, JACQUEMYN H, KOLB A, VAN CALSTER H, PETERKEN G, GRAAE B J, BELLEMARE J, HONNAY O, BRUNET J, WULF M, GERHARDT F, HERMY M. Homogenization of forest plant communities and weakening of species-environment relationships via agricultural land use. Journal of Ecology, 2007, 95(3): 565-573.
[9]
LIU J G, DIAMOND J. China’s environment in a globalizing world. Nature, 2005, 435: 1179-1186.
[10]
ZHANG K, DANG H, TAN S, CHENG X, ZHANG Q. Change in soil organic carbon following the ‘Grain-for-Green’ programme in China. Land Degradation & Development, 2010, 21(1): 13-23.
[11]
ALLISON V J, MILLER R M, JASTROW J D, MATAMALA R, ZAK D R. Changes in soil microbial community structure in a tallgrass prairie chronosequence. Soil Science Society of America Journal, 2005, 69(5): 1412-1421.
[12]
WANG D, FU B J, ZHAO W W, HU H F, WANG Y F. Multifractal characteristics of soil particle size distribution under different land-use types on the Loess Plateau, China. Catena, 2008, 72(1): 29-36.
[13]
PENG G, XIANG N, LV S Q, ZHANG G C. Fractal characterization of soil particle-size distribution under different land-use patterns in the Yellow River Delta Wetland in China. Journal of Soils and Sediments, 2014, 14(6): 1116-1122.
[14]
YAN Y C, XIN X P, XU X L, WANG X, YANG G X, YAN R R, CHEN B R. Quantitative effects of wind erosion on the soil texture and soil nutrients under different vegetation coverage in a semiarid steppe of Northern China. Plant and Soil, 2013, 369(1): 585-598.
[15]
CHEN Y P, XIA J B, ZHAO X M, ZHUGE Y P. Soil moisture ecological characteristics of typical shrub and grass vegetation on Shell Island in the Yellow River Delta, China. Geoderma, 2019, 348: 45-53.
[16]
GAO Z Y, NIU F J, LIN Z J, LUO J. Fractal and multifractal analysis of soil particle-size distribution and correlation with soil hydrological properties in active layer of Qinghai-Tibet Plateau, China. Catena, 2021, 203: 105373.
[17]
YAN Y C, XU X L, XIN X P, YANG G X, WANG X, YAN R R, CHEN B R. Effect of vegetation coverage on aeolian dust accumulation in a semiarid steppe of Northern China. Catena, 2011, 87(3): 351-356.
[18]
李少华, 王学全, 包岩峰, 尹书乐. 不同类型植被对高寒沙区土壤改良效果的差异分析. 土壤通报, 2016, 47(1): 60-64.
LI S H, WANG X Q, BAO Y F, YIN S L. Variability of soil properties under different vegetation plots in alpine sandy land. Chinese Journal of Soil Science, 2016, 47(1): 60-64. (in Chinese)
[19]
陈宇轩, 张飞岳, 高广磊, 丁国栋, 张英, 刘雪锋. 科尔沁沙地樟子松人工林土壤粒径分布特征. 干旱区地理, 2020, 43(4): 1051-1058.

doi: 10.12118/j.issn.1000-6060.2020.04.20
CHEN Y X, ZHANG F Y, GAO G L, DING G D, ZHANG Y, LIU X F. Soil particle size distribution of Pinus sylvestris var. mongolica plantations in the Horqin Sandy Land. Arid Land Geography, 2020, 43(4): 1051-1058. (in Chinese)
[20]
齐雁冰, 常庆瑞, 惠泱河. 人工植被恢复荒漠化逆转过程中土壤颗粒分形特征. 土壤学报, 2007, 44(3): 566-570.
QI Y B, CHANG Q R, HUI Y H. Fractal features of soil particles in desertification reversing process by artificial vegetation. Acta Pedologica Sinica, 2007, 44(3): 566-570. (in Chinese)
[21]
史长莹, 李子晗, 张宝磊, 代业宁. 激光粒度分析仪在非黏性土颗粒分析中的应用. 黑龙江大学工程学报, 2016, 7(4): 20-23, 30.
SHI C Y, LI Z H, ZHANG B L, DAI Y N. Application of laser particle analyzer in particle size analysis of cohesionless soils. Journal of Engineering of Heilongjiang University, 2016, 7(4): 20-23, 30. (in Chinese)
[22]
KRUMBEIN W C. Size frequency distributions of sediments. SEPM Journal of Sedimentary Research, 1934, 4(2): 65-77.
[23]
UDDEN J A. The Mechanical Composition of Wind Deposits. Rock Island: Lutheran Augustana Book Concern, 1898: 1-69.
[24]
张永成, 王洪辉, 谭桂花. 基于Excel VBA的图解粒度参数计算. 成都理工大学学报(自然科学版), 2010, 37(6): 650-653.
ZHANG Y C, WANG H H, TAN G H. Graphical calculation for grain size parameters by Excel VBA method. Journal of Chengdu University of Technology (Science & Technology Edition), 2010, 37(6): 650-653. (in Chinese)
[25]
FOLK R L, WARD W C. Brazos River bar [Texas] a study in the significance of grain size parameters. Journal of Sedimentary Research, 1957, 27(1): 3-26.
[26]
卢连战, 史正涛. 沉积物粒度参数内涵及计算方法的解析. 环境科学与管理, 2010, 35(6): 54-60.
LU L Z, SHI Z T. Analysis for sediment grain size parameters of connotations and calculation method. Environmental Science and Management, 2010, 35(6): 54-60. (in Chinese)
[27]
张季如, 朱瑞赓, 祝文化. 用粒径的数量分布表征的土壤分形特征. 水利学报, 2004, 35(4): 67-71, 79.
ZHANG J R, ZHU R G, ZHU W H. Fractal features of soils characterized by grain size distribution. Journal of Hydraulic Engineering, 2004, 35(4): 67-71, 79. (in Chinese)
[28]
田卓, 张帅普, 王醒, 方荣杰, 郑金德. 龙脊梯田不同土地利用方式下土壤粒径分形特征. 农业现代化研究, 2023, 44(4): 724-735.
TIAN Z, ZHANG S P, WANG X, FANG R J, ZHENG J D. Fractal characteristics of soil particle under different land use patterns in Longji Terrace. Research of Agricultural Modernization, 2023, 44(4): 724-735. (in Chinese)
[29]
苑依笑, 王仁德, 常春平, 郭中领, 李庆. 风蚀作用下农田土壤细颗粒的粒度损失特征及其对土壤性质影响. 水土保持学报, 2018, 32(2): 104-109, 119.
YUAN Y X, WANG R D, CHANG C P, GUO Z L, LI Q. Loss characteristics of fine particles by wind in farmland and its effect on soil properties. Journal of Soil and Water Conservation, 2018, 32(2): 104-109, 119. (in Chinese)
[30]
许中旗, 李文华, 闵庆文, 敖其尔, 王英舜, 韩喜, 何旭生, 贺俊杰. 典型草原抗风蚀能力的实验研究. 环境科学, 2005, 26(5): 164-168.
XU Z Q, LI W H, MIN Q W, AO Q E, WANG Y S, HAN X, HE X S, HE J J. Experimental research on the anti-wind erosion of typical grasslands. Environmental Science, 2005, 26(5): 164-168. (in Chinese)
[31]
FUCHS M. An assessment of human versus climatic impacts on Holocene soil erosion in Peloponnese, Greece. Quaternary Research, 2007, 67(3): 349-356.
[32]
赵晓光, 石辉. 水蚀作用下土壤抗蚀能力的表征. 干旱区地理, 2003(1): 12-16.
ZHAO X G, SHI H. Prescription of soil anti-erosion capability under water erosion. Arid Land Geography, 2003(1): 12-16. (in Chinese)
[33]
常海涛, 赵娟, 刘佳楠, 刘任涛, 罗雅曦, 张静. 退耕还林与还草对土壤理化性质及分形特征的影响: 以宁夏荒漠草原为例. 草业学报, 2019, 28(7): 14-25.

doi: 10.11686/cyxb2018573
CHANG H T, ZHAO J, LIU J N, LIU R T, LUO Y X, ZHANG J. Changes in soil physico-chemical properties and related fractal features during conversion of cropland into agroforestry and grassland: A case study of desertified steppe in Ningxia. Acta Prataculturae Sinica, 2019, 28(7): 14-25. (in Chinese)
[34]
孙佳佳, 王培, 王志刚, 陈小平, 潘晓颖. 不同成土母质及土地利用对红壤机械组成的影响. 长江科学院院报, 2015, 32(3): 54-58.
SUN J J, WANG P, WANG Z G, CHEN X P, PAN X Y. Impact of parent material and land use type on mechanical composition of red soil. Journal of Yangtze River Scientific Research Institute, 2015, 32(3): 54-58. (in Chinese)

doi: 10.3969/j.issn.1001-5485.2015.03.012
[35]
董智, 王丽琴, 杨文斌, 李红丽, 李卫, 张志鹏, 丛日春. 额济纳盆地戈壁沉积物粒度特征分析. 中国水土保持科学, 2013, 11(1): 32-38.
DONG Z, WANG L Q, YANG W B, LI H L, LI W, ZHANG Z P, CONG R C. Grain size characteristics of Gobi sediment in Ejina Basin. Science of Soil and Water Conservation, 2013, 11(1): 32-38. (in Chinese)
[36]
杨金玲, 李德成, 张甘霖, 赵玉国, 赵文君, 唐先干. 土壤颗粒粒径分布质量分形维数和体积分形维数的对比. 土壤学报, 2008, 45(3): 413-419.
YANG J L, LI D C, ZHANG G L, ZHAO Y G, ZHAO W J, TANG X G. Comparison of mass and volume fractal dimensions of soil particle size distributions. Acta Pedologica Sinica, 2008, 45(3): 413-419. (in Chinese)
[37]
吴孟根巴根, 张翼飞, 宋洋, 赵斌. 内蒙古中部典型草原地区土壤质地研究. 环境与发展, 2016, 28(2): 12-15.
WUMENGGENBAGEN, ZHANG Y F, SONG Y, ZHAO B. Study on soil texture of typical steppen in Central Inner Mongolia. Environment and Development, 2016, 28(2): 12-15. (in Chinese)
[38]
胡云锋, 刘纪远, 庄大方, 曹红霞, 闫慧敏. 不同土地利用/土地覆盖下土壤粒径分布的分维特征. 土壤学报, 2005, 42(2): 336-339.
HU Y F, LIU J Y, ZHUANG D F, CAO H X, YAN H M. Fractal dimension of soil particle size distribution under different land use/land coverage. Acta Pedologica Sinica, 2005, 42(2): 336-339. (in Chinese)
[39]
WANG C, LI L H, YAN Y C, CAI Y R, XU D W, WANG X, CHEN J Q, XIN X P. Effects of cultivation and agricultural abandonment on soil carbon, nitrogen and phosphorus in a meadow steppe in eastern Inner Mongolia. Agriculture, Ecosystems & Environment, 2021, 309: 107284.
[40]
ELEFTHERIADIS A, LAFUENTE F, TURRIÓN M B. Effect of land use, time since deforestation and management on organic C and N in soil textural fractions. Soil and Tillage Research, 2018, 183: 1-7.
[41]
陈浩, 赵从举, 牛永强, 卓志清, 吴喆滢, 徐文娴. 两种经营方式下桉树林与椰林的土壤物理性状比较研究. 天津农业科学, 2014, 20(10): 65-68.
CHEN H, ZHAO C J, NIU Y Q, ZHUO Z Q, WU Z Y, XU W X. Comparative study of the soil physical properties on Eucalyptus plantations and Cocos plantation. Tianjin Agricultural Sciences, 2014, 20(10): 65-68. (in Chinese)
[42]
ZHU N, YAN Y C, BAI K Y, ZHANG J M, WANG C, WANG X, XU D W, LIU J H, XIN X P, CHEN J Q. Conversion of croplands to shrublands does not improve soil organic carbon and nitrogen but reduces soil phosphorus in a temperate grassland of Northern China. Geoderma, 2023, 432: 116407.
[43]
DENG L, LIU G B, SHANGGUAN Z P. Land-use conversion and changing soil carbon stocks in China’s 'Grain-for-Green' Program: A synthesis. Global Change Biology, 2014, 20(11): 3544-3556.
[44]
SOLLY E F, SCHÖNING I, BOCH S, KANDELER E, MARHAN S, MICHALZIK B, MÜLLER J, ZSCHEISCHLER J, TRUMBORE S E, SCHRUMPF M. Factors controlling decomposition rates of fine root litter in temperate forests and grasslands. Plant and Soil, 2014, 382(1): 203-218.
[45]
FISK M, SANTANGELO S, MINICK K. Carbon mineralization is promoted by phosphorus and reduced by nitrogen addition in the organic horizon of northern hardwood forests. Soil Biology and Biochemistry, 2015, 81: 212-218.
[46]
NASTO M K, OSBORNE B B, LEKBERG Y, ASNER G P, BALZOTTI C S, PORDER S, TAYLOR P G, TOWNSEND A R, CLEVELAND C C. Nutrient acquisition, soil phosphorus partitioning and competition among trees in a lowland tropical rain forest. New Phytologist, 2017, 214(4): 1506-1517.

doi: 10.1111/nph.14494 pmid: 28262951
[47]
曾全超, 李娅芸, 刘雷, 安韶山. 黄土高原草地植被土壤团聚体特征与可蚀性分析. 草地学报, 2014, 22(4): 743-749.

doi: 10.11733/j.issn.1007-0435.2014.04.010
ZENG Q C, LI Y Y, LIU L, AN S S. Study on soil aggregate stability and soil erodibility in the grassland vegetation of the Loess Plateau region. Acta Agrestia Sinica, 2014, 22(4): 743-749. (in Chinese)
[48]
WANG X M, LANG L L, HUA T, LI H, ZHANG C X, MA W Y. Effects of aeolian processes on soil nutrient loss in the Gonghe Basin, Qinghai-Tibet Plateau: an experimental study. Journal of Soils and Sediments, 2018, 18(1): 229-238.
[49]
闫玉春, 唐海萍, 张新时, 王旭, 王海祥. 基于土壤粒度分析的草原风蚀特征探讨. 中国沙漠, 2010, 30(6): 1263-1268.
YAN Y C, TANG H P, ZHANG X S, WANG X, WANG H X. A probe into grassland wind erosion based on the analysis of soil particle size. Journal of Desert Research, 2010, 30(6): 1263-1268. (in Chinese)
[1] WANG Yu, ZHANG YuPeng, ZHU GuanYa, LIAO HangXi, HOU WenFeng, GAO Qiang, WANG Yin. Effects of Localized Nitrogen Supply on Plant Growth and Water and Nitrogen Use Efficiencies of Maize Seedling Under Drought Stress [J]. Scientia Agricultura Sinica, 2024, 57(5): 919-934.
[2] LIAO Ping, WENG WenAn, GAO Hui, ZHANG HongCheng. Application Status and Development Suggestion of Direct-Seeding Rice Cultivation in China [J]. Scientia Agricultura Sinica, 2024, 57(24): 4854-4870.
[3] LI HaiPeng, DU WuYan, WU HanQian, ZHANG Jie, MENG HuiSheng, HONG JianPing, XU MingGang, HAO XianJun, GAO WenJun. Different Manures Affect Soil Nutrients and Bacterial Community Structure in Mining Reclamation Area [J]. Scientia Agricultura Sinica, 2024, 57(16): 3207-3219.
[4] SU HaiLan, ZHU YanMing, CHEN Hong, NIU YuQing, ZHENG MeiXia, ZHU YuJing. Effects of Different Intercropping Methods on Mesona Chinesis Quality and Its Rhizosphere Soil Characteristic [J]. Scientia Agricultura Sinica, 2024, 57(14): 2755-2770.
[5] WANG QingYang, CAO DianYun, WANG Di, ZHAN ZengYi, HE WanYing, SUN Qiang, CHEN WenFu, LAN Yu. Effects of Long-Term Application of Biochar on Nutrients, Fractions of Humic in Brown Soil [J]. Scientia Agricultura Sinica, 2024, 57(13): 2612-2622.
[6] BU MingNa, YANG XiWen, TENG ZhengKai, HU NaiYue, ZHANG Shuo, WANG ChunYan, YANG Jian, LIANG WenXian, MA WenQi, HE DeXian, ZHOU SuMei. Effects of Layered Fertilization Under Different Irrigation Conditions on Vertical Distribution of Soil Nutrients and Root Growth and Function of Wheat [J]. Scientia Agricultura Sinica, 2024, 57(11): 2125-2142.
[7] XIE Jun, YIN XueWei, WEI Ling, WANG ZiFang, LI QingHu, ZHANG XiaoChun, LU YuanYuan, WANG QiuYue, GAO Ming. Effects of Control Irrigation on Grain Yield and Greenhouse Gas Emissions in Ridge Cultivation Direct-Seeding Paddy Field [J]. Scientia Agricultura Sinica, 2023, 56(4): 697-710.
[8] PENG WenLi, WANG Rui, CHEN XiaoLei, LIU AHui, ZHENG WeiDong. Effects of Varied Rapeseed Varieties and Cultivation Measures on Harvest Index [J]. Scientia Agricultura Sinica, 2023, 56(17): 3331-3346.
[9] LI MinJi, LI XingLiang, ZHANG Qiang, ZHOU Jia, YANG YuZhang, ZHOU BeiBei, ZHANG JunKe, WEI QinPing. Effects of Different Distances from Original Planting Row on Tree Growth and Fruit Yield of Young Trees of G935 Dwarf Rootstock Miyato Fuji Under Continuous Cropping [J]. Scientia Agricultura Sinica, 2023, 56(17): 3412-3419.
[10] GAO JiaRui, FANG ShengZhi, ZHANG YuLing, AN Jing, YU Na, ZOU HongTao. Characteristics of Organic Nitrogen Mineralization in Paddy Soil with Different Reclamation Years in Black Soil of Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(8): 1579-1588.
[11] ZHANG HongCheng, HU YaJie, DAI QiGen, XING ZhiPeng, WEI HaiYan, SUN ChengMing, GAO Hui, HU Qun. Discussions on Frontiers and Directions of Scientific and Technological Innovation in China’s Field Crop Cultivation [J]. Scientia Agricultura Sinica, 2022, 55(22): 4373-4382.
[12] JIN YuTing,LIU YunFeng,HU HongXiang,MU Jing,GAO MengYao,LI XianFan,XUE ZhongJun,GONG JingJing. Effects of Continuous Straw Returning with Chemical Fertilizer on Annual Runoff Loss of Nitrogen and Phosphorus in Rice-Rape Rotation [J]. Scientia Agricultura Sinica, 2021, 54(9): 1937-1951.
[13] ZHANG HongCheng,HU YaJie,YANG JianChang,DAI QiGen,HUO ZhongYang,XU Ke,WEI HaiYan,GAO Hui,GUO BaoWei,XING ZhiPeng,HU Qun. Development and Prospect of Rice Cultivation in China [J]. Scientia Agricultura Sinica, 2021, 54(7): 1301-1321.
[14] ZHENG HuaBin,LI Bo,WANG WeiQin,LEI En,TANG QiYuan. Effects of Different Cultivation Models on Solar Radiation-Nitrogen Use Efficiency and Yield of “Early Indica-Late Japonica” Double Rice [J]. Scientia Agricultura Sinica, 2021, 54(7): 1565-1578.
[15] LOU ShanWei,DONG HeZhong,TIAN XiaoLi,TIAN LiWen. The " Short, Dense and Early" Cultivation of Cotton in Xinjiang: History, Current Situation and Prospect [J]. Scientia Agricultura Sinica, 2021, 54(4): 720-732.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!