Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (13): 2547-2562.doi: 10.3864/j.issn.0578-1752.2023.13.009

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Spatial-Temporal Pattern, Influencing Factors and Spatial Spillover Effect of Rural Energy Carbon Emissions in China

TIAN Yun1(), YIN Minhao1, ZHANG Huijie2()   

  1. 1 School of Business Administration, Zhongnan University of Economics and Law, Wuhan 430073
    2 Agricultural Information Institute, Chinese Academy of Agricultural Sciences, Beijing 100081
  • Received:2023-01-10 Accepted:2023-02-21 Online:2023-07-01 Published:2023-07-06
  • Contact: ZHANG Huijie

Abstract:

【Objective】In the context of the “dual carbon” strategy, clarifying the current characteristics, spatial-temporal pattern and influencing factors of rural energy carbon emissions can provide important support for effectively promoting rural low-carbon development. 【Method】Carbon emission factor method is used to measure rural energy carbon emissions in China effectively, and analyze its temporal and spatial characteristics. Then, the autocorrelation model is used to explore its spatial correlation pattern. Finally, the introduction of STIRPAT extended model is used to analyze the main factors affecting its intensity changes and the spatial spillover effect. 【Result】China's total rural energy carbon emissions are in a continuous upward trend, with an increase of 77.55% in 2019 compared with 2005, which is mainly attributed to the increase in rural residents' domestic energy consumption. Rural energy carbon emission intensity has increased slightly during the investigation period. Although there are some inter-annual fluctuations, the overall fluctuations are small. In 2019, there were significant inter-provincial differences in rural energy carbon emissions, with Hebei leading the way and Ningxia at the bottom. Compared with 2005, only 5 provinces were in a downward trend. In 2019, Beijing ranked first in rural energy carbon emission intensity, while Hainan ranked last, with the latter even less than one tenth of the former. Since 2008, China's rural energy carbon emissions have shown obvious and stable spatial dependence, as well as local spatial clustering, with a small and relatively stable number of high-high concentration provinces and a lager and growing number of low-low concentration provinces. Among the social factors, the increase of rural affluence can lead to an increase of rural energy carbon emission intensity, while agricultural technology progress and rural labor force structure variables have a dampening effect, with only rural affluence showing a spatial spillover effect in a negative direction. Among the economic factors, the increase in the rural financial agglomeration and the improvement of agricultural development level both lead to the increase of rural energy carbon emission intensity, and both have spatial spillover effects, with the former positive and the latter negative. While agricultural financial investment does not have a direct effect but shows a negative spatial spillover effect. Among the industry-level factors, the increase of agricultural industry agglomeration leads to the increase of rural energy carbon emission intensity, but at the same time, it also presents a negative spatial spillover effect. 【Conclusion】The total amount and intensity of rural energy carbon emissions in China are on the rise, with significant inter-provincial differences. China's rural energy carbon emissions show obvious spatial dependence and spatial heterogeneity. Rural energy carbon emissions are affected by a combination of social, economic and industrial factors.

Key words: rural energy carbon emissions, agricultural carbon emission, spatial-temporal pattern, influencing factors, spillover effect

Table 1

General descriptive statistical analysis results of each variable"

变量名称
Variable name
样本数
Sample number
均值
Mean
value
标准差
Standard deviation
最小值
Minimum value
最大值
Maximum value
农村能源碳排放强度 Rural energy carbon emission intensity (t/104yuan) 450 2.749 1.696 0.419 10.607
农村富裕程度 Rural wealth (×104 yuan) 450 0.320 0.129 0.147 0.839
农业技术进步 Agricultural technology progress 450 1.019 0.040 0.012 0.190
农村劳动力结构 Rural labor force structure 450 0.649 0.227 0.127 1.000
农村金融集聚 Rural financial agglomeration 450 1.167 1.333 0.159 5.792
农业发展水平 Agricultural development level (×104 yuan/person) 450 1.045 0.522 0.217 2.903
农业财政投资 Agriculture fiscal investment 450 0.103 0.036 0.012 0.190
农业产业集聚Agricultural industrial agglomeration 450 1.014 0.409 0.089 1.829
农业产业结构Agricultural industrial structure 450 0.825 0.103 0.538 0.964

Table 2

Total amount and intensity of rural energy carbon emissions in China from 2005 to 2019"

年份
Year
农业生产
Agricultural production (×104t)
居民生活
Resident living (×104t)
合计
Total (×104t)
强度
Intensity (t/104yuan)
2005 12334.34 26847.81 39182.16 2.13
2006 12656.51 28274.48 40930.99 2.12
2007 12732.59 30399.30 43131.89 2.14
2008 11916.75 32331.41 44248.16 2.09
2009 12228.52 33703.07 45931.60 2.08
2010 12771.94 36287.31 49059.25 2.13
2011 13813.10 39867.43 53680.53 2.23
2012 14900.85 42531.69 57432.54 2.27
2013 14014.79 44749.21 58764.01 2.23
2014 14341.31 46097.02 60438.33 2.21
2015 14878.24 48980.14 63858.39 2.25
2016 15191.01 48451.03 63642.04 2.17
2017 15685.77 52983.72 68669.49 2.25
2018 13555.81 55314.80 68870.62 2.18
2019 13366.81 56201.47 69568.28 2.14
增速Growth rate 0.58%·a-1 5.42%·a-1 4.19%·a-1 0.03%·a-1

Table 3

Comparison of total amount and intensity of rural energy carbon emissions in China’s 30 provinces"

地区
Region
2005 2019 变化率Ⅰ Change rateⅠ
(%)
变化率Ⅱ
Change rate
(%)
农业生产
Agricultural production
(×104t)
居民生活
Resident living
(×104t)
合计
Total
(×104t)
强度
Intensity
(t/104yuan)
农业生产
Agricultural production
(×104t)
居民生活
Resident living
(×104t)
合计
Total
(×104t)
强度
Intensity
(t/104yuan)
北京Beijing 134.30 524.52 658.83 7.11 34.30 503.27 537.57 6.89 -18.41 -3.07
天津Tianjin 103.71 198.26 301.97 3.13 130.59 435.05 565.64 4.10 87.31 30.76
河北Hebei 344.84 2184.03 2528.87 2.30 375.61 5204.48 5580.09 3.08 120.66 34.16
山西Shanxi 470.97 1084.32 1555.29 7.47 448.80 1400.36 1849.16 5.24 18.90 -29.87
内蒙古Inner Mongolia 455.92 764.76 1220.67 2.56 540.04 1153.32 1693.37 2.02 38.72 -21.07
辽宁Liaoning 501.67 1003.87 1505.53 2.07 559.95 1682.08 2242.03 1.83 48.92 -11.82
吉林Jilin 397.99 483.74 881.73 1.67 300.19 932.72 1232.91 1.34 39.83 -19.77
黑龙江Heilongjiang 559.83 402.23 962.05 1.90 1316.11 1009.16 2325.27 2.16 141.70 13.74
上海Shanghai 167.78 257.61 425.39 5.68 89.99 196.66 286.65 5.83 -32.62 2.59
江苏Jiangsu 523.74 1056.44 1580.18 1.47 807.18 3340.40 4147.59 2.51 162.48 70.94
浙江Zhejiang 626.80 1115.30 1742.09 2.17 736.38 2895.58 3631.95 3.23 108.48 48.96
安徽Anhui 251.22 607.94 859.16 1.05 378.58 2171.44 2550.02 1.74 196.80 66.78
福建Fujian 568.03 919.66 1487.69 1.97 314.56 2089.74 2404.30 1.89 61.61 -3.97
江西Jiangxi 346.68 555.81 902.49 1.45 253.74 1649.70 1903.44 1.68 110.91 16.24
山东Shandong 1395.39 2142.25 3537.64 2.21 632.47 3937.84 4570.31 1.68 29.19 -23.68
河南Henan 569.15 2119.78 2688.93 1.78 710.33 4137.29 4847.61 1.78 80.28 -0.03
湖北Hubei 586.63 998.25 1584.88 1.89 765.50 2394.04 3159.53 2.05 99.36 8.31
湖南Hunan 836.50 1308.06 2144.55 2.22 1148.37 3296.54 4444.91 2.68 107.27 20.77
广东Guangdong 583.01 1708.40 2291.41 2.05 592.18 4936.43 5528.61 2.95 141.28 43.86
广西Guangxi 110.60 350.32 460.92 0.66 239.60 1345.78 1585.38 1.17 243.96 77.14
海南Hainan 83.68 47.86 131.53 0.45 128.40 274.22 402.62 0.62 206.10 39.30
重庆Chongqing 516.53 545.55 1062.08 3.21 216.22 801.47 1017.69 1.67 -4.18 -48.02
四川Sichuan 343.76 1635.67 1979.43 1.62 423.90 2486.51 2910.40 1.45 47.03 -10.77
贵州Guizhou 596.98 1980.85 2577.83 7.95 510.12 1877.51 2387.62 3.47 -7.38 -56.27
云南Yunnan 444.04 789.31 1233.35 2.26 520.67 1827.06 2347.73 1.97 90.35 -12.94
陕西Shaanxi 136.22 311.63 447.85 1.27 226.44 1484.46 1710.90 2.37 282.03 86.43
甘肃Gansu 198.20 699.18 897.39 3.45 228.52 1042.95 1271.47 2.29 41.69 -33.66
青海Qinghai 17.06 130.69 147.74 3.07 33.95 230.79 264.73 2.84 79.18 -7.47
宁夏Ningxia 31.88 210.07 241.95 4.25 45.80 185.56 231.35 1.93 -4.38 -54.59
新疆Xinjiang 431.26 711.48 1142.74 3.02 658.32 1279.08 1937.41 2.33 69.54 -22.75

Table 4

Moran's I statistics of rural energy carbon emission intensity in China from 2005 to 2019"

年份
Year
Moran’s I P
P value
Z统计值
Z statistics
年份
Year
Moran’s I P
P value
Z统计值
Z statistics
2005 -0.005 0.369 0.335 2013 0.196 0.005 2.594
2006 -0.000 0.348 0.390 2014 0.196 0.005 2.585
2007 0.035 0.213 0.796 2015 0.204 0.003 2.702
2008 0.105 0.053 1.612 2016 0.212 0.003 2.792
2009 0.110 0.045 1.696 2017 0.157 0.015 2.158
2010 0.130 0.024 1.979 2018 0.208 0.003 2.747
2011 0.123 0.028 1.914 2019 0.193 0.005 2.599
2012 0.139 0.025 1.967

Table 5

Local spatial clustering of rural energy carbon emission intensity in China from 2005 to 2019"

类型Type 2005 2010 2015 2019
高-高集聚
High-high agglomeration
北京Beijing、天津Tianjin、甘肃Gansu、青海Qinghai、宁夏Ningxia、新疆Xinjiang 北京Beijing、天津Tianjin、山西Shanxi、内蒙古Inner Mongolia、甘肃Gansu、青海Qinghai、宁夏Ningxia 北京Beijing、天津Tianjin、河北Hebei、山西Shanxi、内蒙古Inner Mongolia、浙江Zhejiang 北京Beijing、天津Tianjin、河北Hebei、山西Shanxi、上海Shanghai、浙江Zhejiang
低-低集聚
Low-low agglomeration
辽宁Liaoning、吉林Jilin、黑龙江Heilongjiang、江苏Jiangsu、安徽Anhui、福建Fujian、江西Jiangxi、湖北Hubei、湖南Hunan、广东Guangdong、广西Guangxi、海南Hainan 辽宁Liaoning、吉林Jilin、黑龙江Heilongjiang、江苏Jiangsu、安徽Anhui、福建Fujian、江西Jiangxi、湖北Hubei、湖南Hunan、广东Guangdong、广西Guangxi、海南Hainan、云南Yunnan 辽宁Liaoning、吉林Jilin、黑龙江Heilongjiang、江苏Jiangsu、安徽Anhui、福建Fujian、江西Jiangxi、湖北Hubei、湖南Hunan、广西Guangxi、海南Hainan、重庆Chongqing、四川Sichuan、云南Yunnan、陕西Shaanxi 辽宁Liaoning、吉林Jilin、黑龙江Heilongjiang、江苏Jiangsu、安徽Anhui、福建Fujian、江西Jiangxi、湖北Hubei、广西Guangxi、海南Hainan、重庆Chongqing、四川Sichuan、云南Yunnan、陕西Shaanxi、甘肃Gansu、新疆Xinjiang
高-低集聚
High-low agglomeration
山西Shanxi、上海Shanghai、重庆Chongqing、贵州Guizhou 上海Shanghai、重庆Chongqing、贵州Guizhou 上海Shanghai、广东Guangdong、贵州Guizhou、青海Qinghai 湖南Hunan、广东Guangdong、贵州Guizhou、青海Qinghai
低-高集聚
Low-high agglomeration
河北Hebei、内蒙古Inner Mongolia、浙江Zhejiang、山东Shandong、河南Henan、四川Sichuan、云南Yunnan、陕西Shaanxi 河北Hebei、浙江Zhejiang、山东Shandong、河南Henan、四川Sichuan、陕西Shaanxi、新疆Xinjiang 山东Shandong、河南Henan、甘肃Gansu、宁夏Ningxia、新疆Xinjiang 内蒙古Inner Mongolia、山东Shandong、河南Henan、宁夏Ningxia

Table 6

Spatial autocorrelation test results of variables from 2005 to 2019"

年份Year lnACI lnRW lnATP lnRLS lnRFA lnADL lnAFI lnLA lnAS
2005 0.125** 0.412*** 0.012 0.420*** 0.154** 0.322*** 0.005 0.340*** 0.301***
2006 0.116** 0.410*** 0.128** 0.296*** 0.105* 0.327*** -0.004 0.332*** 0.304***
2007 0.137** 0.409*** 0.154** 0.358*** 0.143** 0.323*** 0.182*** 0.358*** 0.307***
2008 0.190*** 0.405*** -0.114 0.329*** 0.147** 0.319*** 0.155** 0.359*** 0.300***
2009 0.202*** 0.401*** 0.031 0.321*** 0.136** 0.315*** 0.205*** 0.363*** 0.299***
2010 0.227*** 0.399*** 0.153** 0.348*** 0.149** 0.322*** 0.196*** 0.360*** 0.304***
2011 0.218*** 0.398*** 0.049 0.349*** 0.151** 0.317*** 0.110* 0.365*** 0.297***
2012 0.194*** 0.396*** -0.049 0.345*** 0.153** 0.310*** 0.246*** 0.388*** 0.320***
2013 0.226*** 0.395*** 0.182*** 0.345*** 0.156** 0.293*** 0.165** 0.392*** 0.332***
2014 0.209*** 0.393*** -0.052 0.336*** 0.154** 0.306*** 0.140** 0.386*** 0.346***
2015 0.217*** 0.391*** -0.169* 0.332*** 0.157** 0.272*** 0.151** 0.390*** 0.360***
2016 0.270*** 0.389*** 0.116** 0.321*** 0.164** 0.245*** 0.220*** 0.390*** 0.374***
2017 0.173** 0.391*** 0.006 0.328*** 0.163** 0.237*** 0.215*** 0.388*** 0.380***
2018 0.202*** 0.390*** 0.010 0.343*** 0.168** 0.217*** 0.266*** 0.379*** 0.375***
2019 0.194*** 0.389*** 0.014 0.332*** 0.159** 0.179** 0.285*** 0.374*** 0.342***

Table 7

Direct and indirect effects of variables on rural energy carbon emissions"

变量
Variable
直接效应Direct effect 间接效应Indirect effect 总效应Total effect
系数Coefficient t值t value 系数Coefficient t值t value 系数Coefficient t值t value
lnRW 3.626*** 5.50 -7.377*** -4.65 -3.751** -2.48
lnATP -0.749*** -3.04 0.286 0.42 -0.462 -0.61
lnRLS -0.238*** -2.98 -0.015 -0.05 -0.254 -0.77
lnRFA 0.186** 2.31 0.792** 2.52 0.978*** 2.81
lnADL 0.230** 2.41 -0.771** -2.47 -0.541 -1.58
lnAFI 0.032 0.75 -0.265* -1.78 -0.233 -1.40
lnLA 0.530*** 3.81 -1.937*** -4.03 -1.407*** -2.70
lnAS 0.288 1.12 -0.562 -0.82 -0.273 -0.36

Table 8

Direct and indirect effects of variables on rural energy carbon emissions under inverse distance matrix"

变量
Variable
直接效应Direct effect 间接效应Indirect effect 总效应Total effect
系数Coefficient t值t value 系数Coefficient t值t value 系数Coefficient t值t value
lnRW 3.567*** 5.70 -12.070*** -3.46 -8.503** -2.49
lnATP -0.774*** -3.24 0.305 0.22 -0.469 -0.32
lnRLS -0.133 -1.51 0.792 1.25 0.659 0.97
lnRFA 0.208*** 2.60 1.502** 2.55 1.710*** 2.78
lnADL 0.151 1.58 -1.868*** -2.79 -1.717** -2.46
lnAFI 0.036 0.84 -0.427 -1.51 -0.391 -1.31
lnLA 0.328** 2.29 -5.081*** -4.23 -4.753*** -3.77
lnAS 0.242 0.95 -2.080 -1.49 -1.838 -1.28
[1]
潘家华. 中国碳中和的时间进程与战略路径. 财经智库, 2021, 6(4): 42-66, 141.
PAN J H. On the time course and strategic path of carbon neutralization in China. Financial Minds, 2021, 6(4): 42-66, 141. (in Chinese)
[2]
WEST T O, MARLAND G. A synthesis of carbon sequestration, carbon emissions, and net carbon flux in agriculture: comparing tillage practices in the United States. Agriculture, Ecosystems & Environment, 2002, 91(1/2/3): 217-232.

doi: 10.1016/S0167-8809(01)00233-X
[3]
JOHNSON J M F, FRANZLUEBBERS A J, WEYERS S L, REICOSKY D C. Agricultural opportunities to mitigate greenhouse gas emissions. Environmental Pollution, 2007, 150(1): 107-124.

pmid: 17706849
[4]
董红敏, 李玉娥, 陶秀萍, 彭小培, 李娜, 朱志平. 中国农业源温室气体排放与减排技术对策. 农业工程学报, 2008, 24(10): 269-273.
DONG H M, LI Y E, TAO X P, PENG X P, LI N, ZHU Z P. China greenhouse gas emissions from agricultural activities and its mitigation strategy. Transactions of the Chinese Society of Agricultural Engineering, 2008, 24(10): 269-273. (in Chinese)
[5]
李俊杰. 民族地区农地利用碳排放测算及影响因素研究. 中国人口·资源与环境, 2012, 22(9): 42-47.
LI J J. Research on characteristics and driving factors of agricultural land carbon emission in provinces of minorities in China. China Population, Resources and Environment, 2012, 22(9): 42-47. (in Chinese)
[6]
田云, 张俊飚, 李波. 基于投入角度的农业碳排放时空特征及因素分解研究: 以湖北省为例. 农业现代化研究, 2011, 32(6): 752-755.
TIAN Y, ZHANG J B, LI B. Research on spatial-temporal characteristics and factor decomposition of agricultural carbon emission based on input angle—taking Hubei Province for example. Research of Agricultural Modernization, 2011, 32(6): 752-755. (in Chinese)
[7]
刘月仙, 刘娟, 吴文良. 北京地区畜禽温室气体排放的时空变化分析. 中国生态农业学报, 2013, 21(7): 891-897.
LIU Y X, LIU J, WU W L. Spatiotemporal dynamics of greenhouse gases emissions from livestock and poultry in Beijing area during 1978—2009. Chinese Journal of Eco-Agriculture, 2013, 21(7): 891-897. (in Chinese)

doi: 10.3724/SP.J.1011.2013.00891
[8]
邵桂兰, 孔海峥, 于谨凯, 李晨. 基于LMDI法的我国海洋渔业碳排放驱动因素分解研究. 农业技术经济, 2015(6): 119-128.
SHAO G L, KONG H Z, YU J K, LI C. Study on decomposition of driving factors of carbon emissions from marine fisheries in China based on LMDI method. Journal of Agrotechnical Economics, 2015(6): 119-128. (in Chinese)
[9]
闵继胜, 胡浩. 中国农业生产温室气体排放量的测算. 中国人口·资源与环境, 2012, 22(7): 21-27.
MIN J S, HU H. Calculation of greenhouse gases emission from agricultural production in China. China Population, Resources and Environment, 2012, 22(7): 21-27. (in Chinese)
[10]
金书秦, 林煜, 牛坤玉. 以低碳带动农业绿色转型:中国农业碳排放特征及其减排路径. 改革, 2021(5): 29-37.
JIN S Q, LIN Y, NIU K Y. Driving green transformation of agriculture with low carbon: characteristics of agricultural carbon emissions and its emission reduction path in China. Reform, 2021(5): 29-37. (in Chinese)
[11]
田云, 尹忞昊. 中国农业碳排放再测算:基本现状、动态演进及空间溢出效应. 中国农村经济, 2022(3): 104-127.
TIAN Y, YIN M H. Re-evaluation of China’s agricultural carbon emissions: basic status, dynamic evolution and spatial spillover effects. Chinese Rural Economy, 2022(3): 104-127. (in Chinese)
[12]
张广胜, 王珊珊. 中国农业碳排放的结构、效率及其决定机制. 农业经济问题, 2014, 35(7): 18-26, 110.
ZHANG G S, WANG S S. China’s agricultural carbon emission: structure, efficiency and its determinants. Issues in Agricultural Economy, 2014, 35(7): 18-26, 110. (in Chinese)
[13]
李波, 杜建国, 刘雪琪. 湖北省农业碳排放的时空特征及经济关联性. 中国农业科学, 2019, 52(23): 4309-4319. doi: 10.3864/j.issn. 0578-1752.2019.23.011.

doi: 10.3864/j.issn.0578-1752.2019.23.011
LI B, DU J G, LIU X Q. Spatial-temporal characteristics and economic relevance of agricultural carbon emissions in Hubei Province. Scientia Agricultura Sinica, 2019, 52(23): 4309-4319. doi: 10.3864/j.issn. 0578-1752.2019.23.011. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2019.23.011
[14]
伍国勇, 刘金丹, 杨丽莎. 中国农业碳排放强度动态演进及碳补偿潜力. 中国人口·资源与环境, 2021, 31(10): 69-78.
WU G Y, LIU J D, YANG L S. Dynamic evolution of China’s agricultural carbon emission intensity and carbon offset potential. China Population, Resources and Environment, 2021, 31(10): 69-78. (in Chinese)
[15]
田成诗, 陈雨. 中国省际农业碳排放测算及低碳化水平评价: 基于衍生指标与TOPSIS法的运用. 自然资源学报, 2021, 36(2): 395-410.
TIAN C S, CHEN Y. China’s provincial agricultural carbon emissions measurement and low carbonization level evaluation: based on the application of derivative indicators and TOPSIS. Journal of Natural Resources, 2021, 36(2): 395-410. (in Chinese)

doi: 10.31497/zrzyxb.20210210
[16]
田云, 王梦晨. 湖北省农业碳排放效率时空差异及影响因素. 中国农业科学, 2020, 53(24): 5063-5072. doi: 10.3864/j.issn.0578-1752.

doi: 10.3864/j.issn.0578-1752.2020.24.009
2020.24.009.
TIAN Y, WANG M C. Research on spatial and temporal difference of agricultural carbon emission efficiency and its influencing factors in Hubei Province. Scientia Agricultura Sinica, 2020, 53(24): 5063-5072. doi: 10.3864/j.issn.0578-1752.2020.24.009. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2020.24.009
[17]
吴贤荣, 张俊飚, 田云, 薛龙飞. 基于公平与效率双重视角的中国农业碳减排潜力分析. 自然资源学报, 2015, 30(7): 1172-1182.

doi: 10.11849/zrzyxb.2015.07.010
WU X R, ZHANG J B, TIAN Y, XUE L F. Analysis on China’s agricultural carbon abatement capacity from the perspective of both equity and efficiency. Journal of Natural Resources, 2015, 30(7): 1172-1182. (in Chinese)

doi: 10.11849/zrzyxb.2015.07.010
[18]
颜廷武, 田云, 张俊飚, 汪洋. 中国农业碳排放拐点变动及时空分异研究. 中国人口·资源与环境, 2014, 24(11): 1-8.
YAN T W, TIAN Y, ZHANG J B, WANG Y. Research on inflection point change and spatial and temporal variation of China’s agricultural carbon emissions. China Population, Resources and Environment, 2014, 24(11): 1-8. (in Chinese)
[19]
吴金凤, 王秀红. 不同农业经济发展水平下的碳排放对比分析: 以盐池县和平度市为例. 资源科学, 2017, 39(10): 1909-1917.

doi: 10.18402/resci.2017.10.10
WU J F, WANG X H. Comparative analysis of agricultural carbon emissions at different agricultural economic development levels in Yanchi County and Pingdu City. Resources Science, 2017, 39(10): 1909-1917. (in Chinese)

doi: 10.18402/resci.2017.10.10
[20]
董明涛. 我国农业碳排放与产业结构的关联研究. 干旱区资源与环境, 2016, 30(10): 7-12.
DONG M T. The association of agricultural carbon emissions and industrial structure in China. Journal of Arid Land Resources and Environment, 2016, 30(10): 7-12. (in Chinese)
[21]
ALI B, ULLAH A, KHAN D. Does the prevailing Indian agricultural ecosystem cause carbon dioxide emission? A consent towards risk reduction. Environmental Science and Pollution Research International, 2021, 28(4): 4691-4703.

doi: 10.1007/s11356-020-10848-3
[22]
李国志, 李宗植. 中国农业能源消费碳排放因素分解实证分析: 基于LMDI模型. 农业技术经济, 2010(10): 66-72.
LI G Z, LI Z Z. Empirical analysis on decomposition of carbon emission factors of agricultural energy consumption in china—based on LMDI model. Journal of Agrotechnical Economics, 2010(10): 66-72. (in Chinese)
[23]
韩岳峰, 张龙. 中国农业碳排放变化因素分解研究: 基于能源消耗与贸易角度的LMDI分解法. 当代经济研究, 2013(4): 47-52.
HAN Y F, ZHANG L. Decomposition of Agricultural Carbon Emissions in China—LMDI decomposition method based on energy consumption and trade. Contemporary Economic Research, 2013(4): 47-52. (in Chinese)
[24]
胡剑波, 王青松. 基于泰尔指数的中国农业能源消费碳排放区域差异研究. 贵州社会科学, 2019(7): 108-117.
HU J B, WANG Q S. Study on regional differences of carbon emission in agricultural energy consumption based on theil index. Guizhou Social Sciences, 2019(7): 108-117. (in Chinese)
[25]
魏玮, 文长存, 崔琦, 解伟. 农业技术进步对农业能源使用与碳排放的影响: 基于GTAP-E模型分析. 农业技术经济, 2018(2): 30-40.
WEI W, WEN C C, CUI Q, XIE W. The impacts of technological advance on agricultural energy use and carbon emission-an analysis based on GTAP-E model. Journal of Agrotechnical Economics, 2018(2): 30-40. (in Chinese)
[26]
田云, 尹忞昊. 技术进步促进了农业能源碳减排吗? 基于回弹效应与空间溢出效应的检验. 改革, 2021(12): 45-58.
TIAN Y, YIN M H. Does technological progress promote carbon emission reduction of agricultural energy? Test based on rebound effect and spatial spillover effect. Reform, 2021(12): 45-58. (in Chinese)
[27]
LIU W L, WANG C, MOL A P J. Rural residential CO2 emissions in China: where is the major mitigation potential? Energy Policy, 2012, 51: 223-232.

doi: 10.1016/j.enpol.2012.05.045
[28]
万文玉, 赵雪雁, 王伟军, 薛冰. 我国农村居民生活能源碳排放的时空特征分析. 生态学报, 2017, 37(19): 6390-6401.
WAN W Y, ZHAO X Y, WANG W J, XUE B. Analysis of spatio-temporal patterns of carbon emission from energy consumption by rural residents in China. Acta Ecologica Sinica, 2017, 37(19): 6390-6401. (in Chinese)
[29]
刘莉娜, 曲建升, 曾静静, 李燕, 邱巨龙, 王莉. 灰色关联分析在中国农村家庭碳排放影响因素分析中的应用. 生态环境学报, 2013, 22(3): 498-505.
LIU L N, QU J S, ZENG J J, LI Y, QIU J L, WANG L. Application of gray relational analysis method in the influencing factor analysis of China’s rural household carbon emissions. Ecology and Environmental Sciences, 2013, 22(3): 498-505. (in Chinese)
[30]
张恒硕, 李绍萍, 彭民. 中国农村能源消费碳排放区域非均衡性及驱动因素动态识别. 中国农村经济, 2022(1): 112-134.
ZHANG H S, LI S P, PENG M. Regional imbalance of carbon emissions from China’s rural energy consumption and dynamic identification of driving factors. Chinese Rural Economy, 2022(1): 112-134. (in Chinese)
[31]
曹翔, 高瑀, 刘子琪. 农村人口城镇化对居民生活能源消费碳排放的影响分析. 中国农村经济, 2021(10): 64-83.
CAO X, GAO Y, LIU Z Q. The impact of urbanization of rural residents on carbon emissions from household energy consumption. Chinese Rural Economy, 2021(10): 64-83. (in Chinese)
[32]
蒋金荷. 中国城镇住宅碳排放强度分析和用能政策反思. 数量经济技术经济研究, 2015, 32(6): 90-104.
JIANG J H. China’s urban residential carbon intensity decomposition and energy policy rethink. The Journal of Quantitative & Technical Economics, 2015, 32(6): 90-104. (in Chinese)
[33]
田云, 陈池波. 中国碳减排成效评估、后进地区识别与路径优化. 经济管理, 2019, 41(6): 22-37.
TIAN Y, CHEN C B. Effectiveness evaluation of carbon emission reduction in China, identification of backward areas and path optimization. Business Management Journal, 2019, 41(6): 22-37. (in Chinese)
[34]
袁华锡, 刘耀彬, 封亦代. 金融集聚如何影响绿色发展效率?: 基于时空双固定的SPDM与PTR模型的实证分析. 中国管理科学, 2019, 27(11): 61-75.
YUAN H X, LIU Y B, FENG Y D. How does financial agglomeration affect green development Efficiency? Empirical analysis of SPDM and PTR models considering spatio-temporal double fixation. Chinese Journal of Management Science, 2019, 27(11): 61-75. (in Chinese)
[35]
YORK R, ROSA E A, DIETZ T. STIRPAT, IPAT and ImPACT: analytic tools for unpacking the driving forces of environmental impacts. Ecological Economics, 2003, 46(3): 351-365.

doi: 10.1016/S0921-8009(03)00188-5
[36]
杨骞, 刘华军. 中国二氧化碳排放的区域差异分解及影响因素: 基于1995—2009年省际面板数据的研究. 数量经济技术经济研究, 2012, 29(5): 36-49, 148.
YANG Q, LIU H J. Regional difference decomposition and influence factors of China’s carbon dioxide emissions. The Journal of Quantitative & Technical Economics, 2012, 29(5): 36-49, 148. (in Chinese)
[37]
ANSELIN L. Spatial Econometrics:Methods and Models. Boston: Kluwer Academic Publishers, 1988.
[38]
田云, 林子娟. 中国省域农业碳排放效率与经济增长的耦合协调. 中国人口·资源与环境, 2022, 32(4): 13-22.
TIAN Y, LIN Z J. Coupling coordination between agricultural carbon emission efficiency and economic growth at provincial level in China. China Population, Resources and Environment, 2022, 32(4): 13-22. (in Chinese)
[39]
SADORSKY P. Financial development and energy consumption in Central and Eastern European frontier economies. Energy Policy, 2011, 39(2): 999-1006.

doi: 10.1016/j.enpol.2010.11.034
[40]
SHAHBAZ M, ALI NASIR M, ROUBAUD D. Environmental degradation in France: the effects of FDI, financial development, and energy innovations. Energy Economics, 2018, 74: 843-857.

doi: 10.1016/j.eneco.2018.07.020
[41]
聂丽, 石凯. 农村金融集聚影响农村经济增长的区域差异与路径选择. 财贸研究, 2021, 32(5): 37-48.
NIE L, SHI K. Regional differences and path selection of rural finance aggregation affecting rural economic growth. Finance and Trade Research, 2021, 32(5): 37-48. (in Chinese)
[42]
LESAGE J P, PACE R K. Introduction to Spatial Econometrics. Boca Raton: CRC Press, 2009.
[1] FangJie LI,JianQiang REN,ShangRong WU,ZhongXin CHEN,NingDan ZHANG. Spatio-Temporal Variations of Winter Wheat Planting Frequency and Their Analysis of Influencing Factors in Henan Province [J]. Scientia Agricultura Sinica, 2020, 53(9): 1773-1794.
[2] TIAN Yun,WANG MengChen. Research on Spatial and Temporal Difference of Agricultural Carbon Emission Efficiency and Its Influencing Factors in Hubei Province [J]. Scientia Agricultura Sinica, 2020, 53(24): 5063-5072.
[3] ZHAO QingYue,XU ShiJie,ZHANG WuShuai,ZHANG Zhe,YAO Zhi,CHEN XinPing,ZOU ChunQin. Spatial Regional Variability and Influential Factors of Soil Fertilities in the Major Regions of Maize Production of China [J]. Scientia Agricultura Sinica, 2020, 53(15): 3120-3133.
[4] ZHU XiaoYu,XU DaWei,XIN XiaoPing,SHEN BeiBei,DING Lei,WANG Xu,CHEN BaoRui,YAN RuiRui. The Spatial-Temporal Distribution of Different Grassland Types in Hulunber Grassland Based on Remote Sensing from 1992 to 2015 [J]. Scientia Agricultura Sinica, 2020, 53(13): 2715-2727.
[5] LI Bo,DU JianGuo,LIU XueQi. Spatial-Temporal Characteristics and Economic Relevance of Agricultural Carbon Emissions in Hubei Province [J]. Scientia Agricultura Sinica, 2019, 52(23): 4309-4319.
[6] LI Bo-yan, REN Zhi-yuan. Trend Analysis and Estimation of Net Primary Productivity in Yinchuan Basin [J]. Scientia Agricultura Sinica, 2016, 49(7): 1303-1314.
[7] ZHANG Ling-E, SHUANG Wen-Yuan, YUN An-Ping, NIU Ling-An, HU Ke-Lin. Spatio-temporal Variability and the Influencing Factors of Soil Available Potassium in 30 Years in Quzhou County, Hebei Province [J]. Scientia Agricultura Sinica, 2014, 47(5): 923-933.
[8] HUANG Ming, WANG Lu-Sha. A Review of the Antioxidant Peptides Derived from Animal Protein [J]. Scientia Agricultura Sinica, 2013, 46(22): 4763-4773.
[9] LI Hong-Liang, LI Yong, ZHOU Mi, ZHANG Hong-Yong, SHI Zhe-Mei, MENG Xiu-Xiang. Variables Determining Average the Annual Musk Production in   Captive Alpine Musk Deer [J]. Scientia Agricultura Sinica, 2012, 45(3): 522-528.
[10] LI Li-min,WU Lin,HAO Qing-sheng.

An Empirical Study on Consumers’ Intention and Influence Factors on Blueberry Products —On the Basis of Survey of Customers in Jilin Province

[J]. Scientia Agricultura Sinica, 2011, 44(2): 423-431 .
[11] PANG Su,LI Ting-xuan,WANG Yong-dong,YU Hai-ying,GUO Qi-ling,CHEN Dong-ming
. Spatial Variability and Influencing Factors of the Concentrations of Cu, Zn, and Cr in Cropland Soil on County Scales
[J]. Scientia Agricultura Sinica, 2010, 43(4): 737-743 .
[12] . The Estrus Cycle, Diestrus and the Related Influencing Factors in Female Alpine Musk Deer (Moschus sifanicus) in Captivity
[J]. Scientia Agricultura Sinica, 2009, 42(5): 1783-1788 .
[13] ,,,,,. Soil Phosphorus Release to the Water Bodies in the Upland Fields of Yellow Soil Areas and the Influencing Factors [J]. Scientia Agricultura Sinica, 2006, 39(01): 118-124 .
[14] ,. Effect of Ultrasonic Treatment on the Extracting Activity of Kid Rennet [J]. Scientia Agricultura Sinica, 2004, 37(10): 1555-1559 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!