Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (22): 4495-4506.doi: 10.3864/j.issn.0578-1752.2024.22.009

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Effects of Nitrogen Reduction Application of Summer Maize- Soybean Intercropping on Agronomic Traits and Economic Benefits as well as Its Yield of Subsequent Wheat

DONG KuiJun1,2(), ZHANG YiTao1(), LIU HanWen3, ZHANG JiZong4(), WANG WeiJun5, WEN YanChen4, LEI QiuLiang4, WEN HongDa2   

  1. 1 Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101
    2 College of Resources and Environment Science, Agricultural University of Hebei, Baoding 071000, Hebei
    3 College of Forestry, Agricultural University of Hebei, Baoding 071000, Hebei
    4 Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081
    5 Zhangjiakou Academy of Agricultural Sciences, Zhangjiakou 075000, Hebei
  • Received:2023-11-29 Accepted:2024-01-10 Online:2024-11-16 Published:2024-11-22
  • Contact: ZHANG YiTao, ZHANG JiZong

Abstract:

【Objective】The purpose of this study was to determine the effects of nitrogen application amount on the yield composition, economic benefit of summer sowing intercropping crops and the yield of winter wheat. 【Method】From 2022 to 2023, the representative farmlands were selected in Yucheng City, Shandong Province, which was the main extension area of maize-soybean strip intercropping. Maize monoculture (Nitrogen application rate: 225 kg·hm-2), soybean monoculture (Nitrogen application rate: 45 kg·hm-2), maize-soybean intercropping with full nitrogen application (Nitrogen application rate: 270 kg·hm-2), maize-soybean intercropping with reduced nitrogen application (Nitrogen application rate: 135 kg·hm-2) were set up in summer sowing season, and the subsequent crops were planted with wheat without fertilizer treatment. The effects of different summer sowing treatments on photosynthetic characteristics, agronomic traits, economic benefits and yield of subsequent wheat were analyzed. 【Result】Both planting pattern and nitrogen application amount had significant effects on crop growth and development. Compared with maize monoculture, the chlorophyll content, Pn, Gs, Ci and Tr of maize leaves were significantly decreased by intercropping reduced nitrogen application (135 kg·hm-2). However, the Pn, Gs and Tr of leaves of intercropping full nitrogen maize (270 kg·hm-2) were significantly increased by 8.8%, 10% and 11.6%, respectively. Intercropping system resulted in decreased chlorophyll content of soybean, inhibited leaf Pn, Gs, and Tr. In terms of agronomic characteristics, stem length increased, pod number per plant decreased, and yield decreased by 65.1%-68.4%. There was no significant difference in the agronomic characteristics and yield of maize under the intercropping system with full nitrogen application, and the economic benefit was the highest under this system, reaching 22 607 yuan/hm2, while the agronomic characteristics such as ear length, grain number per ear and hundred-grain weight of maize under reduced nitrogen application significantly decreased, and the yield decreased by 14.8%. However, in general, the land equivalent ratio of both maize and soybean treatments was also greater than 1. Economic benefit and nitrogen uptake were increased by 4.8%-11.5% and 19.7%-38% compared with monocrop. When winter wheat was not fertilized, the grain yield and crop nitrogen uptake of aftercrop winter wheat with full nitrogen application in summer sowing were higher than that under other treatments, and there was no significant difference between the yield of winter wheat with reduced nitrogen application between summer sowing seasons and that of winter wheat with summer sowing maize. 【Conclusion】Therefore, from the comprehensive analysis of agronomic characteristics, yield and economic benefits as well as the effects on aftercrop, the effect of total nitrogen application in intercropping was better than that of reduced nitrogen application in intercropping. However, considering the yield, economic and environmental benefits, the amount of nitrogen application in intercropping should be further optimized.

Key words: maize, soybean, monoculture, intercropping, yield components, economic benefits, aftercrop, winter wheat

Table 1

Physical and chemical properties of tested soils"

土层深度
Soil depth (cm)
有机质
Organic matter (g·kg-1)
全氮
Total N (g·kg-1)
有效磷
Available P (mg·kg-1)
速效钾
Available K (mg·kg-1)
pH 硝态氮
NO3--N
(mg·kg-1)
铵态氮
NH4+-N
(mg·kg-1)
容重
Bulk density
(g·cm-3)
含水量
Water content (%)
0-20 15.05 1.00 11.97 105 7.48 22.57 4.74 1.32 5.89
20-40 12.96 0.91 7.36 149 7.51 7.85 5.70 1.51 9.75

Fig. 1

Schematic diagram of crop planting"

Fig. 2

Chlorophyll content of crops in different periods of summer sowing season Different lowercase letters indicate significant differences among treatments (P<0.05)"

Table 2

Photosynthetic parameters of maize and soybean leaves under different treatments"

处理
Treatment
净光合速率
Pn (μmol·m-2·s-1)
气孔导度
Gs (μmol·m-2·s-1)
胞间 CO2 浓度
Ci (μmol·m-2·s-1)
蒸腾速率
Tr (g·m-2·h-1)
DY 27.29±0.47b 0.27±0.01b 239.43±1.74a 4.21±0.09b
JY-N90 27.95±0.68b 0.22±0.01c 188.54±8.69c 4.04±0.13b
JY-N225 29.91±0.49a 0.30±0.02a 234.44±8.47a 4.74±0.12a
DD 28.66±1.03a 1.16±0.11a 349.40±8.13a 6.30±0.06a
JD-JN45 24.96±0.85b 0.73±0.05b 354.52±9.19a 5.22±0.34b
JD-QN45 25.46±0.97b 0.74±0.01b 347.07±10.48a 5.17±0.13b

Table 3

Agronomic characters of maize"

年份
Year
处理
Treatment
穗重
Ear weight (g)
穗长
Spike length (cm)
穗行数
Ear row number
行粒数
Row grain
穗粒数
Grain number per spike
百粒重
hundred-grain weight (g)
2022 DY 184.47±9.34a 15.50±0.46a 14.13±0.23a 33.33±2.54a 469.87±27.60a 28.32±2.02a
JY-N90 157.57±7.97b 14.27±0.68b 13.53±0.83a 31.67±0.64a 428.67±30.55b 27.49±0.71b
JY-N225 185.53±10.78a 16.10±0.17a 13.53±0.70a 33.00±1.00a 445.67±19.86a 29.70±0.42a
2023 DY 200.96±6.75a 16.23±0.81a 14.93±0.23a 34.73±0.76a 517.60±9.17a 30.27±0.49a
JY-N90 165.50±2.47b 15.03±0.23b 13.73±0.23b 32.07±1.14b 439.87±8.24c 27.83±0.42c
JY-N225 186.43±2.18ab 15.53±0.32b 14.27±0.23ab 33.53±0.64ab 478.53±7.26b 28.93±0.32b
均值
Average
DY 192.72±3.16a 15.87±0.19a 14.53±0.12a 34.03±0.90a 493.73±10.73a 29.29±0.81a
JY-N90 161.67±3.95b 14.90±0.20b 13.63±0.31b 31.87±0.85b 434.27±19.13b 27.66±0.55b
JY-N225 185.98±4.31a 15.82±0.21a 13.90±0.46ab 33.27±0.81ab 462.10±23.52ab 29.32±0.28a

Table 4

Agronomic characters of soybean"

年份
Year
处理
Treatment
茎长
Stem length
(cm)
第一荚位高
Height of the first pod (cm)
单株荚数
Number of pods per plant
茎粗
Stem diameter
(cm)
百粒重
Hundred-grain weight (g)
2022 DD 57.98±2.45b 22.18±2.07a 28.63±4.60a 0.37±0.03a 24.14±0.56a
JD-JN45 73.10±3.04a 27.19±8.27a 26.78±2.00ab 0.40±0.01a 26.21±2.41a
JD-QN45 75.79±5.87a 23.79±0.52a 21.12±3.00b 0.38±0.06a 25.06±0.88a
2023 DD 68.80±1.78b 22.75±0.80b 34.69±0.97a 0.61±0.08a 25.07±0.21a
JD-JN45 82.43±3.80a 25.72±1.72a 24.65±1.07b 0.52±0.02a 24.53±1.02a
JD-QN45 80.47±4.30a 26.84±1.70a 20.73±2.44c 0.56±0.05a 24.67±1.04a
均值
Average
DD 63.39±1.80b 22.47±1.43b 31.66±2.43a 0.49±0.05a 24.61±0.37a
JD-JN45 77.76±3.39a 26.45±4.63a 25.72±1.40b 0.46±0.01a 25.37±1.71a
JD-QN45 78.13±1.11a 25.31±0.61a 20.93±0.71c 0.44±0.05a 24.87±0.21a

Table 5

Economic benefit and nitrogen uptake of crops under different planting patterns in summer"

处理
Treatment
2022 2023
产量
Yield (kg·hm-2)
土地当量比
Land equivalent ratio
经济效益
Economic benefits (yuan/hm2)
产量
Yield (kg·hm-2)
土地当量比
Land equivalent ratio
经济效益
Economic benefits (yuan/hm2)
DY 8993.75±874.89A 18742.50c 10054.97±139.61A 21289.43b
DD 2597.00±29.04a 12446.40d 3336.45±105.78a 16661.24c
JZ-135N JY-90N 7952.45±374.89B 1.26 20313.47b 8271.66±40.04C 1.15 21750.14b
JD-JN45 976.05±56.48b 1093.69±57.79b
JZ-270N JY-225N 8940.25±296.03A 1.33 21772.43a 9355.35±93.30B 1.22 23441.56a
JD-QN45 880.04±65.82b 998.09±57.39b

Fig. 3

Nitrogen uptake of crops under different summer planting patterns"

Fig. 4

Residual effect under different summer cropping patterns"

[1]
杨文钰, 杨峰. 发展玉豆带状复合种植, 保障国家粮食安全. 中国农业科学, 2019, 52(21): 3748-3750. doi: 10.3864/j.issn.0578-1752.2019.21.003.
YANG W Y, YANG F. Developing maize-soybean strip intercropping for demand security of national food. Scientia Agricultura Sinica, 2019, 52(21): 3748-3750. doi: 10.3864/j.issn.0578-1752.2019.21.003. (in Chinese)
[2]
吴维雄, 罗锡文, 杨文钰, 彭淑卉. 小麦-玉米-大豆带状复合种植机械化研究进展. 农业工程学报, 2015, 31(S1): 1-7.
WU W X, LUO X W, YANG W Y, PENG S H. Research progress on mechanization of wheat-corn-soybean strip compound planting. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(S1): 1-7. (in Chinese)
[3]
YANG B, WANG J L, LI S L, HUANG X Q.Identifying the spatio-temporal change in winter wheat-summer maize planting structure in the North China Plain between 2001 and 2020. Agronomy, 2023, 13(11): 2712.
[4]
MA Y H, FU S L, ZHANG X P, ZHAO K, CHEN H Y H. Intercropping improves soil nutrient availability, soil enzyme activity and tea quantity and quality. Applied Soil Ecology, 2017, 119: 171-178.
[5]
蒋紫薇, 刘桂宇, 安昊云, 石薇, 常生华, 张程, 贾倩民, 侯扶江. 种植密度与施氮对玉米/秣食豆间作系统饲草产量、品质和氮肥利用的影响. 草业学报, 2022, 31(7): 157-171.

doi: 10.11686/cyxb2021251
JIANG Z W, LIU G Y, AN H Y, SHI W, CHANG S H, ZHANG C, JIA Q M, HOU F J. Effects of planting density and nitrogen application on forage yield, quality and nitrogen use efficiency in a maize/forage soybean intercropping system. Acta Prataculturae Sinica, 2022, 31(7): 157-171. (in Chinese)
[6]
冯晨, 黄波, 冯良山, 郑家明, 白伟, 杜桂娟, 向午燕, 蔡倩, 张哲, 孙占祥. 不同配置对辽西玉米‖花生间作系统氮素吸收利用的影响. 中国农业科学, 2022, 55(1): 61-73. doi: 10.3864/j.issn.0578-1752.2022.01.006.
FENG C, HUANG B, FENG L S, ZHENG J M, BAI W, DU G J, XIANG W Y, CAI Q, ZHANG Z, SUN Z X. Effects of different configurations on nitrogen uptake and utilization characteristics of maize-peanut intercropping system in West Liaoning. Scientia Agricultura Sinica, 2022, 55(1): 61-73. doi: 10.3864/j.issn.0578-1752.2022.01.006. (in Chinese)
[7]
王顶, 伊文博, 李欢, 陈林康, 赵平, 龙光强. 玉米间作和施氮对土壤微生物代谢功能多样性的影响. 应用生态学报, 2022, 33(3): 793-800.

doi: 10.13287/j.1001-9332.202202.038
WANG D, YI W B, LI H, CHEN L K, ZHAO P, LONG G Q. Effects of intercropping and nitrogen application on soil microbial metabolic functional diversity in maize cropping soil. Chinese Journal of Applied Ecology, 2022, 33(3): 793-800. (in Chinese)

doi: 10.13287/j.1001-9332.202202.038
[8]
王茂鉴, 石薇, 常生华, 张程, 贾倩民, 侯扶江. 灌溉模式对河西灌区禾-豆间作系统饲草产量、品质和水分利用的影响. 草业学报, 2023, 32(3): 13-29.

doi: 10.11686/cyxb2022136
WANG M J, SHI W, CHANG S H, ZHANG C, JIA Q M, HOU F J. Effects of irrigation modes on forage yield, quality and water use of corn-legume intercropping systems in the Hexi irrigation area. Acta Prataculturae Sinica, 2023, 32(3): 13-29. (in Chinese)
[9]
YANG L N, PAN Z C, ZHU W, WU E J, HE D C, YUAN X, QIN Y Y, WANG Y, CHEN R S, THRALL P H, BURDON J J, SHANG L P, SUI Q J, ZHAN J S. Enhanced agricultural sustainability through within-species diversification. Nature Sustainability, 2019, 2: 46-52.
[10]
于淑婷. 华北轮作制度转换下土壤微生物群落及作物产量变化机制研究[D]. 武汉: 华中农业大学, 2023.
YU S T. Study on soil microbial community and crop yield change mechanism under the transformation of rotation system in North China[D]. Wuhan: Huazhong Agricultural University, 2023. (in Chinese)
[11]
雍太文, 陈平, 刘小明, 周丽, 宋春, 王小春, 杨峰, 刘卫国, 杨文钰. 减量施氮对玉米-大豆套作系统土壤氮素氨化、硝化及固氮作用的影响. 作物学报, 2018, 44(10): 1485-1495.

doi: 10.3724/SP.J.1006.2018.01485
YONG T W, CHEN P, LIU X M, ZHOU L, SONG C, WANG X C, YANG F, LIU W G, YANG W Y. Effects of reduced nitrogen on soil ammonification, nitrification, and nitrogen fixation in maize-soybean relay intercropping systems. Acta Agronomica Sinica, 2018, 44(10): 1485-1495. (in Chinese)
[12]
WANG W L, MOORE J K, MARTINY A C, PRIMEAU F W. Convergent estimates of marine nitrogen fixation. Nature, 2019, 566: 205-211.
[13]
ZEHR J P, CAPONE D G. Changing perspectives in marine nitrogen fixation. Science, 2020, 368(6492): 9514.
[14]
YANG Q, YANG Y Q, XU R N, LV H Y, LIAO H. Genetic analysis and mapping of QTLs for soybean biological nitrogen fixation traits under varied field conditions. Frontiers in Plant Science, 2019, 10: 75.

doi: 10.3389/fpls.2019.00075 pmid: 30774643
[15]
李隆, 李晓林, 张福锁, 孙建好, 杨思存, 芦满济. 小麦大豆间作条件下作物养分吸收利用对间作优势的贡献. 植物营养与肥料学报, 2000, 6(2): 140-146.
LI L, LI X L, ZHANG F S, SUN J H, YANG S C, LU M J. Uptake and utilization of nitrogen, phosphorus and potassium as related to yield advantage in wheat/soybean intercropping. Journal of Plant Natrition and Fertilizens, 2000, 6(2): 140-146. (in Chinese)
[16]
ZHANG F S, LI L. Using competitive and facilitative interactions in intercropping systems enhances crop productivity and nutrient-use efficiency. Plant and Soil, 2003, 248(1): 305-312.
[17]
WANG Y Z, ZHANG Y P, ZHANG H F, YANG Z Y, ZHU Q R, YAN B J, FEI J C, RONG X M, PENG J W, LUO G W. Intercropping- driven nitrogen trade-off enhances maize productivity in a long-term experiment. Field Crops Research, 2022, 287: 108671.
[18]
崔文芳, 秦德志, 陈静, 刘剑, 严海鸥, 秦丽. 玉米大豆不同间作系统光合特性与产量边际效应. 农业机械学报, 2023, 54(8): 309-319.
CUI W F, QIN D Z, CHEN J, LIU J, YAN H O, QIN L. Marginal effects of photosynthetic characteristics and yield in maize and soybean intercropping systems. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(8): 309-319. (in Chinese)
[19]
LI X F, WANG Z G, BAO X G, SUN J H, YANG S C, WANG P, WANG C B, WU J P, LIU X R, TIAN X L, WANG Y, LI J P, WANG Y, XIA H Y, MEI P P, WANG X F, ZHAO J H, YU R P, ZHANG W P, CHE Z X, GUI L G, CALLAWAY R M, TILMAN D, LI L. Long-term increased grain yield and soil fertility from intercropping. Nature Sustainability, 2021, 4: 943-950.
[20]
SIMON-MIQUEL G, RECKLING M, LAMPURLANÉS J, PLAZA-BONILLA D. A win-win situation-Increasing protein production and reducing synthetic N fertilizer use by integrating soybean into irrigated Mediterranean cropping systems. European Journal of Agronomy, 2023, 146: 126817.
[21]
XU Z, LI C J, ZHANG C C, YU Y, VAN DER WERF W, ZHANG F S. Intercropping maize and soybean increases efficiency of land and fertilizer nitrogen use; A meta-analysis. Field Crops Research, 2020, 246: 107661.
[22]
廖若星, 胡云, 蒲甜, 陈国鹏, 梁冰, 封亮, 杨文钰, 王小春. 密度与氮素互作对带状套作玉米产量的影响. 中国农业大学学报, 2023, 28(12): 25-38.
LIAO R X, HU Y, PU T, CHEN G P, LIANG B, FENG L, YANG W Y, WANG X C. Effect of density and nitrogen interaction on the yield of maize in maize-soybean relay strip intercropping. Journal of China Agricultural University, 2023, 28(12): 25-38. (in Chinese)
[23]
王雪蓉, 张润芝, 李淑敏, 许宁, 牟尧, 张春怡. 不同供氮水平下玉米/大豆间作体系干物质积累和氮素吸收动态模拟. 中国生态农业学报(中英文), 2019, 27(9): 1354-1363.
WANG X R, ZHANG R Z, LI S M, XU N, MU Y, ZHANG C Y. Simulation of dry matter accumulation and nitrogen absorption in a maize/soybean intercropping system supplied with different nitrogen levels. Chinese Journal of Eco-Agriculture, 2019, 27(9): 1354-1363. (in Chinese)
[24]
鲍士旦. 土壤农化分析. 3版. 北京: 中国农业出版社, 2000.
BAO S D. Soil and Agricultural Chemistry Analysis. 3rd ed. Beijing: China Agriculture Press, 2000. (in Chinese)
[25]
王晓维, 杨文亭, 缪建群, 徐健程, 万进荣, 聂亚平, 黄国勤. 玉米-大豆间作和施氮对玉米产量及农艺性状的影响. 生态学报, 2014, 34(18): 5275-5282.
WANG X W, YANG W T, MIAO J Q, XU J C, WAN J R, NIE Y P, HUANG G Q. Effects of maize-soybean intercropping and nitrogen fertilizer on yield and agronomic traits of maize. Acta Ecologica Sinica, 2014, 34(18): 5275-5282. (in Chinese)
[26]
徐珂, 樊志龙, 殷文, 赵财, 于爱忠, 胡发龙, 柴强. 氮肥后移及间作对玉米光合特性的耦合效应. 中国农业科学, 2022, 55(21): 4131-4143. doi: 10.3864/j.issn.0578-1752.2022.21.004.
XU K, FAN Z L, YIN W, ZHAO C, YU A Z, HU F L, CHAI Q. Coupling effects of N-fertilizer postponing application and intercropping on maize photosynthetic physiological characteristics. Scientia Agricultura Sinica, 2022, 55(21): 4131-4143. doi: 10.3864/j.issn.0578-1752.2022.21.004. (in Chinese)
[27]
HAN F, GUO S Q, WEI S, GUO R, CAI T, ZHANG P, JIA Z K, HUSSAIN S, JAVED T, CHEN X L, REN X L, AL-SADOON M K, STĘPIEŃ P. Photosynthetic and yield responses of rotating planting strips and reducing nitrogen fertilizer application in maize-peanut intercropping in dry farming areas. Frontiers in Plant Science, 2022, 13: 1014631.
[28]
肖世豪, 潘语卓, 俞霞, 陈忠平, 颜廷献, 周泉, 梁效贵, 杨文亭. 5年间作和施氮对甜玉米和大豆产量、农艺性状的影响. 核农学报, 2023, 37(4): 822-832.

doi: 10.11869/j.issn.1000-8551.2023.04.0822
XIAO S H, PAN Y Z, YU X, CHEN Z P, YAN T X, ZHOU Q, LIANG X G, YANG W T. Effect of intercropping and nitrogen rate on sweet corn and soybean yield and agronomic characteristics during 5-year field experiments. Journal of Nuclear Agricultural Sciences, 2023, 37(4): 822-832. (in Chinese)

doi: 10.11869/j.issn.1000-8551.2023.04.0822
[29]
李盛蓝, 谭婷婷, 范元芳, 杨文钰, 杨峰. 玉米荫蔽对大豆光合特性与叶脉、气孔特征的影响. 中国农业科学, 2019, 52(21): 3782-3793. doi: 10.3864/j.issn.0578-1752.2019.21.007.
LI S L, TAN T T, FAN Y F, YANG W Y, YANG F. Effects of maize shading on photosynthetic characteristics, vein and stomatal characteristics of soybean. Scientia Agricultura Sinica, 2019, 52(21): 3782-3793. doi: 10.3864/j.issn.0578-1752.2019.21.007. (in Chinese)
[30]
程彬, 刘卫国, 王莉, 许梅, 覃思思, 卢俊吉, 高阳, 李淑贤, Ali RAZA, 张熠, Irshan AHMAD, 敬树忠, 刘然金, 杨文钰. 种植密度对玉米-大豆带状间作下大豆光合、产量及茎秆抗倒的影响. 中国农业科学, 2021, 54(19): 4084-4096. doi: 10.3864/j.issn.0578-1752.2021.19.005.
CHENG B, LIU W G, WANG L, XU M, QIN S S, LU J J, GAO Y, LI S X, RAZA A, ZHANG Y, AHMAD I, JING S Z, LIU R J, YANG W Y. Effects of planting density on photosynthetic characteristics, yield and stem lodging resistance of soybean in maize-soybean strip intercropping system. Scientia Agricultura Sinica, 2021, 54(19): 4084-4096. doi: 10.3864/j.issn.0578-1752.2021.19.005. (in Chinese)
[31]
王竹, 杨文钰, 吴其林. 玉/豆套作荫蔽对大豆光合特性与产量的影响. 作物学报, 2007, 33(9): 1502-1507.
WANG Z, YANG W Y, WU Q L. Effects of shading in maize/soybean relay-cropping system on the photosynthetic characteristics and yield of soybean. Acta Agronomica Sinica, 2007, 33(9): 1502-1507. (in Chinese)
[32]
ZHOU T, WANG L, YANG H, GAO Y, LIU W G, YANG W Y. Ameliorated light conditions increase the P uptake capability of soybean in a relay-strip intercropping system by altering root morphology and physiology in the areas with low solar radiation. The Science of the Total Environment, 2019, 688: 1069-1080.

doi: S0048-9697(19)32917-1 pmid: 31726538
[33]
YUE J B, FENG H K, TIAN Q J, ZHOU C Q. A robust spectral angle index for remotely assessing soybean canopy chlorophyll content in different growing stages. Plant Methods, 2020, 16: 104.

doi: 10.1186/s13007-020-00643-z pmid: 32765637
[34]
孔玮琳, 薛燕慧, 李进, 李冬, 梅沛沛, 夏海勇. 不同氮水平下夏玉米夏大豆间作对其农艺性状及产量的影响. 山东农业科学, 2018, 50(7): 116-120.
KONG W L, XUE Y H, LI J, LI D, MEI P P, XIA H Y. Effect of intercropping on yield and agronomic traits of summer maize and summer soybean under different nitrogen levels. Shandong Agricultural Sciences, 2018, 50(7): 116-120. (in Chinese)
[35]
赵笃勤, 刘淑慧, 赵凯超. 玉米-大豆间作和减量施氮对玉米生长、产量及土壤硝态氮含量的影响. 西北农业学报, 2020, 29(8): 1159-1166.
ZHAO D Q, LIU S H, ZHAO K C. Effect of maize-soybean intercropping and reduced nitrogen application on maize growth, yield and soil nitrate content. Acta Agriculturae Boreali-occidentalis Sinica, 2020, 29(8): 1159-1166. (in Chinese)
[36]
LI C J, HOFFLAND E, KUYPER T W, YU Y, ZHANG C C, LI H G, ZHANG F S, VAN DER WERF W. Syndromes of production in intercropping impact yield gains. Nature Plants, 2020, 6: 653-660.

doi: 10.1038/s41477-020-0680-9 pmid: 32483328
[37]
刘小明, 雍太文, 苏本营, 刘文钰, 周丽, 宋春, 杨峰, 王小春, 杨文钰. 减量施氮对玉米-大豆套作系统中作物产量的影响. 作物学报, 2014, 40(9): 1629-1638.
LIU X M, YONG T W, SU B Y, LIU W Y, ZHOU L, SONG C, YANG F, WANG X C, YANG W Y. Effect of reduced N application on crop yield in maize-soybean intercropping system. Acta Agronomica Sinica, 2014, 40(9): 1629-1638. (in Chinese)
[38]
LI Y Y, YU C B, CHENG X, LI C J, SUN J H, ZHANG F S, LAMBERS H, LI L. Intercropping alleviates the inhibitory effect of N fertilization on nodulation and symbiotic N2 fixation of faba bean. Plant and Soil, 2009, 323(1): 295-308.
[39]
LI Y J, MA L S, WU P T, ZHAO X N, CHEN X L, GAO X D.Impacts of interspecific interactions on crop growth and yield in wheat (Triticum aestivum L.)/maize (Zea mays L.) strip intercropping under different water and nitrogen levels. Agronomy, 2022, 12(4): 951.
[40]
雍太文, 杨文钰, 向达兵, 张亚飞, 徐礼华. 玉/豆套作模式下玉米播期与密度对大豆农艺性状及产量的影响. 大豆科学, 2009, 28(3): 439-444.
YONG T W, YANG W Y, XIANG D B, ZHANG Y F, XU L H. Effect of maize sowing time and density on the agronomic characters and yield of soybean in relay-planting system of maize and soybean. Soybean Science, 2009, 28(3): 439-444. (in Chinese)
[41]
陈俊南, 姜文洋, 昝志曼, 汪江涛, 郑宾, 刘领, 刘娟, 焦念元. 玉米和花生同垄间作对作物光合特性和间作优势的影响. 应用生态学报, 2023, 34(10): 2672-2682.

doi: 10.13287/j.1001-9332.202310.010
CHEN J N, JIANG W Y, ZAN Z M, WANG J T, ZHENG B, LIU L, LIU J, JIAO N Y. Effects of maize and peanut co-ridge intercropping on crop photosynthetic characteristics and intercropping advantages. Chinese Journal of Applied Ecology, 2023, 34(10): 2672-2682. (in Chinese)

doi: 10.13287/j.1001-9332.202310.010
[42]
LESOING G W, FRANCIS C A. Strip intercropping effects on yield and yield components of corn, grain Sorghum, and soybean. Agronomy Journal, 1999, 91(5): 807-813.
[43]
李志贤, 王建武, 杨文亭, 舒磊, 杜清, 刘丽玲. 广东省甜玉米/大豆间作模式的效益分析. 中国生态农业学报, 2010, 18(3): 627-631.
LI Z X, WANG J W, YANG W T, SHU L, DU Q, LIU L L. Benefit of sweet corn/soybean intercropping in Guangdong Province. Chinese Journal of Eco-Agriculture, 2010, 18(3): 627-631. (in Chinese)
[44]
SHEN L, WANG X Y, LIU T T, WEI W W, ZHANG S, KEYHANI A B, LI L H, ZHANG W. Border row effects on the distribution of root and soil resources in maize-soybean strip intercropping systems. Soil and Tillage Research, 2023, 233: 105812.
[45]
刘梦, 张垚, 葛均筑, 杨永安, 吴锡冬, 侯海鹏. 不同降雨年型施氮量对延迟收获夏玉米产量、强弱势粒形态与粒重的影响. 中国农业科学, 2023, 56(20): 3975-3995. doi: 10.3864/j.issn.0578-1752.2023.20.005.
LIU M, ZHANG Y, GE J Z, YANG Y A, WU X D, HOU H P. Effects of nitrogen application on delayed harvest summer maize grain yield, superior and inferior grains morphology and weight under different rainfall years. Scientia Agricultura Sinica, 2023, 56(20): 3975-3995. doi: 10.3864/j.issn.0578-1752.2023.20.005. (in Chinese)
[46]
ABBASI M R, SEPASKHAH A R. Nitrogen leaching and groundwater N contamination risk in saffron/wheat intercropping under different irrigation and soil fertilizers regimes. Scientific Reports, 2023, 13: 6587.

doi: 10.1038/s41598-023-33817-5 pmid: 37085620
[47]
张亦涛, 刘宏斌, 张继宗, 翟丽梅, 雷秋良, 尹昌斌. 华北旱作区夏播单间作种植模式吸氮效果及后茬效应. 农业环境科学学报, 2012, 31(4): 768-772.
ZHANG Y T, LIU H B, ZHANG J Z, ZHAI L M, LEI Q L, YIN C B. Nitrogen uptake and residual effect of different summer monocropping and intercropping patterns in dry farming area in the North China Plain. Journal of Agro-Environment Science, 2012, 31(4): 768-772. (in Chinese)
[48]
孔德杰, 朱金霞, 任成杰, 任广鑫, 冯永忠, 杨改河, 刘娜娜. 麦豆长期轮作下秸秆还田对土壤碳氮组分及作物产量的影响. 干旱地区农业研究, 2022, 40(5): 190-200.
KONG D J, ZHU J X, REN C J, REN G X, FENG Y Z, YANG G H, LIU N N. Effects of straw return on soil carbon and nitrogen components and crop yield under long-term wheat-soybean rotation. Agricultural Research in the Arid Areas, 2022, 40(5): 190-200. (in Chinese)
[49]
CONG W F, HOFFLAND E, LI L, SIX J, SUN J H, BAO X G, ZHANG F S, VAN DER WERF W. Intercropping enhances soil carbon and nitrogen. Global Change Biology, 2015, 21(4): 1715-1726.
[50]
YANG F, LIAO D P, WU X L, GAO R C, FAN Y F, ALI RAZA M, WANG X C, YONG T W, LIU W G, LIU J, DU J B, SHU K, YANG W Y. Effect of aboveground and belowground interactions on the intercrop yields in maize-soybean relay intercropping systems. Field Crops Research, 2017, 203: 16-23.
[51]
李隆. 间套作强化农田生态系统服务功能的研究进展与应用展望. 中国生态农业学报, 2016, 24(4): 403-415.
LI L. Intercropping enhances agroecosystem services and functioning: current knowledge and perspectives. Chinese Journal of Eco- Agriculture, 2016, 24(4): 403-415. (in Chinese)
[1] ZANG ShaoLong, LIU LinRu, GAO YueZhi, WU Ke, HE Li, DUAN JianZhao, SONG Xiao, FENG Wei. Classification and Identification of Nitrogen Efficiency of Wheat Varieties Based on UAV Multi-Temporal Images [J]. Scientia Agricultura Sinica, 2024, 57(9): 1687-1708.
[2] FAN Hong, YIN Wen, HU FaLong, FAN ZhiLong, ZHAO Cai, YU AiZhong, HE Wei, SUN YaLi, WANG Feng, CHAI Qiang. Compensation Potential of Dense Planting on Nitrogen Reduction in Maize Yield in Oasis Irrigation Area [J]. Scientia Agricultura Sinica, 2024, 57(9): 1709-1721.
[3] GAO ChenKai, LIU ShuiMiao, LI YuMing, ZHAO ZhiHeng, SHAO Jing, YU HaoLin, WU PengNian, WANG YanLi, GUAN XiaoKang, WANG TongChao, WEN PengFei. The Related Driving Factors of Water Use Efficiency and Its Prediction Model Construction in Winter Wheat [J]. Scientia Agricultura Sinica, 2024, 57(7): 1281-1294.
[4] REN Qiang, XU Ke, FAN ZhiLong, YIN Wen, FAN Hong, HE Wei, HU FaLong, CHAI Qiang. Nitrogen Fertilizer Postponing Application Benefits Wheat-Maize Intercropping by Reducing Soil Evaporation and Improving Water Use Efficiency [J]. Scientia Agricultura Sinica, 2024, 57(7): 1295-1307.
[5] WANG ChengZe, ZHANG Yan, FU Wei, JIA JingZhe, DONG JinGao, SHEN Shen, HAO ZhiMin. Bioinformatics and Expression Pattern Analysis of Maize ACO Gene Family [J]. Scientia Agricultura Sinica, 2024, 57(7): 1308-1318.
[6] GAO ChenXi, HAO LuYang, HU Yue, LI YongXiang, ZHANG DengFeng, LI ChunHui, SONG YanChun, SHI YunSu, WANG TianYu, LI Yu, LIU XuYang. Analysis of Transposable Element Associated Epigenetic Regulation under Drought in Maize [J]. Scientia Agricultura Sinica, 2024, 57(6): 1034-1048.
[7] ZHAO KaiNan, DING Hao, LIU AKang, JIANG ZongHao, CHEN GuangZhou, FENG Bo, WANG ZongShuai, LI HuaWei, SI JiSheng, ZHANG Bin, BI XiangJun, LI Yong, LI ShengDong, WANG FaHong. Nitrogen Fertilizer Reduction and Postponing for Improving Plant Photosynthetic Physiological Characteristics to Increase Wheat- Maize and Annual Yield and Economic Return [J]. Scientia Agricultura Sinica, 2024, 57(5): 868-884.
[8] WANG Yu, ZHANG YuPeng, ZHU GuanYa, LIAO HangXi, HOU WenFeng, GAO Qiang, WANG Yin. Effects of Localized Nitrogen Supply on Plant Growth and Water and Nitrogen Use Efficiencies of Maize Seedling Under Drought Stress [J]. Scientia Agricultura Sinica, 2024, 57(5): 919-934.
[9] GAO ShangJie, LIU XingRen, LI YingChun, LIU XiaoWan. Effects of Biochar and Straw Return on Greenhouse Gas Emissions and Global Warming Potential in the Farmland [J]. Scientia Agricultura Sinica, 2024, 57(5): 935-949.
[10] ZHU RuiMing, ZHAO RongQin, JIAO ShiXing, LI XiaoJian, XIAO LianGang, XIE ZhiXiang, YANG QingLin, WANG Shuai, ZHANG HuiFang. Spatial Distribution and Driving Factors of Winter Wheat Irrigation Carbon Emission Intensity at Township Level in Henan Province [J]. Scientia Agricultura Sinica, 2024, 57(5): 950-964.
[11] LI QianChuan, XU ShiWei, ZHANG YongEn, ZHUANG JiaYu, LI DengHua, LIU BaoHua, ZHU ZhiXun, LIU Hao. Stacking Ensemble Learning Modeling and Forecasting of Maize Yield Based on Meteorological Factors [J]. Scientia Agricultura Sinica, 2024, 57(4): 679-697.
[12] FENG WenMi, ZHOU FangXue, YU Zhe, MOU KeXin, JING Yan, LI HaiYan. Cloning and Functional Analysis of GmRHF1 Gene Against Soybean Mosaic Virus [J]. Scientia Agricultura Sinica, 2024, 57(23): 4632-4643.
[13] ZHANG Rong, LIU LinRu, FU KaiXia, WU ZiJun, SONG YiFan, WANG LuYuan, HOU GeGe, HE Li, FENG Wei, DUAN JianZhao, WANG YongHua, GUO TianCai. Regulatory of Exogenous Melatonin on Floret Development and Carbon Nutrient Metabolism in Winter Wheat Under Drought Stress [J]. Scientia Agricultura Sinica, 2024, 57(23): 4644-4657.
[14] SHI DeYang, LI YanHong, WANG FeiFei, XIA DeJun, JIAO YanLin, SUN NiNa, ZHAO Jian. Regulation Effects of Line-Spacing Expansion and Row-Spacing Shrinkage on Dry Matter and Nutrient Accumulation and Transport of Summer Maize Under High Plant Density [J]. Scientia Agricultura Sinica, 2024, 57(23): 4658-4672.
[15] LI YunJing, REN XueZhen, XIAO Fang, JIN Fang, GAO HongFei, JING Qi, WU YuHua, SUN Quan, LI Jun, WANG Pei, ZHAI ShanShan, JIN ShiQiao, WU Gang. Accurate and Rapid Identification of Event Purity for Transgenic Soybean Seeds Based on Duplex Real-Time Fluorescence PCR Method [J]. Scientia Agricultura Sinica, 2024, 57(23): 4698-4711.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!