Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (16): 3142-3153.doi: 10.3864/j.issn.0578-1752.2024.16.004

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Agricultural Climatic Factors and Their Thresholds for Winter Wheat Cultivation in Northern China

CHEN Shi1(), HUANG YinLan1, JIN YunXiang2, XU ChengLin1, ZOU JinQiu2()   

  1. 1 College of Geography and Planning, Chizhou University, Chizhou 247000, Anhui
    2 Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081
  • Received:2023-12-28 Accepted:2024-04-01 Online:2024-08-16 Published:2024-08-27
  • Contact: ZOU JinQiu

Abstract:

【Background】To determine the safe planting limit of winter wheat based on agricultural climate indicators is crucial for the scientific and rational utilization of resources, avoiding freezing disasters, and ensuring stable and high yields of winter wheat. However, in the north of China, which is located in the sensitive area of winter wheat planting, the fluctuation of safe winter wheat planting has been intensified due to the increase of extreme weather events caused by global climate change. It is urgent to clarify the agroclimatic factors affecting the safe planting of winter wheat on a large regional scale and to determine their threshold ranges. 【Objective】The research on the agricultural climatic factors and their thresholds for the safe planting of winter wheat was conducted to provide a scientific basis for the sustainable production and planning of winter wheat in response to climate change. 【Method】The northern China was selected as the research area, which was highly sensitive to the safe planting of winter wheat. Based on the spatial distribution of winter wheat with medium and high spatial resolution and ground meteorological observation data, this research utilized methods such as kernel density estimation, geographic detector to reveal the spatial pattern characteristics of the actual northern limit of winter wheat planting, to quantitatively analyze the influence of agricultural climate factors on the formation of the actual northern limit of winter wheat planting, and to explore the threshold of key climate factors. 【Result】(1) The actual northern limit of winter wheat planting, with a total length of about 2 200 km, fluctuated from southwest to northeast. However, agricultural climate factors exhibited more significant fluctuations along the line of Pingning-Xunyi-Tongchuan-Baishui- Heyang-Hancheng-Jishan. (2) The negative accumulative temperature during winter, average temperature of the coldest month, extreme minimum temperature of the year, and accumulative temperature before winter were crucial factors (q >0.45) in shaping the actual northern limit of winter wheat planting. Agricultural precipitation factors had a minor effect (q <0.19) on winter wheat planting, but interacted strongly with temperature factors (q >0.57). (3) Specific meteorological parameters for the northern limit of winter wheat safe planting in northern China were established: negative accumulated temperature in overwintering period≥-620 ℃·d, coldest monthly mean temperature≥-8 ℃, annual extreme minimum temperature≥-22 ℃, and accumulated temperature before overwintering≥529 ℃·d. (4) The potential northern limit for winter wheat planting has moved about 107 km northward compared to the actual limit, with approximately 23.39×103 km2 of expansion area. 【Conclusion】This study identified the key agricultural climate indicators and thresholds influencing safe winter wheat planting in northern China, which provided a basis for determining potential safe planting areas for winter wheat. The research results could provide the theoretical reference and technical support for how winter wheat planting could adapt to climate change and adjust agricultural planting layout reasonably.

Key words: winter wheat, planting limit, thresholds, geodetector, spatial heterogeneity, China

Fig. 1

Location of the study area"

Fig. 2

Spatial distribution of agricultural climatic factor levels"

Fig. 3

Spatial distribution of actual northern limit of winter wheat"

Fig. 4

The variation of agricultural climate factors along the latitude and longitude directions on the actual northern limit of winter wheat"

Fig. 5

The impact and interaction of agricultural climatic factors on the formation of actual northern limit of winter wheat"

Fig. 6

Agricultural climatic factor levels suitable for winter wheat cultivation"

Fig. 7

Potential and actual northern limit of winter wheat (a) and its latitudinal distance (b)"

[1]
RATHAN N D, KRISHNA H, ELLUR R K, SEHGAL D, GOVINDAN V, AHLAWAT A K, KRISHNAPPA G, JAISWAL J P, SINGH J B, SV S, AMBATI D, SINGH S K, BAJPAI K, MAHENDRU-SINGH A. Genome-wide association study identifies loci and candidate genes for grain micronutrients and quality traits in wheat (Triticum aestivum L.). Scientific Reports, 2022, 12(1): 7037.
[2]
DONG J, LU H B, WANG Y W, YE T, YUAN W P. Estimating winter wheat yield based on a light use efficiency model and wheat variety data. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 160: 18-32.
[3]
FRANCH B, VERMOTE E F, BECKER-RESHEF I, CLAVERIE M, HUANG J, ZHANG J, JUSTICE C, SOBRINO J A. Improving the timeliness of winter wheat production forecast in the United States of America, Ukraine and China using MODIS data and NCAR Growing Degree Day information. Remote Sensing of Environment, 2015, 161: 131-148.
[4]
LI H J, ZHOU Y, XIN W L, WEI Y Q, ZHANG J L, GUO L L. Wheat breeding in Northern China: Achievements and technical advances. The Crop Journal, 2019, 7(6): 718-729.
[5]
KONG X F, HOU R X, YANG G, OUYANG Z. Climate warming extends the effective growth period of winter wheat and increases grain protein content. Agricultural and Forest Meteorology, 2023, 336: 109477.
[6]
YANG X G, CHEN F, LIN X M, LIU Z J, ZHANG H L, ZHAO J, LI K N, YE Q, LI Y, S, YANG P, WU W B, LI Z G, LAL R, TANG H J. Potential benefits of climate change for crop productivity in China. Agricultural and Forest Meteorology, 2015, 208: 76-84.
[7]
ZHANG C J, LIAO Y M, SONG Y L. The progress of dry-wet climate divisional research in China. Earth Sciences, 2020, 9(1): 8.
[8]
LU M. Climate change: Discussion on the impact of wheat. Geographical Research Bulletin, 2023, 2: 25-26.
[9]
孙敬松, 周广胜. 利用最大熵法(MaxEnt)模拟中国冬小麦分布区的年代际动态变化. 中国农业气象, 2012, 33(4): 481-487.
SUN J S, ZHOU G S.Inter-decadal variability of winter wheat planting zone in China during 1961 to 2010 simulated by maximum entropy(MaxEnt). Chinese Journal of Agrometeorology, 2012, 33(4): 481-487. (in Chinese)
[10]
SUN J S, ZHOU G S, SUI X H. Climatic suitability of the distribution of the winter wheat cultivation zone in China. European Journal of Agronomy, 2012, 43: 77-86.
[11]
HAO Z X, GENG X, WANG F, ZHENG J Y. Impacts of climate change on agrometeorological indices at winter wheat overwintering stage in Northern China during 2021-2050. International Journal of Climatology, 2018, 38(15): 5576-5588.
[12]
WU M W, XU Y, ZHENG J Y, HAO Z X. North expansion of winter wheat planting area in China under different emissions scenarios. Agriculture, 2022, 12(6): 763.
[13]
李克南, 杨晓光, 慕臣英, 徐华军, 陈阜. 全球气候变暖对中国种植制度可能影响Ⅷ: 气候变化对中国冬小麦冬春性品种种植界限的影响. 中国农业科学, 2013, 46(8): 1583-1594. doi: 10.3864/j.issn.0578-1752.2013.08.007.
LI K N, YANG X G, MU C Y, XU H J, CHEN F. The possible effects of global warming on cropping systems in China Ⅷ—The effects of climate change on planting boundaries of different winter-spring varieties of winter wheat in China. Scientia Agricultura Sinica, 2013, 46(8): 1583-1594. doi: 10.3864/j.issn.0578-1752.2013.08.007. (in Chinese)
[14]
李祎君, 梁宏, 王培娟. 气候变暖对华北冬小麦种植界限及生育期的影响. 麦类作物学报, 2013, 33(2): 382-388.
LI Y J, LIANG H, WANG P J. Effects of climate warming on the planting boundary and developmental stages of winter wheat. Journal of Triticeae Crops, 2013, 33(2): 382-388. (in Chinese)
[15]
王培娟, 张佳华, 谢东辉, 韩丽娟. 1961—2010年我国冬小麦可种植区变化特征. 自然资源学报, 2012, 27(2): 215-224.
WANG P J, ZHANG J H, XIE D H, HAN L J. Spatial characteristic analysis on planting area of winter wheat in China from 1961 to 2010. Journal of Natural Resources, 2012, 27(2): 215-224. (in Chinese)

doi: 10.11849/zrzyxb.2012.02.005
[16]
张梦婷, 张玉静, 佟金鹤, 李阔, 潘婕, 许吟隆. 未来气候情景下冬小麦潜在北移区农业气候资源变化特征. 气候变化研究进展, 2017, 13(3): 243-252.
ZHANG M T, ZHANG Y J, TONG J H, LI K, PAN J, XU Y L. Variations of agro-climatic resources under a future climate scenario in the potential northward region of winter wheat. Climate Change Research, 2017, 13(3): 243-252. (in Chinese)
[17]
王连喜, 刘畅, 李琪, 吴东丽, 王清, 成威. 气候变暖背景下京津冀地区冬小麦种植北界变化. 作物杂志, 2017(1): 61-67.
WANG L X, LIU C, LI Q, WU D L, WANG Q, CHENG W. The northern boundary variation of winter wheat in Beijing-Tianjin-Hebei under climate warming. Crops, 2017(1): 61-67. (in Chinese)
[18]
唐晓培, 宋妮, 陈智芳, 王景雷. 黄淮海地区冬小麦种植北界时空演变及未来趋势分析. 农业工程学报, 2019, 35(9): 129-137.
TANG X P, SONG N, CHEN Z F, WANG J L. Spatial-temporal distribution and change trend of northern limit of winter wheat planting in Huang-Huai-Hai Plain. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(9): 129-137. (in Chinese)
[19]
石晓丽, 史文娇. 极端高温对黄淮海平原冬小麦产量的影响. 生态与农村环境学报, 2016, 32(2): 259-269.
SHI X L, SHI W J. Impacts of extreme high temperature on winter wheat yield in the Huang-Huai-Hai Plain. Journal of Ecology and Rural Environment, 2016, 32(2): 259-269. (in Chinese)
[20]
赵广才. 中国小麦种植区划研究(一). 麦类作物学报, 2010, 30(5): 886-895.
ZHAO G C. Study on Chinese wheat planting regionalization(Ⅰ). Journal of Triticeae Crops, 2010, 30(5): 886-895. (in Chinese)
[21]
王妍, 张晓龙, 石嘉丽, 沈彦军. 中国冬小麦主产区气候变化及其对小麦产量影响研究. 中国生态农业学报(中英文), 2022, 30(5): 723-734.
WANG Y, ZHANG X L, SHI J L, SHEN Y J. Climate change and its effect on winter wheat yield in the main winter wheat production areas of China. Chinese Journal of Eco-Agriculture, 2022, 30(5): 723-734. (in Chinese)
[22]
DONG J, FU Y Y, WANG J J, TIAN H F, FU S, NIU Z, HAN W, ZHENG Y, HUANG J X, YUAN W P. Early-season mapping of winter wheat in China based on Landsat and Sentinel images. Earth System Science Data, 2020, 12(4): 3081-3095.
[23]
CHEN S, FAN L L, LIANG S F, CHEN H, SUN X, HU Y N, LIU Z H, SUN J, YANG P. Spatiotemporal dynamics of the northern limit of winter wheat in China using MODIS time series images. Remote Sensing, 2020, 12(15): 2382.
[24]
LI H Z, HE Y, ZHANG L F, CAO S P, SUN Q. Spatiotemporal changes of Gross Primary Production in the Yellow River Basin of China under the influence of climate-driven and human-activity. Global Ecology and Conservation, 2023, 46: e02550.
[25]
李雨, 韩平, 任东, 罗娜, 王纪华. 基于地理探测器的农田土壤重金属影响因子分析. 中国农业科学, 2017, 50(21): 4138-4148. doi: 10.3864/j.issn.0578-1752.2017.21.008.
LI Y, HAN P, REN D, LUO N, WANG J H. Influence factor analysis of farmland soil heavy metal based on the geographical detector. Scientia Agricultura Sinica, 2017, 50(21): 4138-4148. doi: 10.3864/j.issn.0578-1752.2017.21.008. (in Chinese)
[26]
陈实, 金云翔, 黄银兰. 长三角中心区生境质量时空变化及其影响机制. 生态学杂志, 2023, 42(5): 1175-1185.
CHEN S, JIN Y X, HUANG Y L. Spatio-temporal variations of habitat quality and its underlying mechanism in the central region of Yangtze River Delta. Chinese Journal of Ecology, 2023, 42(5): 1175-1185. (in Chinese)

doi: DOI: 10.13292/j.1000-4890.202305.022
[27]
孟庆雷, 殷宇翔, 王煜昊. 我国农业碳排放的时空演化、脱钩效应及绩效评估. 中国农业科学, 2023, 56(20): 4049-4066. doi: 10.3864/j.issn.0578-1752.2023.20.010.
MENG Q L, YIN Y X, WANG Y H. Spatial-Temporal Evolution, Decoupling Effect and Performance Evaluation of China’s Agricultural Carbon Emissions. Scientia Agricultura Sinica, 2023, 56(20): 4049-4066. doi: 10.3864/j.issn.0578-1752.2023.20.010. (in Chinese)
[28]
尹潇淦, 蒋卫国, 凌子燕, 王晓雅, 邓雅文. 全球 全球10 m土地覆盖数据在中国首批国际湿地城市的评价与融合. 遥感学报, 2023, 27(6): 1334-1347.
YIN X G, JIANG W G, LING Z Y, WANG X Y, DENG Y W. Evaluation and fusion of global 10 m land cover data in first batch of Chinese wetland cities. National Remote Sensing Bulletin, 2023, 27(6): 1334-1347. (in Chinese)
[29]
王海洋, 赵德才, 顾根宝, 张俊喜, 申玉香, 陶红, 杨华. 气象因素对盐城市小麦生产的影响与对策. 江西农业科技, 2000(4): 8-11.
WANG H Y, ZHAO D C, GU G B, ZHANG J X, SHEN Y X, TAO H, YANG H. Influence of meteorological factors on wheat production in Yancheng city and countermeasures. Jiangxi Agricultural Science & Technology, 2000(4): 8-11. (in Chinese)
[30]
刘德祥, 董安祥, 陆登荣. 中国西北地区近43年气候变化及其对农业生产的影响. 干旱地区农业研究, 2005, 23(2): 195-201.
LIU D X, DONG A X, LU D R. Climatic change of Northwest China and its influence on agricultural production in recent 43 years. Agricultural Research in the Arid Areas, 2005, 23(2): 195-201. (in Chinese)
[31]
邓振镛, 张强, 刘德祥, 蒲金涌, 郭慧, 张宇飞, 张谋草, 张惠玲. 气候变暖对甘肃种植业结构和农作物生长的影响. 中国沙漠, 2007, 27(4): 627-632.
DENG Z Y, ZHANG Q, LIU D X, PU J Y, GUO H, ZHANG Y F, ZHANG M C, ZHANG H L. Effects of climate warming on cropping structure and crop growth in Gansu Province. Journal of Desert Research, 2007, 27(4): 627-632. (in Chinese)
[32]
高桂芹, 齐作辉. 冬季负积温变化特征及其对冬小麦的影响. 气象科技, 2007, 35(3): 404-406.
GAO G Q, QI Z H. Impact of negative accumulated temperature variation on winter wheat. Meteorological Science and Technology, 2007, 35(3): 404-406. (in Chinese)
[33]
闫锦涛, 冯利平, 李扬, 陈先冠, 余卫东. 播期和播深对冬小麦越冬前生长性状的影响. 农业机械学报, 2022, 53(2): 327-335.
YAN J T, FENG L P, LI Y, CHEN X G, YU W D. Effects of sowing date and sowing depth on winter wheat growth before overwintering. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(2): 327-335. (in Chinese)
[34]
郝志新, 郑景云, 陶向新. 气候增暖背景下的冬小麦种植北界研究: 以辽宁省为例. 地理科学进展, 2001, 20(3): 253-260.
HAO Z X, ZHENG J Y, TAO X X. A study on northern boundary of winter wheat during climate warming: A case study in Liaoning Province. Progress in Geography, 2001, 20(3): 253-260. (in Chinese)
[35]
林文, 同延安, 韩仲宇, 梁婷, 杨宪龙, 路永莉, 梁连友. 1961—2001年间陕西冬小麦种植北界北移的热量资源分析与评价. 中国生态农业学报, 2013, 21(6): 772-778.
LIN W, TONG Y A, HAN Z Y, LIANG T, YANG X L, LU Y L, LIANG L Y. Analysis and assessment of heat resource for winter wheat northward moving during 1961-2001 in Shaanxi Province. Chinese Journal of Eco-Agriculture, 2013, 21(6): 772-778. (in Chinese)
[36]
JAVED T, ZHANG J H, BHATTARAI N, SHA Z, RASHID S, YUN B, AHMAD S, HENCHIRI M, KAMRAN M. Drought characterization across agricultural regions of China using standardized precipitation and vegetation water supply indices. Journal of Cleaner Production, 2021, 313: 127866.
[37]
ZHAO J, HAN T, WANG C, JIA H, WORQLUL A W, NORELLI N, ZENG Z H, CHU Q Q. Optimizing irrigation strategies to synchronously improve the yield and water productivity of winter wheat under interannual precipitation variability in the North China Plain. Agricultural Water Management, 2020, 240: 106298.
[38]
ZHANG L, CHU Q Q, JIANG Y L, CHEN F, LEI Y D. Impacts of climate change on drought risk of winter wheat in the North China Plain. Journal of Integrative Agriculture, 2021, 20(10): 2601-2612.

doi: 10.1016/S2095-3119(20)63273-7
[39]
YAO N, LI Y, XU F, LIU J, CHEN S, MA H J, WAI CHAU H, LIU D L, LI M, FENG H, YU Q, HE J Q. Permanent wilting point plays an important role in simulating winter wheat growth under water deficit conditions. Agricultural Water Management, 2020, 229: 105954.
[40]
SI Z Y, ZAIN M, MEHMOOD F, WANG G S, GAO Y, DUAN A W. Effects of nitrogen application rate and irrigation regime on growth, yield, and water-nitrogen use efficiency of drip-irrigated winter wheat in the North China Plain. Agricultural Water Management, 2020, 231: 106002.
[41]
ZENG R Y, YAO F M, ZHANG S, YANG S S, BAI Y, ZHANG J H, WANG J W, WANG X. Assessing the effects of precipitation and irrigation on winter wheat yield and water productivity in North China Plain. Agricultural Water Management, 2021, 256: 107063.
[42]
WANG K, HUGGINS D R, TAO H Y. Rapid mapping of winter wheat yield, protein, and nitrogen uptake using remote and proximal sensing. International Journal of Applied Earth Observation and Geoinformation, 2019, 82: 101921.
[43]
ZHANG D Y, ZHANG M R, LIN F F, PAN Z G, JIANG F, HE L, YANG H, JIN N. Fast extraction of winter wheat planting area in Huang-Huai-Hai Plain using high-resolution satellite imagery on a cloud computing platform. International Journal of Agricultural and Biological Engineering, 2022, 15(1): 241-250.
[44]
CAO J, ZHANG Z, TAO F L, ZHANG L L, LUO Y C, HAN J C, LI Z Y. Identifying the contributions of multi-source data for winter wheat yield prediction in China. Remote Sensing, 2020, 12(5): 750.
[45]
陈秧分, 王介勇, 张凤荣, 刘彦随, 成升魁, 朱晶, 司伟, 樊胜根, 顾善松, 胡冰川, 李先德, 于晓华. 全球化与粮食安全新格局. 自然资源学报, 2021, 36(6): 1362-1380.

doi: 10.31497/zrzyxb.20210602
CHEN Y F, WANG J Y, ZHANG F R, LIU Y S, CHENG S K, ZHU J, SI W, FAN S G, GU S S, HU B C, LI X D, YU X H. New patterns of globalization and food security. Journal of Natural Resources, 2021, 36(6): 1362-1380. (in Chinese)
[46]
FAN L L, CHEN S, LIANG S F, SUN X, CHEN H, YOU L Z, WU W B, SUN J, YANG P. Assessing long-term spatial movement of wheat area across China. Agricultural Systems, 2020, 185: 102933.
[47]
CHEN R S, YE C, CAI Y L, XING X S, CHEN Q. The impact of rural out-migration on land use transition in China: Past, present and trend. Land Use Policy, 2014, 40: 101-110.
[48]
YAN H M, DU W P, ZHOU Y, LUO L, NIU Z E. Satellite-based evidences to improve cropland productivity on the high-standard farmland project regions in Henan Province, China. Remote Sensing, 2022, 14(7): 1724.
[49]
MARINO S, ALVINO A. Agronomic traits analysis of ten winter wheat cultivars clustered by UAV-derived vegetation indices. Remote Sensing, 2020, 12(2): 249.
[50]
XIE H L, CHENG L J, T G. Factors influencing farmer willingness to fallow winter wheat and ecological compensation standards in a groundwater funnel area in Hengshui, Hebei Province, China. Sustainability, 2017, 9(5): 839.
[51]
ZHANG Z M, LU C H. Spatio-temporal pattern change of winter wheat production and its implications in the North China Plain. Sustainability, 2019, 11(11): 3028.
[52]
MEMON S A, SHEIKH I A, ALI TALPUR M, MANGRIO M A. Impact of deficit irrigation strategies on winter wheat in semi-arid climate of sindh. Agricultural Water Management, 2021, 243: 106389.
[1] ZANG ShaoLong, LIU LinRu, GAO YueZhi, WU Ke, HE Li, DUAN JianZhao, SONG Xiao, FENG Wei. Classification and Identification of Nitrogen Efficiency of Wheat Varieties Based on UAV Multi-Temporal Images [J]. Scientia Agricultura Sinica, 2024, 57(9): 1687-1708.
[2] GAO ChenKai, LIU ShuiMiao, LI YuMing, ZHAO ZhiHeng, SHAO Jing, YU HaoLin, WU PengNian, WANG YanLi, GUAN XiaoKang, WANG TongChao, WEN PengFei. The Related Driving Factors of Water Use Efficiency and Its Prediction Model Construction in Winter Wheat [J]. Scientia Agricultura Sinica, 2024, 57(7): 1281-1294.
[3] GAO ShangJie, LIU XingRen, LI YingChun, LIU XiaoWan. Effects of Biochar and Straw Return on Greenhouse Gas Emissions and Global Warming Potential in the Farmland [J]. Scientia Agricultura Sinica, 2024, 57(5): 935-949.
[4] ZHU RuiMing, ZHAO RongQin, JIAO ShiXing, LI XiaoJian, XIAO LianGang, XIE ZhiXiang, YANG QingLin, WANG Shuai, ZHANG HuiFang. Spatial Distribution and Driving Factors of Winter Wheat Irrigation Carbon Emission Intensity at Township Level in Henan Province [J]. Scientia Agricultura Sinica, 2024, 57(5): 950-964.
[5] DONG KuiJun, ZHANG YiTao, LIU HanWen, ZHANG JiZong, WANG WeiJun, WEN YanChen, LEI QiuLiang, WEN HongDa. Effects of Nitrogen Reduction Application of Summer Maize- Soybean Intercropping on Agronomic Traits and Economic Benefits as well as Its Yield of Subsequent Wheat [J]. Scientia Agricultura Sinica, 2024, 57(22): 4495-4506.
[6] TIAN Yun, WANG XiaoRui, YIN MinHao, ZHANG HuiJie. Re-Evaluation of China’s Agricultural Net Carbon Sink: Current Situation, Spatial-Temporal Pattern and Influencing Factors [J]. Scientia Agricultura Sinica, 2024, 57(22): 4507-4521.
[7] LONG HuaiYu, LU ChangAi, JI HongJie, ZHANG RenLian. A Retrieval System for Great Soil Groups from China’s Provisional Soil Classification System for the 3rd National Soil Census [J]. Scientia Agricultura Sinica, 2024, 57(21): 4264-4275.
[8] MAI ChunYan, LIU YiKe, LIU HongWei, LI HongJie, YANG Li, WU PeiPei, ZHOU Yang, ZHANG HongJun. Breeding of the Fusarium Head Blight (FHB)-Resistant Wheat Cultivar Lunxuan 20 Using the Dwarf-Male Sterile Wheat Molecular Strategy in the Yellow and Huai River Valley Winter Wheat Region [J]. Scientia Agricultura Sinica, 2024, 57(19): 3719-3729.
[9] SHANG Hang, CHENG YuKun, REN Yi, GENG HongWei. Genome-Wide Association Analysis of Starch Gelatinization Traits in Winter Wheat [J]. Scientia Agricultura Sinica, 2024, 57(18): 3507-3521.
[10] ZHAO HuaRong, ZHOU GuangSheng, QI Yue, GENG JinJian, TIAN XiaoLi. Effects of Sowing Date Adjustment on Yield and Quality of Winter Wheat and Summer Maize in Northern Area of North China [J]. Scientia Agricultura Sinica, 2024, 57(15): 2964-2985.
[11] YANG WangHua, LIU ZhiJuan, GONG JingJin, FU ZhenZhen, ZHANG TaiLin, ZHANG XiaoLong, SHEN YanJun, YANG XiaoGuang. Drought Risk for Spring Maize in the Future and Response to Climate Change in the Northeast China [J]. Scientia Agricultura Sinica, 2024, 57(12): 2336-2349.
[12] WANG WenJun, LIANG AiZhen, ZHANG Yan, CHEN XueWen, HUANG DanDan. Model Simulation Research of Soil Organic Carbon Dynamics of Long-Term Conservation Tillage in Black Soil [J]. Scientia Agricultura Sinica, 2024, 57(10): 1943-1960.
[13] WANG Yu, SONG YiFan, ZHANG Rong, MU HaiMeng, SUN LiFang, FU KaiXia, WU ZiJun, HUANG QingQing, XU YingMing, LI GeZi, WANG YongHua, GUO TianCai. Effects of Soil Application of Passivating Agent and Compound Microbial Fertilizer on Cadmium Accumulation in Winter Wheat [J]. Scientia Agricultura Sinica, 2024, 57(1): 126-141.
[14] BAI Bin, ZHANG HuaiZhi, DU JiuYuan, ZHANG XiaoYang, HE Rui, WU Ling, ZHANG Zhe, ZHANG YaoHui, CAO ShiQin, LIU ZhiYong. Current Situation and Strategy of Stripe Rust Resistance Genes Untilization in Winter Wheat Cultivars of Northwestern Oversummering Region for Puccinia striiformis f. sp. tritici in China [J]. Scientia Agricultura Sinica, 2024, 57(1): 4-17.
[15] WEI YongKang, YANG TianCong, ZANG ShaoLong, HE Li, DUAN JianZhao, XIE YingXin, WANG ChenYang, FENG Wei. Monitoring Wheat Lodging Based on UAV Multi-Spectral Image Feature Fusion [J]. Scientia Agricultura Sinica, 2023, 56(9): 1670-1685.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!