Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (20): 3998-4006.doi: 10.3864/j.issn.0578-1752.2024.20.006

• SPECIAL FOCUS: OCCURRENCE AND CONTROL OF MIGRATORY PESTS • Previous Articles     Next Articles

Effect of Rice Varieties on the Preference of Nilaparvata lugens to Rice Plants Infested by Chilo suppressalis

CAI YuBiao(), ZHANG KunJie, WANG YaXuan, LAI FengXiang, HE JiaChun, WAN PinJun(), FU Qiang()   

  1. State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006
  • Received:2024-05-04 Accepted:2024-06-10 Online:2024-10-16 Published:2024-10-24
  • Contact: WAN PinJun, FU Qiang

Abstract:

【Objective】It has been reported that Nilaparvata lugens (brown planthopper, BPH) exhibits a preference of endangering rice plants infested by Chilo suppressalis (striped stem borer, SSB). However, it remains unclear whether this phenomenon is influenced by the developmental stage of N. lugens and the rice variety. This study aims to investigate the effects of rice varieties and developmental stages of N. lugens on the preference for C. suppressalis-infested rice plants, as well as how volatiles mediate this behavior, so as to provide a scientific basis for formulating green pest control strategies.【Method】Through indoor choice experiments, the attraction of different developmental stages of N. lugens (including 3rd-4th instar nymphs, newly emerged females, gravid females) to nine rice varieties, including Zhongzheyou 8, both damaged and undamaged by C. suppressalis, was observed. Based on these observations, representative varieties showing significant differences in attraction were selected for further analysis. RT-qPCR was used to detect changes in the expression of volatile synthesis-related genes in three rice varieties (Zhongzheyou 8, 9311, and Minghui 63) following pest infested.【Result】Among the nine rice varieties, different developmental stages of N. lugens consistently showed a preference for rice plants infested by C. suppressalis, although this preference varied among rice varieties. For instance, newly emerged female N. lugens exhibited a significantly higher preference for Minghui 63 compared to Yongyou 538. Gene expression analysis revealed a significant increase in the expression levels of volatile synthesis-related genes OsCAS, OsLIS, OsHPL3, and OsRCI-1 in response to C. suppressalis infestation. However, when different developmental stages of N. lugens were co-infested with C. suppressalis, the expression levels of these genes could either increase or decrease compared to plants infested only by C. suppressalis, with specific effects depending on the developmental stage of N. lugens.【Conclusion】The preference of N. lugens for rice plants infested by C. suppressalis was commonly observed across the nine tested rice varieties. However, significant differences in the degree of preference were noted among different developmental stages of N. lugens across these varieties. Notably, variations in preference among developmental stages of N. lugens were primarily observed in the selection of rice varieties Yongyou 538, Zhongzheyou 8, and Minghui 63 by newly emerged female. Infestation only by C. suppressalis or in conjunction with N. lugens resulted in increased expression levels of the genes OsCAS, OsLIS, OsHPL3, and OsRCI-1, indicating that pest infestation in rice plants can regulate the synthesis of rice volatiles, thereby influencing the host selection behavior of N. lugens.

Key words: rice variety, Nilaparvata lugens, Chilo suppressalis, host preference, volatile

Table 1

The information of primers for qPCR"

基因
Gene
上游引物序列
Upstream primer sequences (5′-3′)
下游引物序列
Downstream primer sequences (5′-3′)
参考文献
Reference
OsUbq GTTCGCCCAGTTGACATCTC CAGATTGTTGAGGTTAGTATTGC [18]
OsHPL3 TGGTGCCGACGCAGAAGGTG GCAGCGGGAAGGAGTGGAGC [14]
OsLIS TTTGATGGATTCATGACAGAGA CAACAAACTCTGCTGCATTTT
OsCAS CGCTACGAGATGCTTTTACAAC CACCGTAGCAGCTACCTGATC
OsRCI-1 AGGTTCAACGAGAGGATGATGAG TTCGCTCCGGATCCTTGTT [16]

Fig. 1

The preference of N. lugens to the plants infested by C. suppressalis of nine rice varieties"

Table 2

Three-way ANOVA of rice variety, N. lugens stage, and time after infestation"

方差来源Variable source 自由度df 卡方值χ2 value PP value
水稻品种Rice variety 8 50.944 <0.0001
褐飞虱虫态N. lugens stage 2 22.978 <0.0001
接虫后时间Time after N. lugens infestation 2 0.462 0.7937
水稻品种×褐飞虱虫态Rice variety×N. lugens stage 16 47.616 0.0001
水稻品种×接虫后时间Rice variety×Time after N. lugens infestation 16 5.776 0.9903
褐飞虱虫态×接虫后时间N. lugens stage×Time after N. lugens infestation 4 1.976 0.7399
水稻品种×褐飞虱虫态×接虫后时间
Rice variety×N. lugens stage×Time after N. lugens infestation
32 11.840 0.9996

Table 3

Variance analysis of rice variety selection by three N. lugens stages after C. suppressalis feeding at observation time points"

虫态Stage 时间Time (h) 自由度df 卡方值χ2 value PP value
3—4龄若虫
3rd-4th instar nymph
12 8 14.232 0.076
24 8 7.528 0.481
48 8 10.592 0.226
初羽化雌虫
Newly emerged female
12 8 19.648 0.012
24 8 23.192 0.003
48 8 10.968 0.203
怀卵雌虫
Gravid female
12 8 6.880 0.550
24 8 9.752 0.283
48 8 13.304 0.102

Table 4

Selection rates of newly emerged female N. lugens for different rice varieties fed by C. suppressalis (%)"

时间Time (h) 水稻品种Rice variety 均值±标准误Mean±SE
12 明恢63 Minghui 63 65.82±2.40a
秀水134 Xiushui 134 61.99±2.39ab
甬优1540 Yongyou 1540 61.53±2.21ab
9311 61.25±1.90ab
嘉禾218 Jiahe 218 60.23±1.76ab
TN1 58.04±1.97ab
天优华占Tianyouhuazhan 57.01±2.98ab
中浙优8号Zhongzheyou 8 55.77±2.70ab
甬优538 Yongyou 538 52.67±1.52b
24 明恢63 Minghui 63 66.71±2.32a
9311 62.18±1.74ab
秀水134 Xiushui 134 61.34±2.70ab
甬优1540 Yongyou 1540 60.31±2.02ab
嘉禾218 Jiahe 218 59.97±2.14ab
TN1 56.57±1.69ab
天优华占Tianyouhuazhan 56.38±3.08ab
中浙优8号Zhongzheyou 8 55.43±2.62b
甬优538 Yongyou 538 52.56±1.60b

Fig. 2

The relative expression levels of genes related to volatile synthesis in rice under different treatments Data in the figure are mean±SE. Different lowercases on the bars indicate significant differences in the gene expression levels among CK, T1, T2, T3 and T4 treatments (P<0.05, one-way ANOVA followed by Tukey’s HSD test)"

Table 5

Effect of rice variety and C. suppressalis (N. lugens) feeding on volatile-related gene expression"

方差来源Variable source OsCAS OsLIS OsHPL3 OsRCI-1
处理Treatment <0.001 <0.001 <0.001 <0.001
水稻品种Rice variety <0.001 0.292 0.017 0.466
处理×水稻品种Treatment×Rice variety <0.001 <0.001 <0.001 <0.001
[1]
卓富彦, 陈学新, 夏玉先, 傅强, 王甦, 徐红星, 胡飞, 张杰. 2013—2022年我国水稻病虫害发生特点与绿色防控技术集成. 中国生物防治学报, https://doi.org/10.16409/j.cnki.2095-039x.2023.11.011.
ZHUO F Y, CHEN X X, XIA Y X, FU Q, WANG S, XU H X, HU F, ZHANG J. The occurrence characteristics of rice diseases and insect pests and the integration of green control technology in China from 2013 to 2022. Chinese Journal of Biological Control, https://doi.org/10.16409/j.cnki.2095-039x.2023.11.011. (in Chinese)
[2]
中华人民共和国农业农村部公告第654号. 中华人民共和国农业农村部公报, 2023(4): 103-104.
No. 654 of the Ministry of Agriculture and Rural Affairs of the People’s Republic of China. Gazette of the Ministry of Agriculture and Rural Affairs of the People’s Republic of China, 2023(4): 103-104. (in Chinese)
[3]
廖逊, 万虎, 李建洪. 褐飞虱对杀虫剂抗性研究进展. 农药学学报, 2019, 21(5/6): 718-728.
LIAO X, WAN H, LI J H. Research progress on insecticides resistance in brown planthopper, Nilaparvata lugens (Stål). Chinese Journal of Pesticide Science, 2019, 21(5/6): 718-728. (in Chinese)
[4]
叶恭银, 方琦, 徐红星, 吴顺凡, 滕子文, 徐刚, 党聪, 熊时姣. 我国水稻螟虫发生及治理研究进展. 植物保护, 2023, 49(5): 167-180.
YE G Y, FANG Q, XU H X, WU S F, TENG Z W, XU G, DANG C, XIONG S J. Research advances on the occurrence, damage and management of rice stem borers in China. Plant Protection, 2023, 49(5): 167-180. (in Chinese)
[5]
刘芳, 娄永根, 程家安. 稻株挥发物在调节褐飞虱、白背飞虱种内种间关系中的作用. 中国水稻科学, 2002, 16(2): 162-166.
LIU F, LOU Y G, CHENG J A. Mediations of rice volatiles on intra- and inter-specific relationships of brown planthopper (Nilaparvata lugens) and white backed planthopper (Sogatella furcifera). Chinese Journal of Rice Science, 2002, 16(2): 162-166. (in Chinese)
[6]
赵伟春, 程家安, 娄永根, 邵伟斌. 褐飞虱和白背飞虱对不同飞虱取食后稻株的选择性. 植物保护学报, 2000, 27(3): 193-198.
ZHAO W C, CHENG J A, LOU Y G, SHAO W B. On the selectivities of Nilaparvata lugens (Stål) and Sogatella furcifera (Horváth) for rice plants fed by identical or alternative planthopper species in advance. Journal of Plant Protection, 2000, 27(3): 193-198. (in Chinese)
[7]
CAO T T, J, LOU Y G, CHENG J A. Feeding-induced interactions between two rice planthoppers, Nilaparvata lugens and Sogatella furcifera (Hemiptera: Delphacidae): Effects on feeding and honeydew excretion. Environmental Entomology, 2013, 42(6): 1281-1291.
[8]
WANG X Y, LIU Q S, MEISSLE M, PENG Y F, WU K M, ROMEIS J, LI Y H. Bt rice could provide ecological resistance against nontarget planthoppers. Plant Biotechnology Journal, 2018, 16(10): 1748-1755.
[9]
HU X Y, SU S L, LIU Q S, JIAO Y Y, PENG Y F, LI Y H, TURLINGS T C. Caterpillar-induced rice volatiles provide enemy- free space for the offspring of the brown planthopper. eLife, 2020, 9: e55421.
[10]
汪晓龙, 苏双丽, 胡晓云, 尹新明, 李云河. 褐飞虱对二化螟为害诱导水稻挥发物的行为反应. 中国生物防治学报, 2023, 39(4): 970-977.

doi: 10.16409/j.cnki.2095-039x.2022.11.012
WANG X L, SU S L, HU X Y, YIN X M, LI Y H. The behavioral response of Nilaparvata lugens to rice volatiles induced by Chilo suppressalis. Chinese Journal of Biological Control, 2023, 39(4): 970-977. (in Chinese)
[11]
林娜, 吕静, 娄永根. 水稻挥发物在调控害虫中的作用及其应用前景. 应用昆虫学报, 2023, 60(2): 411-425.
LIN N, J, LOU Y G. Prospects for the application of rice volatiles in pest control. Chinese Journal of Applied Entomology, 2023, 60(2): 411-425. (in Chinese)
[12]
莫晓畅, 娄永根. 水稻害虫化学生态调控研究进展. 应用昆虫学报, 2016, 53(3): 435-445.
MO X C, LOU Y G. Review of the use of naturally occurring, ecologically active chemicals to regulate insect pests in rice crops. Chinese Journal of Applied Entomology, 2016, 53(3): 435-445. (in Chinese)
[13]
XIAO Y, WANG Q, ERB M, TURLINGS T C J, GE L, HU L, LI J, HAN X, ZHANG T, LU J, ZHANG G R, LOU Y. Specific herbivore- induced volatiles defend plants and determine insect community composition in the field. Ecology Letters, 2012, 15(10): 1130-1139.
[14]
LU G H, ZHANG T, HE Y G, ZHOU G H. Virus altered rice attractiveness to planthoppers is mediated by volatiles and related to virus titre and expression of defence and volatile-biosynthesis genes. Scientific Reports, 2016, 6(1): 38581.
[15]
TONG X H, QI J F, ZHU X D, MAO B Z, ZENG L J, WANG B H, LI Q, ZHOU G X, XU X J, LOU Y G, HE Z H. The rice hydroperoxide lyase OsHPL3 functions in defense responses by modulating the oxylipin pathway. The Plant Journal, 2012, 71(5): 763-775.
[16]
LIAO Z H, WANG L, LI C Z, CAO M J, WANG J N, YAO Z L, ZHOU S Y, ZHOU G X, ZHANG D Y, LOU Y G. The lipoxygenase gene OsRCI-1 is involved in the biosynthesis of herbivore-induced JAs and regulates plant defense and growth in rice. Plant, Cell and Environment, 2022, 45(9): 2827-2840.
[17]
胡阳, 郑永利, 曹国连, 傅强. 利用半人工饲料大规模简便化饲养二化螟. 中国水稻科学, 2013, 27(5): 535-538.
HU Y, ZHENG Y L, CAO G L, FU Q. A technique for rearing Chilo suppressalis in the large scale with an oligidic diet in laboratory. Chinese Journal of Rice Science, 2013, 27(5): 535-538. (in Chinese)
[18]
NANDA S, WAN P J, YUAN S Y, LAI F X, WANG W X, FU Q. Differential responses of OsMPKs in IR56 rice to two BPH populations of different virulence levels. International Journal of Molecular Sciences, 2018, 19(12): 4030.
[19]
TAN X L, LIU T X. Aphid-induced plant volatiles affect the attractiveness of tomato plants to Bemisia tabaci and associated natural enemies. Entomologia Experimentalis et Applicata, 2014, 151(3): 259-269.
[20]
LIN D, XU Y H, WU H M, LIU X Y, ZHANG L, WANG J R, RAO Q. Plant defense responses induced by two herbivores and consequences for whitefly Bemisia tabaci. Frontiers in Physiology, 2019, 10: 346.
[21]
WANG X Y, ZHANG X Q, TZIN V, HAN L Z. Jasmonic acid signaling induced by caterpillar damage causes reduced resistance to target insect feeding by the brown planthopper, Nilaparvata lugens (Stål), in rice. PREPRINT (Version 1) available at Research Square, 2023.
[22]
陈建明, 俞晓平, 程家安, 吕仲贤, 徐红星. 不同水稻品种受褐飞虱危害后体内生理指标的变化. 植物保护学报, 2003, 30(3): 225-231.
CHEN J M, YU X P, CHENG J A, Z X, XU H X. The changes of physiological indexes of different rice varieties after infestation by brown planthopper Nilaparvata lugens (Stål). Journal of Plant Protection, 2003, 30(3): 225-231. (in Chinese)
[23]
卢帅兵, 谢文亚, 岳轩宇, 李梦臣, 冯志明, 陈宗祥, 胡珂鸣, 陈夕军, 曹文磊, 左示敏. 不同抗性水稻品种响应纹枯病菌侵染的代谢组差异分析. 扬州大学学报(农业与生命科学版), 2023, 44(6): 9-17, 25.
LU S B, XIE W Y, YUE X Y, LI M C, FENG Z M, CHEN Z X, HU K M, CHEN X J, CAO W L, ZUO S M. Analysis of metabolomic differences in the response of different resistant rice varieties to sheath blight inoculation. Journal of Yangzhou University (Agricultural and Life Science Edition), 2023, 44(6): 9-17, 25. (in Chinese)
[24]
吴碧球, 李成, 孙祖雄, 黄所生, 周君雷, 黄凤宽, 凌炎, 蒋显斌, 黄芊, 龙丽萍. 苗龄、光照强度和施氮量对抗褐飞虱水稻品种主要防御酶活性的影响. 环境昆虫学报, 2016, 38(6): 1121-1133.
WU B Q, LI C, SUN Z X, HUANG S S, ZHOU J L, HUANG F K, LING Y, JIANG X B, HUANG Q, LONG L P. Influence of seedling stage, light intensity and nitrogen (N) application rate on the main defensive enzymes activity in rice varieties resistant to brown planthopper (BPH), Nilaparvata lugens (Stål). Journal of Environmental Entomology, 2016, 38(6): 1121-1133. (in Chinese)
[25]
周强, 徐涛, 张古忍, 古德祥, 张文庆. 虫害诱导的水稻挥发物对褐飞虱的驱避作用. 昆虫学报, 2003, 46(6): 739-744.
ZHOU Q, XU T, ZHANG G R, GU D X, ZHANG W Q. Repellent effects of herbivore-induced rice volatiles on the brown planthopper Nilaparvata lugens (Stål). Acta Entomologica Sinica, 2003, 46(6): 739-744. (in Chinese)
[26]
刘旭, 吕静, 王满囷. 褐飞虱和二化螟取食对水稻植株挥发物的影响. 应用昆虫学报, 2023, 60(2): 595-601.
LIU X, J, WANG M Q. Effects of the volatiles of rice plants fed by Nilaparvata lugens and Chilo suppressalis. Chinese Journal of Applied Entomology, 2023, 60(2): 595-601. (in Chinese)
[27]
马波, 娄永根, 程家安. 几种生物因子对褐飞虱诱导的水稻挥发物活性的影响. 浙江大学学报(农业与生命科学版), 2004, 30(6): 589-595.
MA B, LOU Y G, CHENG J A. Effects of some biotic factors on activities of the volatiles emitted from rice plants infested by the rice brown planthopper, Nilaparvata lugens (Stål). Journal of Zhejiang University (Agriculture and Life Sciences), 2004, 30(6): 589-595. (in Chinese)
[28]
杨朗, 黄凤宽, 曾玲, 黄立飞, 梁广文. 水稻挥发性次生物质对褐飞虱寄主定向及生长的影响. 生态学报, 2009, 29(9): 5106-5114.
YANG L, HUANG F K, ZENG L, HUANG L F, LIANG G W. The relationship between orientation and growth of the brown planthopper, Nilaparvata lugens (Stål) and rice secondary volatiles. Acta Ecologica Sinica, 2009, 29(9): 5106-5114. (in Chinese)
[29]
王兴云, 张新强, 李菁, 黄小玲, 张元臣, 张坤朋, 王景顺. 对褐飞虱有功能效应的水稻挥发物活性组分的筛选与鉴定. 中国生物防治学报, 2023, 39(6): 1474-1481.

doi: 10.16409/j.cnki.2095-039x.2023.01.032
WANG X Y, ZHANG X Q, LI J, HUANG X L, ZHANG Y C, ZHANG K P, WANG J S. Screening and identification of active components of rice volatiles with functional effects on brown planthopper, Nilaparvata lugens (Stål). Chinese Journal of Biological Control, 2023, 39(6): 1474-1481. (in Chinese)
[1] ZHOU XiaoQian, LI XiaoBei, ZHANG YanMei, ZHOU ChangYan, REN JiaLi, ZHAO XiaoYan. Effects of Origin on the Volatile Flavor Components of Morels Based on GC-IMS and GC×GC-ToF-MS [J]. Scientia Agricultura Sinica, 2024, 57(22): 4553-4567.
[2] WEI Qi, SHAN Yao, FENG ZeLin, HE JiaChun, LAI FengXiang, WAN PinJun, WANG WeiXia, YAO Qing, BIAN Lei, FU Qiang. The Vibration Propagation Laws and Perception Behavior of Mating Calls of Nilaparvata lugens [J]. Scientia Agricultura Sinica, 2024, 57(20): 3989-3997.
[3] WANG Ni, SHI ZheYi, YOU YuanZheng, ZHANG Chao, ZHOU WenWu, ZHOU Ying, ZHU ZengRong. Effects of miRNA on Gene Expression of Sphingolipids Metabolism and Small RNA Analysis of Silencing NlSPT1 and NlSMase4 in Nilaparvata lugens [J]. Scientia Agricultura Sinica, 2024, 57(20): 4022-4034.
[4] ZHOU DeGang, XU BinYan, WANG QingXia, ZHU Xia, YANG XueShan. Effects of Cell-to-Cell Contact Between Torulaspora delbrueckii and Saccharomyces cerevisiae on the Flavor and Quality of Cabernet Sauvignon Wine [J]. Scientia Agricultura Sinica, 2024, 57(16): 3264-3282.
[5] XU MengYu, WANG JiaYang, WANG JiangBo, TANG Wen, CHEN YiHeng, SHANGGUAN LingFei, FANG JingGui, LU SuWen. Differential Analysis of Aroma Substance Content and Gene Expression in the Berry Skins of Different Grape Germplasms [J]. Scientia Agricultura Sinica, 2024, 57(13): 2635-2650.
[6] LI li, SUN ling, ZHANG JinHua, ZOU XiaoWei, SUN Hui, REN JinPing, JIANG ZhaoYuan, LIU XiaoMei. Evaluation of Resistance and Analysis of Utilization Value of the Major Japonica Rice Varieties in Jilin Province Based on the Physiological Race Variation of Magnaporthe oryzae [J]. Scientia Agricultura Sinica, 2023, 56(22): 4441-4452.
[7] GONG QingTao, LI Miao, GAO XiaoLan, ZHANG KunPeng, LI GuiXiang, DONG XiaoMin, LI SuHong, ZHANG AnNing. Screening and Evaluation of Non-Volatile Decision-Making Traits of Oviposition Resistance and Susceptibility of Bactrocera dorsalis [J]. Scientia Agricultura Sinica, 2023, 56(19): 3799-3813.
[8] WU ShiHao, HUANG TianRan, HUANG Ming. Effect of Heat Treatment on the Warmed-Over Flavor of Nanjing Water-Boiled Salted Duck Detected by HS-SPME-GC-MS Technology and Electronic Nose [J]. Scientia Agricultura Sinica, 2023, 56(17): 3435-3451.
[9] WU YuCan, ZHANG ZiHan, ZHAO GuiPing, WEI LiMin, HUANG Feng, ZHANG ChunHui. Effect of Boiling Coconut Water on Flavor Formation of Wenchang Chicken [J]. Scientia Agricultura Sinica, 2023, 56(16): 3199-3212.
[10] NIAN HeFen, ZHANG YuXi, LI BoLiao, CHEN XiuLin, LUO Kun, LI GuangWei. Expression and Ligand Binding Characteristics of GfunOBP2 from Grapholita funebrana [J]. Scientia Agricultura Sinica, 2023, 56(12): 2302-2316.
[11] MA GaoXing,TAO TianYi,PEI Fei,FANG DongLu,ZHAO LiYan,HU QiuHui. Effects of Different Stir-Fry Conditions on the Flavor of Agaricus bisporus in Ready-to-Eat Dishes [J]. Scientia Agricultura Sinica, 2022, 55(3): 575-588.
[12] CHE DaLu,ZHAO LiChen,CHENG SuCai,LIU AiYu,LI XiaoYu,ZHAO ShouPei,WANG JianCheng,WANG Yuan,GAO YuHong,SUN XinSheng. Effect of Litter Bed on Growth Performance and Odor Emission in Fattening Lamb [J]. Scientia Agricultura Sinica, 2022, 55(24): 4943-4956.
[13] YAN TongJing,ZHANG DeQuan,LI Xin,LIU Huan,FANG Fei,LIU ShanShan,WANG Su,HOU ChengLi. Effects of Very Fast Chilling on Flavor Quality in Chilled Lamb [J]. Scientia Agricultura Sinica, 2022, 55(15): 3029-3041.
[14] WU Wei,XU HuiLi,WANG ZhengLiang,YU XiaoPing. Cloning and Function Analysis of a Serine Protease Inhibitor Gene Nlserpin2 in Nilaparvata lugens [J]. Scientia Agricultura Sinica, 2022, 55(12): 2338-2346.
[15] ZHANG YuanYuan,LIU WenJing,ZHANG BinBin,CAI ZhiXiang,SONG HongFeng,YU MingLiang,MA RuiJuan. Characterization of the Lactone Volatile Compounds in Different Types of Peach (Prunus persica L.) Fruit and Evaluations of Their Contributions to Fruit Overall Aroma [J]. Scientia Agricultura Sinica, 2022, 55(10): 2026-2037.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!