Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (19): 3799-3813.doi: 10.3864/j.issn.0578-1752.2023.19.008

• PLANT PROTECTION • Previous Articles     Next Articles

Screening and Evaluation of Non-Volatile Decision-Making Traits of Oviposition Resistance and Susceptibility of Bactrocera dorsalis

GONG QingTao1(), LI Miao1, GAO XiaoLan1, ZHANG KunPeng1, LI GuiXiang1, DONG XiaoMin1, LI SuHong2, ZHANG AnNing1()   

  1. 1 Shandong Institute of Pomology, Taian 271018, Shandong
    2 College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, Shandong
  • Received:2023-03-10 Accepted:2023-05-07 Online:2023-10-01 Published:2023-10-08
  • Contact: ZHANG AnNing

Abstract:

【Objective】The objective of this study is to analyze the relationship between the non-volatile traits of peach fruit and the oviposition of Bactrocera dorsalis, determine the best indicator of the risk of injury and the range of resistance and susceptibility, and to clarify the classification correlation characteristics of the main indicators.【Method】Using 13 representative peach varieties with different physical, villus, mineral elements and physiological characteristics as test materials, 60 non-volatile decision-making traits of 4 types were determined, and the selection test of the oviposition of B. dorsalis was carried out in the laboratory. The correlation and cluster analysis of the different traits and the average larval number in the fruit were carried out to determine the best indicator of the risk of injury and the range of resistance and susceptibility, and the performance of other main indicators was evaluated.【Result】The average absolute value of the correlation coefficient between the 4 types of non-volatile decision-making traits and the average number of larvae was in the order of physiological indicators (0.21, 18 species)>fruit physics (0.19, 18 species)>villus indicators (0.18, 7 species)=mineral elements (0.18, 17 species). Simple correlation analysis showed that there were 17 indicators above the low correlation level. The absolute values of the correlation coefficient from large to small were magnesium (-0.57)>hardness (-0.53)>calcium (-0.52)>selenium (-0.48)>long/short of villus (-0.45)>density of long villus (-0.44)>shady facets-L* (0.43)>free amino acid (-0.41)>transverse diameter (0.38)>amylum (0.37)>salt (-0.35)>single fruit weight (0.33) = pH (0.33)>tannin (-0.32) = anthocyanin (-0.32) = fruit water content (0.32) = Synthesis-L* (0.32). Shady facets-L and magnesium content showed the maximum positive and negative correlation, respectively, the correlation coefficient of nitrogen and protein was 0. The three indicators of magnesium, hardness and calcium reached a significant correlation level, indicating that the medium elements and hardness had the greatest impact on the oviposition resistance of B. dorsalis. The comprehensive analysis showed that magnesium was the best indicator of peach fruit damage risk. According to the absolute value of magnesium content and the degree of fruit damage, cluster analysis method was used to determine those ≥1.50 g·kg-1 as low-risk damaged varieties, that was the high-resistance variety, ≤0.92 g·kg-1 was judged as high-risk victimized varieties, that was the susceptible variety, and the middle were neutral varieties.【Conclusion】The non-volatile trait of peach fruit affects the oviposition selectivity of B. dorsalis. Medium elements (magnesium, calcium) and hardness significantly affect the oviposition selection of B. dorsalis, and all show negative correlation. Magnesium was selected as the best indicator of peach fruit damage risk. There are differences in the effects of 14 low degree related decision-making traits such as selenium on oviposition preference, with 7 positive and 7 negative. The positive correlated traits are all physical indicators except for amylum and pH, while the negative correlated traits are mineral element (1), villus (2), and physiological (4) indicators. Based on the situation of fruit damage, individuals≥1.50 g·kg-1 were preliminarily classified as high resistance varieties; ≤0.92 g·kg-1 were susceptible varieties, while the middle were neutral varieties.

Key words: Bactrocera dorsalis, oviposition, non-volatile, resistant and susceptible trait, decision-making trait

Fig. 1

The larva number of B. dorsalis in different peach varieties"

Table 1

Correlation between fruit physical indexes and average larva number"

项目
Item
果实含水量
Fruit water content
(%)
横径
Transverse diameter (cm)
纵径
Vertical diameter (cm)
纵/横
Vertical/ Transverse diameter
单果重
Single fruit weight (g)
硬度
Hardness (kg·cm-2)
向阳面 Sunny facets 背阴面 Shady facets 综合 Synthesis 平均幼虫数
Average larva number
L* a* b* a/b L* a* b* a/b L* a* b* a/b
果实含水量
Fruit water content (%)
1.00
横径
Transverse diameter (cm)
0.37 1.00
纵径
Vertical diameter (cm)
0.34 0.62* 1.00
纵/横
Vertical/Transverse diameter
0.07 -0.22 0.63* 1.00
单果重
Single fruit weight (g)
0.36 0.89** 0.86** 0.20 1.00
硬度
Hardness (kg·cm-2)
-0.49 -0.33 -0.19 0.11 -0.21 1.00
向阳面
Sunny facets
L* -0.20 -0.21 -0.13 0.04 -0.26 0.27 1.00
a* 0.37 0.62* 0.63* 0.16 0.67* -0.53* -0.77* 1.00
b* -0.40 -0.27 -0.39 -0.23 -0.39 0.30 0.80** -0.75* 1.00
a/b 0.32 0.46 0.58* 0.26 0.58* -0.39 -0.86** 0.96** -0.83** 1.00
背阴面
Shady facets
L* -0.19 0.09 0.15 0.10 0.04 0.14 0.83** -0.44 0.53* -0.61* 1.00
a* 0.42 0.51* 0.60* 0.23 0.60* -0.51* -0.74* 0.91** -0.68* 0.93** -0.59* 1.00
b* -0.40 -0.11 -0.34 -0.31 -0.29 0.28 0.74* -0.64* 0.97** -0.75* 0.54* -0.62* 1.00
a/b 0.46 0.46 0.54* 0.22 0.57* -0.41 -0.78* 0.85** -0.72* 0.92** -0.70* 0.97** -0.69* 1.00
综合
Synthesis
L* -0.21 -0.08 -0.01 0.07 -0.13 0.22 0.97** -0.66* 0.72* -0.78* 0.94** -0.70* 0.68* -0.78* 1.00
a* 0.40 0.58* 0.63* 0.20 0.65* -0.53* -0.77** 0.98** -0.73* 0.97** -0.52* 0.97** -0.64* 0.93** -0.69* 1.00
b* -0.40 -0.20 -0.37 -0.27 -0.34 0.29 0.78* -0.70* 0.99** -0.80** 0.54* -0.65* 0.99** -0.71* 0.71* -0.70* 1.00
a/b 0.40 0.48 0.58* 0.24 0.60* -0.41 -0.83** 0.93** -0.80** 0.98** -0.66* 0.97** -0.74* 0.98** -0.79* 0.97* -0.77* 1.00
平均幼虫数
Average larva number
0.32 0.38 0.23 -0.10 0.33 -0.53* 0.22 0.05 0.04 -0.12 0.43 -0.03 0.05 -0.10 0.32 0.01 0.05 -0.10 1.00

Fig. 2

The characteristics of peach villus under stereomicroscope (35×)"

Fig. 3

The electron micrographs of the villus of representative peach fruits (100 μm)"

Table 2

Correlation between villus indexes and average larva number"

项目
Item
绒毛长度
Villus length (μm)
绒毛粗度
Villus coarseness
(μm)
绒毛角度
Villus angle
(°)
绒毛密度
Villus density
(根/μm²)
长绒毛密度
Long-villus density
(根/μm²)
短绒毛密度
Short-villus density
(根/μm²)
长短数比
Long/short
平均幼虫数
Average larva number
绒毛长度Villus length (μm) 1.00
绒毛粗度Villus coarseness (μm) -0.47 1.00
绒毛角度Villus angle (°) 0.19 0.24 1.00
绒毛密度Villus density (根/μm²) 0.47 0.01 0.91** 1.00
长绒毛密度Long-villus density (根/μm²) 0.80** -0.60* 0.20 0.55* 1.00
短绒毛密度Short-villus density (根/μm²) 0.28 0.20 0.98** 0.96** 0.31 1.00
长短数比Long/short 0.77** -0.70** 0.04 0.40 0.98** 0.14 1.00
平均幼虫数Average larva number 0.03 -0.03 0.18 -0.01 -0.44 0.13 -0.45 1.00

Table 3

Correlation between mineral element indexes and average larva number"

项目
Item

Nitrogen
(%)

Phosphorus (g·kg-1)

Kalium
(%)

Silicon
(g·kg-1)

Calcium
(%)

Magnesium
(g·kg-1)

Sulfur (g·kg-1)

Natrium
(g·kg-1)

Ferrum
(mg·kg-1)

Manganese
(mg·kg-1)

Cuprum
(mg·kg-1)

Zinc (mg·kg-1)

Boron
(mg·kg-1)

Molybdenum (mg·kg-1)

Nickle
(mg·kg-1)

Chlorine
(%)

Selenium
(mg·kg-1)
平均幼虫数
Average larva number
氮Nitrogen (%) 1.00
磷Phosphorus
(g·kg-1)
0.72* 1.00
钾Kalium (%) 0.56* 0.50* 1.00
硅Silicon (g·kg-1) 0.25 -0.01 0.22 1.00
钙Calcium (%) -0.05 -0.05 0.02 -0.10 1.00
镁Magnesium
(g·kg-1)
0.12 0.17 0.31 0.21 0.64* 1.00
硫Sulfur (g·kg-1) 0.22 -0.13 0.21 0.47 0.04 0.28 1.00
钠Natrium
(g·kg-1)
-0.14 -0.33 -0.06 0.04 0.26 0.28 0.47 1.00
铁Ferrum
(mg·kg-1)
0.51* 0.43 0.50* 0.01 0.22 0.28 0.05 -0.13 1.00
锰Manganese
(mg·kg-1)
0.67* 0.42 0.72* 0.24 0.18 0.26 0.22 -0.01 0.82** 1.00
铜Cuprum
(mg·kg-1)
0.13 0.31 0.13 0.01 -0.47 -0.02 -0.17 -0.59* -0.03 -0.21 1.00
锌Zinc (mg·kg-1) 0.80** 0.48 0.54* 0.39 0.04 0.11 0.33 -0.07 0.79** 0.89** -0.14 1.00
硼Boron
(mg·kg-1)
0.46 0.15 0.36 0.03 0.30 0.14 0.02 -0.12 0.88** 0.83** -0.27 0.78** 1.00
钼Molybdenum
(mg·kg-1)
0.58* 0.15 0.25 0.19 0.17 -0.03 0.13 -0.34 0.70* 0.66* -0.05 0.79* 0.86** 1.00
镍Nickle
(mg·kg-1)
0.10 -0.04 -0.04 -0.36 0.08 0.03 0.17 0.47 0.41 0.12 -0.09 0.13 0.30 0.11 1.00
氯Chlorine (%) 0.49 0.42 0.15 0.16 0.01 -0.18 0.09 -0.69* 0.30 0.26 0.36 0.44 0.30 0.63* -0.15 1.00
硒Selenium
(mg·kg-1)
-0.43 0.07 -0.09 -0.19 0.38 0.55* -0.10 -0.12 0.14 -0.08 0.19 -0.28 -0.08 -0.27 -0.11 -0.06 1.00
平均幼虫数
Average larva
number
0 -0.07 0.05 -0.02 -0.52* -0.57* -0.14 -0.29 0.11 -0.06 0.05 0.14 0.13 0.24 0.03 0.08 -0.48 1.00

Table 4

Correlation between fruit physiological indexes and average larva number"

项目
Item
可溶性固形物
Soluble solid (%)
可溶
性糖
Soluble sugar (%)
可滴定酸
Titratable acid (%)
糖/酸
Sugar/ acid

Salt
(%)
淀粉
Amylum
(%)
游离
氨基酸
Free amino acid (mg·g-1)
蛋白质
Protein (%)
脂肪
Lipid (%)
Vc
(mg·100 g-1)
单宁
Tannin (g·kg-1)
pH 脂溶性色素
Fat-soluble pigment
水溶性色素Water-soluble pigment 平均
幼虫数Average larva number
胡萝卜Carotene (mg·kg-1) 叶黄素Lutein (mg·kg-1) 叶绿素a Chlorophyll a (mg·kg-1) 叶绿素b Chlorophyll b (mg·kg-1) 类黄酮Flavonoid (mg·g-1) 花青素Anthocyanin (nmol·g-1)
可溶性固形物
Soluble solid (%)
1.00
可溶性糖
Soluble sugar (%)
0.18 1.00
可滴定酸
Titratable acid (%)
0.17 -0.61 1.00
糖/酸Sugar/acid 0.15 0.91 -0.83 1.00
盐Salt (%) 0.47 -0.54 0.46 -0.50 1.00
淀粉Amylum (%) 0.03 0.30 -0.20 0.16 -0.06 1.00
游离氨基酸
Free amino acid (mg·g-1)
0.29 -0.22 0.48 -0.34 0.58 -0.01 1.00
蛋白质Protein (%) 0.09 -0.51 0.61 -0.69 0.45 0.34 0.46 1.00
脂肪Lipid (%) 0.12 0.01 0.28 -0.16 0.36 0.06 0.50 0.40 1.00
Vc (mg·100 g-1) -0.05 -0.17 0.32 -0.25 0.19 -0.13 0.17 0.08 0.50 1.00
单宁Tannin (g·kg-1) 0.59 -0.44 0.60 -0.41 0.78 -0.25 0.65 0.29 0.24 0.16 1.00
pH -0.17 -0.04 -0.57 0.17 0.04 0.36 -0.28 0.17 -0.24 -0.44 -0.30 1.00
脂溶性
色素
Fat-
soluble pigment
胡萝卜素
Carotene (mg·kg-1)
0.02 -0.16 0.31 -0.26 0.15 -0.11 0.33 0.46 0.28 0.51 0.05 -0.06 1.00
叶黄素
Lutein (mg·kg-1)
0.08 -0.18 0.29 -0.26 0.23 -0.04 0.35 0.50 0.32 0.48 0.09 0.01 0.99 1.00
叶绿素a
Chlorophyll a (mg·kg-1)
0.16 -0.47 0.35 -0.42 0.53 -0.43 0.38 0.45 0.23 -0.04 0.55 0.21 0.25 0.25 1.00
叶绿素b
Chlorophyll b (mg·kg-1)
-0.39 0.09 -0.30 0.13 -0.32 -0.21 -0.33 -0.60 -0.38 0 -0.49 -0.20 -0.32 -0.37 -0.54 1.00
水溶性
色素
Water-
soluble pigment
类黄酮
Flavonoid (mg·g-1)
0.37 -0.50 0.41 -0.42 0.76 -0.20 0.52 0.49 0.38 0.15 0.81 0.14 0.23 0.29 0.82 -0.70 1.00
花青素
Anthocyanin (nmol·g-1)
0.24 -0.56 0.63 -0.58 0.67 -0.37 0.58 0.49 0.21 0.38 0.67 -0.14 0.67 0.67 0.70 -0.41 0.73 1.00
平均幼虫数
Average larva number
-0.25 -0.03 -0.29 0.05 -0.35 0.37 -0.41 0 -0.23 0.21 -0.32 0.33 -0.12 -0.16 -0.18 -0.01 -0.18 -0.32 1.00

Fig. 4

Cluster analysis of magnesium content in peach"

[1]
宫庆涛, 李素红, 张坤鹏, 贾厚振, 姜莉莉, 武海斌, 商明清, 张可欣, 孙瑞红. 橘小实蝇发生与环境关系研究进展. 植物检疫, 2022, 36(5): 17-26.
GONG Q T, LI S H, ZHANG K P, JIA H Z, JIANG L L, WU H B, SHANG M Q, ZHANG K X, SUN R H. Research advances on relationship between occurrence of Bactrocera dorsalis and environment. Plant Quarantine, 2022, 36(5): 17-26. (in Chinese)
[2]
郭予元. 中国农作物病虫害(第二册). 3 版. 北京: 中国农业出版社, 2015: 1145-1149.
GUO Y Y. Crop Diseases and Insect Pests in China. (Vol.Ⅱ). 3rd ed. Beijing: China Agriculture Press, 2015: 1145-1149. (in Chinese)
[3]
WANG Y H, FANG G Q, XU P H, GAO B L, LIU X J, QI X W, ZHANG G J, CAO S, LI Z H, REN X M, WANG H R, CAO Y H, PEREIRA R, HUANG Y P, NIU C Y, ZHAN S. Behavioral and genomic divergence between a generalist and a specialist fly. Cell Reports, 2022, 41: 111654.

doi: 10.1016/j.celrep.2022.111654
[4]
PIETERSE W, MANRAKHAN A, TERBLANCHE J S, ADDISON P. Comparative demography of Bactrocera dorsalis (Hendel) and Ceratitis capitata (Wiedemann) (Diptera: Tephritidae) on deciduous fruit. Bulletin of Entomological Research, 2020, 110(2): 185-194.

doi: 10.1017/S0007485319000592
[5]
张淑颖, 肖春, 孙阳. 实蝇类害虫对寄主的选择. 江西农业学报, 2006, 18(5): 92-95, 101.
ZHANG S Y, XIAO C, SUN Y. Host selection of insect pests in Trypetidae. Acta Agriculturae Jiangxi, 2006, 18(5): 92-95, 101. (in Chinese)
[6]
黄慧欣, 李媛, 黄爱玲, 王小云, 郑霞林, 陆温. 橘小实蝇对5个品种火龙果果实的产卵选择. 果树学报, 2021, 38(3): 394-402.
HUANG H X, LI Y, HUANG A L, WANG X Y, ZHENG X L, LU W. Oviposition preference of Bactrocera dorsalis (Hendel) to five varieties of pitaya. Journal of Fruit Science, 2021, 38(3): 394-402. (in Chinese)
[7]
KRODER S, MESSING R H. A new parasitoid from Kenya, Fopius ceratitivorus, complements the extant parasitoid guild attacking Mediterranean fruit fly in Hawaii. Biological Control, 2010, 53(2): 223-229.

doi: 10.1016/j.biocontrol.2010.01.003
[8]
SILVA R, CLARKE A R. The “sequential cues hypothesis”: A conceptual model to explain host location and ranking by polyphagous herbivores. Insect Science, 2020, 27(6): 1136-1147.

doi: 10.1111/ins.v27.6
[9]
郭腾达, 宫庆涛, 孙瑞红, 武海斌, 姜莉莉. 橘小实蝇对桃果实的产卵选择. 中国农学通报, 2022, 38(4): 92-98.

doi: 10.11924/j.issn.1000-6850.casb2021-0266
GUO T D, GONG Q T, SUN R H, WU H B, JIANG L L. Oviposition preference of Bactrocera dorsalis on peach. Chinese Agricultural Science Bulletin, 2022, 38(4): 92-98. (in Chinese)
[10]
郭腾达, 姜莉莉, 孙瑞红, 宫庆涛, 叶保华. 橘小实蝇危害3种苹果的风险评估. 果树学报, 2021, 38(2): 231-241.
GUO T D, JIANG L L, SUN R H, GONG Q T, YE B H. Risk evaluation of three apple cultivars affected by Bactrocera dorsalis. Journal of Fruit Science, 2021, 38(2): 231-241. (in Chinese)
[11]
蔡子坚, 胡菡青, 韦晓霞, 陈瑾, 林雄杰, 范国成, 吴如健. 杨桃果实性状与橘小实蝇危害严重度的关系. 福建农业学报, 2012, 27(12): 1298-1302.
CAI Z J, HU H Q, WEI X X, CHEN J, LIN X J, FAN G C, WU R J. Traits and damage of carambola fruit by Bactrocera dorsalis. Fujian Journal of Agricultural Sciences, 2012, 27(12): 1298-1302. (in Chinese)
[12]
RATTANAPUN W, AMORNSAK W, CLARKE A R. Is a mango just a mango? Testing within-fruit oviposition site choice and larval performance of a highly polyphagous fruit fly. Arthropod-Plant Interactions, 2010, 4: 35-44.

doi: 10.1007/s11829-009-9083-6
[13]
梁丹辉, 陈冉, 周琼. 桔小实蝇成虫对不同颜色和气味物质的趋性反应. 生命科学研究, 2016, 20(1): 36-39, 62.
LIANG D H, CHEN R, ZHOU Q. Responsiveness of Bactrocera dorsalis (Hendel) adult to different colours and odorants. Life Science Research, 2016, 20(1): 36-39, 62. (in Chinese)
[14]
陈海燕, 林珠凤, 秦双, 王海洪, 潘飞, 吉训聪. 不同颜色粘板及4种实蝇类害虫粘板诱捕桔小实蝇成虫效果的评价. 中国热带农业, 2018(1): 43-44, 48.
CHEN H Y, LIN Z F, QIN S, WANG H H, PAN F, JI X C. Evaluation of trapping effect of different color sticky cards and four kinds of sticky cards of fruit fly pests on adults of Bactrocera dorsalis. China Tropical Agriculture, 2018(1): 43-44, 48. (in Chinese)
[15]
龚碧涯, 刘慧, 向敏, 杨水芝, 肖伏莲, 刘娟, 李先信. 三种果园中实蝇粘虫板对橘小实蝇及天敌的诱杀作用. 植物保护学报, 2021, 48(4): 839-847.
GONG B Y, LIU H, XIANG M, YANG S Z, XIAO F L, LIU J, LI X X. Effectiveness of sticky traps in trapping oriental fruit fly Bactrocera dorsalis and the natural enemies in three kinds of orchards. Journal of Plant Protection, 2021, 48(4): 839-847. (in Chinese)
[16]
杨琴, 罗德诚, 杨毅娟, 李云国, 张锐, 石安宪, 肖春. 不同颜色实蝇粘虫板对桔小实蝇及天敌昆虫的诱捕效果. 应用昆虫学报, 2021, 58(5): 1176-1182.
YANG Q, LUO D C, YANG Y J, LI Y G, ZHANG R, SHI A X, XIAO C. Relative numbers of the fruit fly Bactrocera dorsalis, and natural enemies of insect pests, trapped on different colored sticky boards. Chinese Journal of Applied Entomology, 2021, 58(5): 1176-1182. (in Chinese)
[17]
黄爱玲, 王小云, 陆温, 郑霞林. 橘小实蝇对不同寄主果实的产卵偏好及其与寄主果实理化性质的相关性. 植物保护学报, 2022, 49(2): 595-602.
HUANG A L, WANG X Y, LU W, ZHENG X L. Ovipositional preference of oriental fruit fly Bactrocera dorsalis to different host fruits and its correlation with physical and chemical properties of host fruits. Journal of Plant Protection, 2022, 49(2): 595-602. (in Chinese)
[18]
梁薇, 麻亚辉, 陈丽慧, 魏洪义. 寄主植物对植食性昆虫选择行为影响的研究进展. 生物灾害科学, 2022, 45(3): 299-304.
LIANG W, MA Y H, CHEN L H, WEI H Y. Research progress in the influence of host plants on the selection behaviors of herbivorous insects. Biological Disaster Science, 2022, 45(3): 299-304. (in Chinese)
[19]
YU J X, HUI Y M, XUE J A, QU J B, LING S Q, WANG W, ZENG X N, LIU J L. Formation characteristics of long-term memory in Bactrocera dorsalis. Insect Science, 2023, 30(3): 829-843.

doi: 10.1111/ins.v30.3
[20]
陈凯歌, 邱雪兰, 杜虎斌, 曾鑫年. 番石榴果肉挥发物化学组成及对桔小实蝇产卵行为的影响. 环境昆虫学报, 2012, 34(4): 425-431.
CHEN K G, QIU X L, DU H B, ZENG X N. Chemical constituents of guava fruit flesh volatiles and their effect on oviposition behavior of oriental fruit fly. Journal of Environmental Entomology, 2012, 34(4): 425-431. (in Chinese)
[21]
张国娜, 王进军. 桔小实蝇对几种寄主挥发物的触角电位反应. 环境昆虫学报, 2016, 38(1): 126-131.
ZHANG G N, WANG J J. Electrophysiological responses of the oriental fruit fly, Bactrocera dorsalis to host-plant related volatiles. Journal of Environmental Entomology, 2016, 38(1): 126-131. (in Chinese)
[22]
申建梅, 姚鑫, 陆永跃, 郭晓洁, 胡黎明. 香梨对桔小实蝇的引诱作用及挥发物成分的GC-MS分析. 广东农业科学, 2017, 44(9): 94-99.
SHEN J M, YAO X, LU Y Y, GUO X J, HU L M. Attractive effect to Bactrocera dorsalis and the GC-MS analysis of volatiles components from Pyrus brestschneideri Rehd. Guangdong Agricultural Sciences, 2017, 44(9): 94-99. (in Chinese)
[23]
高俊山, 蔡永萍. 植物生理学实验指导. 2 版. 北京: 中国农业大学出版社, 2018: 3-4.
GAO J S, CAI Y P. Experimental Guidance of Plant Physiology. 2nd ed. Beijing: China Agricultural University Press, 2018: 3-4. (in Chinese)
[24]
刘萍, 李明军. 植物生理学实验. 2版. 北京: 科学出版社, 2016: 95-96.
LIU P, LI M J. Plant Physiology Experiment. 2nd ed. Beijing: Science Press, 2016: 95-96. (in Chinese)
[25]
白东海. 欧李果实类黄酮物质提取、组分鉴定及抗氧化能力研究[D]. 太谷: 山西农业大学, 2015.
BAI D H. Extraction, component identification, and antioxidant ability of flavonoids from fruits of Chinese dwarf cherry (Cerasus humilis (Bge) Sok)[D]. Taigu: Shanxi Agricultural University, 2015. (in Chinese)
[26]
BURRACK H J, ZALOM F G. Olive fruit fly (Diptera: Tephritidae) ovipositional preference and larval performance in several commercially important olive varieties in California. Journal of Economic Entomology, 2008, 101(3): 750-758.

pmid: 18613575
[27]
EKESI S, NDERITU P W, CHANG C L. Adaptation to and small-scale rearing of invasive fruit fly Bactrocera invadens (Diptera Tephritidae) on artificial diet. Annals of the Entomological Society of America, 2007, 100(4): 562-567.

doi: 10.1603/0013-8746(2007)100[562:ATASRO]2.0.CO;2
[28]
钦俊德. 昆虫与植物的关系. 北京: 科学出版社, 1987: 22-29.
QIN J D. The Relationship Between Insects and Plants. Beijing: Science Press, 1987: 22-29. (in Chinese)
[29]
JAENIKE J. On optimal oviposition behaviour in phytophagous insects. Theoretical Population Biology, 1978, 14: 350-356.

doi: 10.1016/0040-5809(78)90012-6
[30]
胡陇生, 朱银飞, 齐长江, 任玲, 田呈明. 枣实蝇产卵选择习性研究. 植物保护, 2012, 38(6): 65-71.
HU L S, ZHU Y F, QI C J, REN L, TIAN C M. Oviposition preference of ber fruit fly. Plant Protection, 2012, 38(6): 65-71. (in Chinese)
[31]
张璐. 四种不同产卵方式昆虫的产卵器感器比较研究[D]. 北京: 北京林业大学, 2015.
ZHANG L. Comparative study on ovipositor sensilla of insects with four types of different oviposition strategies[D]. Beijing: Beijing Forestry University, 2015. (in Chinese)
[32]
王雨, 王舰, 吴问其, 赵惠燕, 胡想顺, 张改生. 扫描电镜下的小麦叶毛性状与麦长管蚜生物学参数相关性分析. 植物保护学报, 2014, 41(4): 474-481.
WANG Y, WANG J, WU W Q, ZHAO H Y, HU X S, ZHANG G S. Correlations between physical characters of wheat leaf hairs in SEM and the biological parameters of grain aphid Stiobion avenae. Acta Phytophylacica Sinica, 2014, 41(4): 474-481. (in Chinese)
[33]
张晓明, 杨念婉, 万方浩. 田间不同植物上烟粉虱种群密度. 生态学报, 2014, 34(16): 4652-4661.
ZHANG X M, YANG N W, WAN F H. Population density of Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) on different plants in the field. Acta Ecologica Sinica, 2014, 34(16): 4652-4661. (in Chinese)
[34]
张慧英, 杨雪梅. 棉花叶片茸毛分布及其与棉铃虫产卵的关系. 植物保护学报, 1994, 21(4): 296, 304.
ZHANG H Y, YANG X M. Observations on the distribution of cotton leaf pubescence as related to the oviposition of cotton bollworm. Acta Phytophylacica Sinica, 1994, 21(4): 296, 304. (in Chinese)
[35]
庞保平, 鲍祖胜, 周晓榕, 程家安. 寄主挥发物、叶色和表皮毛在美洲斑潜蝇寄主选择中的作用. 生态学报, 2004, 24(3): 547-551.
PANG B P, BAO Z S, ZHOU X R, CHENG J A. Effects of host volatiles, leaf color, and cuticular trichomes on host selection by Liriomyza sativae Blanchard. Acta Ecologica Sinica, 2004, 24(3): 547-551. (in Chinese)
[36]
成卫宁, 仵均祥, 李修炼, 李建军. 美洲斑潜蝇寄主抗虫性与寄主叶片化学物质和物理结构的关系. 中山大学学报(自然科学版), 2006, 45(5): 71-75.
CHENG W N, WU J X, LI X L, LI J J. Influence of chemicals and physical structure characteristics of host plant leaves on resistance to Liriomyza sativae Blanchard. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2006, 45(5): 71-75. (in Chinese)
[37]
杜迎刚, 季清娥, 陈家骅, 赖钟雄. 蛋白质对橘小实蝇生殖的影响. 江苏农业科学, 2017, 45(4): 73-75.
DU Y G, JI Q E, CHEN J H, LAI Z X. Effect of protein on the reproduction of Bactrocera dorsalis. Jiangsu Agricultural Sciences, 2017, 45(4): 73-75. (in Chinese)
[38]
丁红建, 郭予元. 小麦籽粒内含物及组织学结构与抗吸浆虫关系的研究. 中国农业科学, 1993, 26(1): 56-62.
DING H J, GUO Y Y. Studies on the relationship between the components and the structure of wheat kernel and the resistance mechanism to wheat midge. Scientia Agricultura Sinica, 1993, 26(1): 56-62. (in Chinese)
[39]
李会平, 王志刚, 杨敏生, 张彦广, 黄大庄, 张世红. 杨树单宁与酚类物质种类及含量与光肩星天牛危害之间关系的研究. 河北农业大学学报, 2003, 26(1): 36-39.
LI H P, WANG Z G, YANG M S, ZHANG Y G, HUANG D Z, ZHANG S H. The relation between tannin and phenol constituents and resistance to Anoplophora glabripennis of various poplar tree species. Journal of Agricultural University of Hebei, 2003, 26(1): 36-39. (in Chinese)
[40]
杨宇晖, 张青文, 刘小侠. 棉花营养物质和单宁含量与其对绿盲蝽抗性的关系. 中国农业科学, 2013, 46(22): 4688-4697. doi: 10.3864/j.issn.0578-1752.2013.22.006.
YANG Y H, ZHANG Q W, LIU X X. The relationship between the contents of nutrients and tannins in different cotton varieties and their resistance to Apolygus lucorum. Scientia Agricultura Sinica, 2013, 46(22): 4688-4697. doi: 10.3864/j.issn.0578-1752.2013.22.006. (in Chinese)
[41]
李科明, 舒海燕, 常胜合, 詹儒林. 香蕉叶柄和假茎单宁含量与抗假茎象甲关系研究. 安徽农业科学, 2022, 50(2): 157-159.
LI K M, SHU H Y, CHANG S H, ZHAN R L. Correlation between tannin content in petiole and pseudostem of banana and its resistance to Odoiporus longicollis (Oliver). Journal of Anhui Agricultural Sciences, 2022, 50(2): 157-159. (in Chinese)
[42]
孙守慧, 李威, 金鑫, 杜亚英, 吕长利. 杨树单宁对青杨天牛的抗虫性. 东北林业大学学报, 2009, 37(5): 102-104.
SUN S H, LI W, JIN X, DU Y Y, C L. Relationship between resistance of poplar to Saperda populnea and tannin content. Journal of Northeast Forestry University, 2009, 37(5): 102-104. (in Chinese)
[43]
赵玉辉, 郭印山, 李作轩. 果实花青素研究进展. 北方园艺, 2006(3): 46-47.
ZHAO Y H, GUO Y S, LI Z X. Research progress of fruit anthocyanins. Northern Horticulture, 2006(3): 46-47. (in Chinese)
[44]
雒珺瑜, 崔金杰, 王春义, 辛惠江, 张帅, 吕丽敏. 棉花叶片蛋白质、可溶性糖和花青素含量及其与绿盲蝽抗性的关系. 西北农林科技大学学报(自然科学版), 2011, 39(8): 75-80, 89.
LUO J Y, CUI J J, WANG C Y, XIN H J, ZHANG S, L M. Relationship between the contents of protein, soluble sugar and anthocyanidins in cotton leaf and their resistance to Apolygus lucorum Meyer-Dür. Journal of Northwest A&F University (Natural Science Edition), 2011, 39(8): 75-80, 89. (in Chinese)
[45]
胡菡青, 韦晓霞, 蔡子坚, 吴如健. 桔小实蝇寄主选择性的研究与应用. 江西农业学报, 2007, 19(2): 68-71.
HU H Q, WEI X X, CAI Z J, WU R J. Research and application of host selection of oriental fruit fly, Bactrocera dorsalis. Acta Agriculturae Jiangxi, 2007, 19(2): 68-71. (in Chinese)
[1] LI XingXing, ZHOU GuoFu, LUO GuanYu, CHEN SiRong, ZHANG JinLong, CHEN GuoHua, ZHANG XiaoMing. Selection Preference and Adaptability of Bactrocera dorsalis to Different Varieties of Malus pumila [J]. Scientia Agricultura Sinica, 2023, 56(17): 3358-3371.
[2] MA GaoXing,TAO TianYi,PEI Fei,FANG DongLu,ZHAO LiYan,HU QiuHui. Effects of Different Stir-Fry Conditions on the Flavor of Agaricus bisporus in Ready-to-Eat Dishes [J]. Scientia Agricultura Sinica, 2022, 55(3): 575-588.
[3] XIONG Yan,HAN Rui,HU ChunHua,WANG Jing,XIAO Chun. Influences of Chemical and Physical Stimuli on Oviposition Behavior of Phthorimaea operculella [J]. Scientia Agricultura Sinica, 2021, 54(3): 573-582.
[4] ZHENG XuSong,TIAN JunCe,HOU JianJun,LÜ ZhongXian. Effects of Colorful Rice on the Degree of Occurrence and Damage by Cnaphalocrocis medinalis and Parasitic Behavior of Its Egg Parasitoids [J]. Scientia Agricultura Sinica, 2018, 51(22): 4288-4296.
[5] ZHENG XuSong, TIAN JunCe, YANG YaJun, ZHU PingYang, LI Kuan, XU HongXing, Lü ZhongXian. The feasibility of using graminaceous weeds as a functional plant for controlling rice leaffolder (Cnaphalocrocis medinalis) [J]. Scientia Agricultura Sinica, 2017, 50(21): 4129-4137.
[6] CHEN Zhen-Zhen, LI Ming-Gui, GUO Ya-Nan, YIN Xiang-Chu, ZHANG Fan, XU Yong-Yu. Effects of Photoperiod and Temperature on the Post-Diapause Biology of Chrysoperla sinica (Tjeder) Adults in Different Overwintering Periods [J]. Scientia Agricultura Sinica, 2013, 46(8): 1610-1618.
[7] LI Qing, LIAO Zhi-Chang, YANG Gang, FENG Chuan-Hong, YANG Qun-Fang, LUO Huai-Hai, JIANG Chun-Xian, WANG Hai-Jian. Effect of Vegetation and Soil on Oviposition of Locusta migratoria tibetensis Chen [J]. Scientia Agricultura Sinica, 2012, 45(4): 656-665.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!