Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (15): 2964-2985.doi: 10.3864/j.issn.0578-1752.2024.15.005

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Effects of Sowing Date Adjustment on Yield and Quality of Winter Wheat and Summer Maize in Northern Area of North China

ZHAO HuaRong1,2,3(), ZHOU GuangSheng1,3(), QI Yue2, GENG JinJian1,3, TIAN XiaoLi3   

  1. 1 Chinese Academy of Meteorological Sciences, Beijing 100081
    2 Institute of Arid Meteorology of China Meteorological Administration/Gansu Key Laboratory of Arid Climatic Change and Reducing Disaster/Key Laboratory of Arid Climatic Change and Dister Reduction of China Meteorological Administration, Lanzhou 730020
    3 Hebei Gucheng Agricultural Meteorology National Observation and Research Station, Baoding 072656, Hebei
  • Received:2024-01-17 Accepted:2024-06-24 Online:2024-08-01 Published:2024-08-05
  • Contact: ZHOU GuangSheng

Abstract:

Objective】Based on the field staging experiments, this study revealed the different responses of winter wheat and summer maize sowing date adjustments in growth and development, photosynthetic physiological characteristics, grain filling, yield formation and quality to climate warming in northern area of North China, providing scientific basis for agricultural production measures to cope with climate change in North China Plain.【Method】Different sowing date experiments of winter wheat and summer maize have been conducted at Hebei Gucheng Agricultural Meteorology National Observation and Research Station in northern area of North China from 2017 to 2023, which were set up in four sowing dates, including 10 d early sowing, 10 d late sowing, 20 d late sowing, and control. The growth process, above-ground dry matter accumulation and distribution, photosynthetic characteristics of leaves, grain filling rate, yield agronomic traits, and grain nutrients of winter wheat and summer maize were observed. 【Result】 The whole growth period of winter wheat was shortened with the delay of sowing date, mainly because of the shortening of seedling stage before winter. There was a parabolic relationship between the whole growth period and sowing date of summer maize. The seedling stage was shortened by 1.3 d, and the flowering stage and grain formation-filling stage were extended by 1.5 d and 1.6 d for every 10 d delay of sowing date. The grain filling characteristics of winter wheat and summer maize were not sensitive to sowing date adjustments, and the grain filling rate of summer maize was little different during different sowing dates, but the grain formation period, the filling end date and the peak date were successively delayed due to the delay of sowing date, and the duration of filling days was shortened by 4.0 d for every 10 d delay of sowing date. Under the background of warm autumn and winter in northern wheat region, the sowing duration of winter wheat was extended, while its influence on the yield was obviously weakened. The delay of sowing date with the increase of sowing seed amount would result in yield increase slightly. The yield of summer maize decreased significantly with the delay of sowing date, and the decline rate of theoretical yield was 1 381.50 kg·hm-2 for every 10 d delay of sowing date, but the yield of winter wheat and summer maize showed a jumping decease for 20 d late sowing. The grain distribution rate increased by 1.67% for winter wheat, decreased by 1.57% for summer maize with every 10 d delay of sowing date. As a result, the harvest index increased by 0.017 for winter wheat, and decreased by 0.016 for summer maize with every 10 d delay of sowing date. The leaf photosynthetic rates (Pn) of winter wheat and summer maize were also different in response to sowing date, they were similar for winter wheat during different sowing dates, while decreased by 1.21 μmol·m-2·s-1 for summer maize for every 10 d delay after sowing date. Sowing date adjustments had no significant effects on grain quality of winter wheat and summer maize in northern area of North China. 【Conclusion】Extending suitable sowing date range and sowing date delay of winter wheat in North China Plain were positive and effective measures to adapt to climate warming. The early sowing of summer maize in North China Plain might avoid the negative effects of high temperature and heat damage, and would promote the increase of yield.

Key words: winter wheat, summer maize, sowing date adjustments, yield, quality

Table 1

Climate characteristics from 2017 to 2023"

项目
Item
2017 2018 2019 2020 2021 2022 2023 平均 Average
年均气温 Annual average temperature (℃) 12.7 12.4 12.7 12.5 12.6 12.2 13.1 12.6
年平均最高气温 Annual average maximum temperature (℃) 20.1 19.8 20.3 20.0 19.9 19.9 20.7 20.1
年平均最低气温 Annual average minimum temperature (℃) 6.7 6.3 6.4 6.6 7.1 6.1 7.0 6.6
平均气温日较差 Average daily temperature range (℃) 13.5 13.5 14.0 13.3 12.7 13.8 13.7 13.5
年降水量 Annual rainfall (mm) 499.0 483.9 400.9 530.6 748.5 583.8 898.3 592.1
年日照时数 Annual sunshine duration (h) 3223.6 3233.1 3361.8 3268.9 3080.2 3379.1 3326.2 3267.6
∑T≥0 ℃积温 Accumulated average daily temperature≥0℃ (℃) 4877.2 4898.8 4944.3 4829.9 4783.7 4850.8 5136.0 4903.0
∑T≥10 ℃积温 Accumulated average daily temperature≥10 ℃ (℃) 4544.0 4628.3 4412.5 4293.6 4320.6 4421.5 4812.4 4490.4
农耕期(T≥0 ℃)Farming stage (Days of T≥0 ℃) (d) 288.0 280.0 275.0 281.0 310.0 277.0 286.0 285.0

Table 2

Key phenological characteristics of winter wheat (2017 to 2023) and summer maize (2019 to 2023) under different sowing date experiments"

冬小麦Winter wheat 夏玉米 Summer maize
项目 Item WCK WS1 WS2 WS3 项目 Item MCK MS1 MS2 MS3
出苗期
Emergence (M-D)
10-18 10-05 10-29 11-11 出苗期
Emergence (M-D)
06-23 06-13 07-02 07-12
分蘖期
Tillering (M-D)
11-11 10-26 未达到
Not achieved
未达到
Not achieved
七叶期
7-leaf (M-D)
07-04 06-25 07-14 07-23
拔节期
Jointing (M-D)
04-04 04-03 04-05 04-09 拔节期
Jointing (M-D)
07-13 07-05 07-21 07-30
孕穗期
Booting (M-D)
04-18 04-17 04-18 04-21 抽雄期
Tasseling (M-D)
08-07 07-31 08-15 08-25
抽穗期
Heading (M-D)
04-27 04-26 04-27 04-29 开花期
Anthesis (M-D)
08-10 08-03 08-17 08-28
开花期
Anthesis (M-D)
05-05 05-05 05-05 05-07 吐丝期
Silking (M-D)
08-10 08-03 08-17 08-26
成熟期
Mature (M-D)
06-13 06-13 06-14 06-14 成熟期
Mature (M-D)
09-15 09-06 09-23 10-06
全生育期
Whole growth period (d)
246 256 237 227 全生育期
Whole growth period (d)
89 90 87 90
越冬前幼苗期
Pre-wintering seeding stage (d)
45 57 33 20 出苗-拔节
Emergence-jointing stage (d)
20 22 19 18
返青后苗期
Seeding stage after regreening (d)
47 46 47 50 拔节-抽雄
Jointing-tasseling stage (d)
25 26 25 26
孕穗-成熟
Booting-mature stage (d)
56 57 58 54 抽雄-生理性成熟
Tasseling-physiological mature stage (d)
39 37 39 42

Table 3

Characteristics of grain filling of winter wheat (2017 to 2023) and summer maize (2019 to 2023) under different sowing date experiments"

冬小麦Winter wheat 夏玉米 Summer maize
项目 Item WCK WS1 WS2 WS3 项目 Item MCK MS1 MS2 MS3
开花期
Anthesis (M-D)
05-05 05-05 05-05 05-07 开花期
Anthesis (M-D)
08-10 08-03 08-17 08-28
灌浆开始测定日期
Date of filling start measurement (M-D)
05-15 05-15 05-15 05-17 灌浆开始测定日期
Date of filling start measurement (M-D)
08-20 08-13 08-27 09-07
灌浆结束日期
Date of filling end (M-D)
06-13 06-13 06-14 06-14 灌浆结束日期
Date of filling end (M-D)
10-06 10-03 10-12 10-15
灌浆持续日数
Duration of filling days (d)
30 29 30 28 灌浆持续日数
Duration of filling days (d)
47 51 46 38
灌浆峰值日期
Date of filling peak (M-D)
05-29 05-29 05-29 05-26 灌浆峰值日期
Date of filling peak (M-D)
09-11 08-30 09-14 09-26
每千粒籽粒灌浆速率峰值
Peak filling rate per 1000 grains (g·(5 d)-1)
11.50 11.07 11.05 11.37 每百粒籽粒灌浆速率峰值
Peak filling rate per 100 grains (g·(5 d)-1)
5.70 5.52 5.76 5.38
每千粒籽粒平均灌浆速率
Average filling rate per 1000 grains (g·(5 d)-1)
6.44 6.49 6.44 6.52 每百粒籽粒平均灌浆速率
Average filling rate per 100 grains (g·(5 d)-1)
2.75 2.76 2.67 2.64

Table 4

Average yield components of winter wheat (2017 to 2023) and summer maize (2019 to 2023) under different sowing date experiments"

冬小麦-项目 Item of winter wheat WCK WS1 WS2 WS3
有效穗数 Effective panicle number per square meter (spike·m-2) 543.7±74.9a 570.8±94.9a 517.3±86.2a 466.0±185.4a
小穗数 Spikelet number per spike 17.0±1.9ab 18.0±1.5a 16.1±1.8ab 15.7±1.4b
不孕小穗数 Sterile spikelet number per spike 0.8±0.5a 1.0±0.4a 0.8±0.4a 0.7±0.5a
穗粒数 Kernels per spike 46.6±9.8a 47.5±9.0a 44.7±8.6a 45.2±7.6a
穗粒重 Grain weight per spike (g/spike) 2.35±0.40a 2.41±0.37a 2.24±0.36a 2.16±0.45a
茎秆重 Stem weight per square meter (g·m-2) 623.27±151.30ab 713.20±185.14a 522.22±175.93ab 457.90±197.71b
籽粒重 Grain weight per square meter (g·m-2) 872.23±124.70a 906.37±141.88a 833.10±182.38a 771.55±289.52a
千粒重 1000-grain weight (g) 48.32±3.60a 48.57±3.16a 48.19±3.84a 45.78±5.31a
收获指数 Harvest index 0.511±0.028ab 0.493±0.026b 0.535±0.029a 0.540±0.022a
理论产量 Theoretical yield (kg·hm-2) 8722.8±1247.1a 9064.1±1418.9a 8331.4±1823.9a 7715.9±2895.3a
夏玉米-项目Item of summer maize MCK MS1 MS2 MS3
果穗粗 Ear diameter (cm) 4.96±0.10a 5.03±0.27a 4.93±0.13a 4.80±0.27a
果穗长 Ear length (cm) 17.77±2.13ab 19.15±1.57a 17.66±1.55ab 16.12±1.66b
秃尖长 Bald tip length (cm) 0.61±0.27a 1.01±0.57a 0.80±0.44a 1.28±0.57a
穗粒数 Kernels per ear 603.7±53.9a 630.6±34.1a 600.5±58.9a 549.8±73.0a
穗轴重 Cob weight per ear (g/ear) 22.53±2.76a 23.53±1.70a 23.07±3.79a 20.84±3.94a
茎秆重 Stem weight per plant (g/plant) 162.92±24.62a 167.84±22.29a 143.66±20.62a 136.51±31.90a
穗粒重 Grain weight per ear (g/ear) 184.00±31.45a 208.00±27.41a 171.95±20.67a 135.26±24.09b
百粒重 100-grain weight (g) 32.16±3.06a 34.26±2.99a 30.40±1.99a 26.21±3.22b
收获指数 Harvest index 0.497±0.037ab 0.520±0.031a 0.508±0.017a 0.464±0.029b
理论产量 Theoretical yield (kg·hm-2) 11040.2±1886.9a 12480.4±1644.6a 10317.5±1240.4a 8116.3±1445.5b

Fig. 1

Variation of grain weight, 1000-grain (100-grain) weight, harvest index of winter wheat and summer maize under different sowing date experiments"

Table 5

Average above-ground dry matter distribution rate of winter wheat (2017 to 2023) and summer maize (2019 to 2023) under different sowing date experiments"

冬小麦-项目 Item of winter wheat WCK WS1 WS2 WS3
茎秆Stem 35.97±3.35ab 38.10±3.32a 32.82±3.62bc 31.43±3.09c
籽粒Grain 51.08±2.80ab 49.28±2.64b 53.51±2.92a 54.03±2.15a
穗轴+颖壳+芒 Spike-stalk+glume+awn 12.95±1.00ab 12.62±1.09b 13.68±0.93ab 14.55±2.30a
穗部Spike 64.04±3.35bc 61.90±3.32c 67.19±3.62ab 68.58±3.09a
秸秆Straw 48.92±2.80ab 50.72±2.64a 46.49±2.92b 45.97±2.15b
夏玉米-项目 Item of summer maize MCK MS1 MS2 MS3
茎秆 Stem 44.14±3.57ab 42.04±3.01b 42.39±2.06ab 46.42±2.77a
籽粒Grain 49.73±3.72ab 52.03±3.08a 50.82±1.71a 46.43±2.89b
穗轴Cob 6.13±0.66b 5.93±0.61b 6.79±0.60ab 7.15±0.79a
穗部Ear 55.87±3.57ab 57.96±3.01a 57.61±2.06ab 53.58±2.77b
秸秆Straw 50.27±3.72ab 47.97±3.08b 49.18±1.71b 53.57±2.90a

Table 6

Average leaf photosynthetic characteristics of winter wheat (2017 to 2023) and summer maize (2019 to 2023) under different sowing date experiments"

发育期 Growth period 冬小麦-项目 Item of winter wheat WCK WS1 WS2 WS3
拔节期
Jointing stage
净光合速率 Pn (μmol·m-2·s-1) 17.09±1.66a 16.48±2.14a 18.31±2.92a 18.50±1.62a
蒸腾速率 Tr (mmol·m-2·s-1) 4.03±0.74a 3.74±0.87a 4.50±1.16a 4.51±1.03a
水分利用效率 WUE (μmol·mmol-1) 4.47±1.53a 4.76±2.06a 4.33±1.58a 4.36±1.49a
抽穗期
Heading stage
净光合速率 Pn (μmol·m-2·s-1) 18.94±2.28a 18.40±2.02a 18.98±2.38a 17.79±1.70a
蒸腾速率 Tr (mmol·m-2·s-1) 5.99±1.12a 5.76±1.11a 6.12±1.17a 6.00±1.11a
水分利用效率 WUE (μmol·mmol-1) 3.23±0.55a 3.26±0.42a 3.17±0.51a 3.04±0.52a
乳熟期
Milk-ripe stage
净光合速率 Pn (μmol·m-2·s-1) 15.00±4.57a 15.41±4.62a 15.35±4.11a 15.95±3.93a
蒸腾速率 Tr (mmol·m-2·s-1) 8.29±1.74a 8.19±1.60a 8.25±1.23a 8.52±1.49a
水分利用效率 WUE (μmol·mmol-1) 1.81±0.43a 1.87±0.44a 1.85±0.40a 1.87±0.37a
平均
Average
净光合速率 Pn (μmol·m-2·s-1) 17.01±1.97a 16.77±1.51a 17.55±1.94a 17.42±1.32a
蒸腾速率 Tr (mmol·m-2·s-1) 6.10±2.13a 5.90±2.23a 6.29±1.88a 6.34±2.03a
水分利用效率 WUE (μmol·mmol-1) 3.07±1.22a 3.16±1.26a 3.01±1.11a 2.98±1.12a
发育期 Growth period 夏玉米-项目 Item of summer maize MCK MS1 MS2 MS3
拔节期
Jointing stage
净光合速率 Pn (μmol·m-2·s-1) 32.21±6.79a 33.60±4.29a 32.70±3.74a 32.99±1.49a
蒸腾速率 Tr (mmol·m-2·s-1) 8.02±1.74a 8.51±1.27a 8.21±0.69a 7.88±1.00a
水分利用效率 WUE (μmol·mmol-1) 4.03±0.42a 3.96±0.29a 4.00±0.45a 4.25±0.67a
抽雄期
Tasseling stage
净光合速率 Pn (μmol·m-2·s-1) 29.63±3.66a 30.70±2.44a 29.48±3.67a 27.54±5.13a
蒸腾速率 Tr (mmol·m-2·s-1) 6.47±1.16a 6.69±0.67a 6.69±1.52a 5.98±0.83a
水分利用效率 WUE (μmol·mmol-1) 4.66±0.79a 4.63±0.60a 4.53±0.77a 4.60±0.49a
乳熟期
Milk-ripe stage
净光合速率 Pn (μmol·m-2·s-1) 24.74±4.59a 24.57±4.61a 22.98±2.70a 16.75±3.11a
蒸腾速率 Tr (mmol·m-2·s-1) 5.01±1.23a 5.15±0.77a 4.33±0.80a 2.97±0.31a
水分利用效率 WUE (μmol·mmol-1) 5.04±0.90a 4.75±0.30a 5.45±1.29a 5.62±0.72a
平均
Average
净光合速率 Pn (μmol·m-2·s-1) 28.86±3.79a 29.63±4.61a 28.39±4.95a 25.76±8.27a
蒸腾速率 Tr (mmol·m-2·s-1) 6.50±1.51a 6.78±1.68a 6.41±1.95a 5.61±2.48a
水分利用效率 WUE (μmol·mmol-1) 4.57±0.51a 4.45±0.42a 4.66±0.74a 4.71±0.51a

Fig. 2

Diurnal variation of photosynthetic parameters of winter wheat and summer maize at milk-ripe stage under different sowing date experiments"

Table 7

Grain quality of winter wheat and summer maize under different sowing date experiments"

冬小麦-项目
Item of winter wheat
WCK WS1 WS2 WS3 标准差
Standard deviation
必需
Necessary
苏氨酸Threonine (g·kg-1) 3.81±1.35a 3.72±1.29a 3.62±1.21a 3.63±1.16a 0.089
缬氨酸Valine (g·kg-1) 4.96±0.86a 5.04±0.87a 4.86±0.75a 4.80±0.94a 0.106
蛋氨酸Methionine (g·kg-1) 1.50±0.35a 1.43±0.31a 1.34±0.31a 1.28±0.40a 0.097
异亮氨酸Isoleucine (g·kg-1) 4.30±0.76a 4.39±0.86a 4.23±0.75a 4.18±0.90a 0.091
亮氨酸Leucine (g·kg-1) 8.22±1.54a 8.22±1.28a 8.07±1.30a 7.90±1.44a 0.152
苯丙氨酸Phenylalanine (g·kg-1) 5.83±1.18a 5.83±0.99a 5.73±1.05a 5.65±1.19a 0.087
赖氨酸Lysine (g·kg-1) 3.84±0.72a 3.98±0.94a 3.98±0.99a 3.81±1.06a 0.090
合计Total (g·kg-1) 32.46±5.78a 32.60±5.38a 31.83±5.05a 31.26±5.99a 0.617
半必需
Semi-essential
组氨酸Histidine (g·kg-1) 4.06±3.67a 3.55±2.86a 4.04±3.83a 4.12±4.54a 0.264
精氨酸Arginine (g·kg-1) 5.68±1.55a 5.48±1.48a 5.35±1.37a 5.24±1.26a 0.189
合计Total (g·kg-1) 9.74±4.25a 9.03±3.62a 9.38±4.24a 9.35±5.13a 0.290
非必需
Nonessential
天冬氨酸Aspartate (g·kg-1) 6.24±0.96a 6.06±1.26a 6.23±1.24a 6.38±1.92a 0.131
谷氨酸Glutamate (g·kg-1) 37.11±5.38a 38.14±5.17a 35.70±3.45a 35.99±5.16a 1.117
胱氨酸Cystine (g·kg-1) 3.55±1.54a 3.62±1.72a 3.43±1.47a 2.90±1.00a 0.326
丝氨酸Serine (g·kg-1) 4.97±0.88a 5.14±0.90a 4.74±0.42a 4.84±0.63a 0.173
甘氨酸Glycine (g·kg-1) 4.94±0.76a 5.01±0.71a 4.97±0.67a 4.86±0.83a 0.064
丙氨酸Alanine (g·kg-1) 3.95±1.28a 3.85±1.22a 3.82±1.24a 3.68±1.26a 0.112
脯氨酸Proline (g·kg-1) 15.19±4.72a 14.95±4.77a 14.87±4.26a 15.35±6.79a 0.220
酪氨酸Tyrosine (g·kg-1) 2.66±0.83a 2.55±0.74a 2.22±0.50a 2.32±0.58a 0.203
合计Total (g·kg-1) 77.43±11.53a 78.11±11.83a 74.83±7.16a 75.37±14.42a 1.582
蛋白质Protein (g·(100g)-1) 13.40±1.34a 13.30±1.16a 12.88±1.31a 13.02±1.94a 0.241
脂肪Fat (g·(100g)-1) 1.22±0.25a 1.18±0.32a 1.20±0.18a 1.20±0.28a 0.016
淀粉Starch (g·(100g)-1) 54.60±2.74a 55.60±3.90a 55.78±2.62a 56.62±3.49a 0.829
夏玉米-项目
Item of summer maize
MCK MS1 MS2 MS3 标准差
Standard deviation
必需
Necessary
苏氨酸Threonine (g·kg-1) 2.29±0.76a 2.41±0.75a 1.90±0.47a 2.25±0.59a 0.219
缬氨酸Valine (g·kg-1) 2.94±0.30a 3.03±0.41a 2.48±0.27a 2.77±0.33a 0.242
蛋氨酸Methionine (g·kg-1) 0.91±0.14a 0.90±0.18a 0.72±0.21a 0.93±0.08a 0.097
异亮氨酸Isoleucine (g·kg-1) 2.18±0.30a 2.29±0.39a 1.89±0.28a 2.11±0.30a 0.169
亮氨酸Leucine (g·kg-1) 7.31±0.88a 7.80±0.67a 6.10±0.23b 6.92±0.33ab 0.718
苯丙氨酸Phenylalanine (g·kg-1) 3.54±1.29a 3.65±1.33a 3.31±1.90a 3.45±1.61a 0.144
赖氨酸Lysine (g·kg-1) 1.78±0.23a 1.74±0.12ab 1.52±0.06b 1.72±0.10ab 0.116
合计Total (g·kg-1) 20.93±2.37ab 21.83±2.55a 17.91±1.92b 20.15±2.13ab 1.677
半必需
Semi-essential
组氨酸Histidine (g·kg-1) 1.72±0.40a 1.65±0.26a 1.44±0.16a 1.55±0.26a 0.122
精氨酸Arginine (g·kg-1) 2.18±0.50a 2.19±0.43a 1.80±0.24a 2.02±0.32a 0.182
合计Total (g·kg-1) 3.89±0.89a 3.85±0.69a 3.24±0.40a 3.57±0.57a 0.301
非必需
Nonessential
天冬氨酸Aspartate (g·kg-1) 10.09±5.73a 10.64±6.33a 8.99±5.86a 10.48±6.23a 0.743
谷氨酸Glutamate (g·kg-1) 10.44±4.28a 10.92±3.97a 8.56±2.81a 9.32±3.17a 1.070
胱氨酸Cystine (g·kg-1) 2.47±1.37a 3.37±2.42a 3.45±2.83a 4.11±4.04a 0.671
丝氨酸Serine (g·kg-1) 2.71±0.55a 2.83±0.56a 2.27±0.19a 2.46±0.34a 0.251
甘氨酸Glycine (g·kg-1) 2.17±0.57a 2.21±0.44a 1.80±0.31a 2.10±0.34a 0.186
丙氨酸Alanine (g·kg-1) 4.26±0.53a 4.50±0.72a 3.56±0.52a 4.03±0.55a 0.401
脯氨酸Proline (g·kg-1) 6.09±1.09a 6.55±1.12a 5.24±0.34a 6.09±0.91a 0.547
酪氨酸Tyrosine (g·kg-1) 1.24±0.22a 1.37±0.15a 1.12±0.11a 1.33±0.11a 0.111
合计Total (g·kg-1) 39.47±3.81ab 42.38±2.11a 34.88±5.03b 39.91±3.94ab 3.128
蛋白质Protein (g·(100g)-1) 7.73±0.52ab 8.06±0.30a 6.95±0.75a 7.30±0.47a 0.486
脂肪Fat (g·(100g)-1) 3.43±0.17ab 3.80±0.47a 3.38±0.38ab 3.13±0.13b 0.276
淀粉Starch (g·(100g)-1) 63.69±2.72a 64.42±2.45a 64.81±2.78a 64.64±1.73a 0.493
[1]
HUANG M X, WANG J, WANG B, LIU D L, FENG P Y, YU Q, PAN X B, WATERS C. Assessing maize potential to mitigate the adverse effects of future rising temperature and heat stress in China. Agricultural and Forest Meteorology, 2021, 311: 108673.
[2]
IPCC. Climate change and land:an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems, 2019. https://www.ipcc.ch/srccl/chapter/summary-for-policymakers/.
[3]
覃志豪, 唐华俊, 李文娟, 赵书河. 气候变化对农业和粮食生产影响的研究进展与发展方向. 中国农业资源与区划, 2013, 34(5): 1-7.
QIN Z H, TANG H J, LI W J, ZHAO S H. Progress and directions in studying the impacts of climate change on agriculture and grain production in China. Chinese Journal of Agricultural Resources and Regional Planning, 2013, 34(5): 1-7. (in Chinese)
[4]
陈群, 于欢, 侯雯嘉, 付伟, 耿婷, 陈长青. 气候变暖对黄淮海地区冬小麦生育进程与产量的影响. 麦类作物学报, 2014, 34(10): 1363-1372.
CHEN Q, YU H, HOU W J, FU W, GENG T, CHEN C Q. Impacts of climate warming on growth development process and yield of winter wheat in Huang-Huai-Hai Region of China. Journal of Triticeae Crops, 2014, 34(10): 1363-1372. (in Chinese)
[5]
陈源源. 气候变化对中国粮食生产的影响. 中国农学通报, 2021, 37(12): 51-57.

doi: 10.11924/j.issn.1000-6850.casb2020-0402
CHEN Y Y. The impact of climate change on China’s grain production. Chinese Agricultural Science Bulletin, 2021, 37(12): 51-57. (in Chinese)

doi: 10.11924/j.issn.1000-6850.casb2020-0402
[6]
ZHANG T Y, HE Y, DEPAUW R, JIN Z N, GARVIN D, YUE X, ANDERSON W, LI T, DONG X, ZHANG T, YANG X G. Climate change may outpace current wheat breeding yield improvements in North America. Nature Communications, 2022, 13(1): 5591.
[7]
孙智辉, 王春乙. 气候变化对中国农业的影响. 科技导报, 2010, 28(4): 110-117.
SUN Z H, WANG C Y. Impact of changing climate on agriculture in China. Science & Technology Review, 2010, 28(4): 110-117. (in Chinese)
[8]
任三学, 赵花荣, 周广胜, 齐月, 田晓丽, 耿金剑. 郯麦98对播种期变化的响应. 应用气象学报, 2023, 34(3): 362-372.
REN S X, ZHAO H R, ZHOU G S, QI Y, TIAN X L, GENG J J. Response of winter wheat tanmai 98 to sowing date adjustments. Journal of Applied Meteorological Science, 2023, 34(3): 362-372. (in Chinese)
[9]
HOU P, LIU Y E, LIU W M, YANG H S, XIE R Z, WANG K R, MING B, LIU G Z, XUE J, WANG Y H, et al. Quantifying maize grain yield losses caused by climate change based on extensive field data across China. Resources, Conservation & Recycling, 2021, 174:105811.
[10]
YU Y, JIANG Z H, WANG G J, KATTEL G R, CHUAI X W, SHANG Y, ZOU Y F, MIAO L J. Disintegrating the impact of climate change on maize yield from human management practices in China. Agricultural and Forest Meteorology, 2022, 327:109235.
[11]
郭世博, 张方亮, 张镇涛, 周丽涛, 赵锦, 杨晓光. 全球气候变暖对中国种植制度的可能影响XIV.东北大豆高产稳产区及农业气象灾害分析. 中国农业科学, 2022, 55(9): 1763-1780. doi: 10.3864/j.issn.0578-1752.2022.09.006.
GUO S B, ZHANG F L, ZHANG Z T, ZHOU L T, ZHAO J, YANG X G. The possible effects of global warming on cropping systems in China XIV. Distribution of High-Stable-Yield zones and Agro- Meteorological disasters of soybean in Northeast China. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780. doi: 10.3864/j.issn.0578-1752.2022.09.006. (in Chinese)
[12]
REZAEI E E, WEBBER H, ASSENG S, BOOTE K, DURAND J L, EWERT F, MARTRE P, MACCARTHY D S. Climate change impacts on crop yields. Nature Reviews Earth & Environment, 2023, 4: 831-846.
[13]
程敏鹏, 苏洵. 趋利避害: 农业面临的气候变化影响及适应举措. 可持续发展经济导刊, 2023, (Z1):66-70.
CHENG M P, SU X. Impacts of climate change on agriculture and adaptation measures. China Sustainability Tribune, 2023, (Z1):66-70. (in Chinese)
[14]
张悦, 胡琦, 和骅芸, 潘学标, 马雪晴, 黄彬香, 王靖. 气候变化背景下华北平原冬小麦冬前生育期与节气对应及偏移分析. 中国农业气象, 2019, 40(7): 411-421.
ZHANG Y, HU Q, HE H Y, PAN X B, MA X Q, HUANG B X, WANG J. Correspondence and shifting analysis for the winter wheat growing period before winter and solar terms in the North China Plain under climate change background. Chinese Journal of Agrometeorology, 2019, 40(7): 411-421. (in Chinese)
[15]
宋艳玲, 周广胜, 郭建平, 李勇, 潘亚茹, 付严, 杨荣光, 白晓英, 徐金霞. 北方冬小麦冬季冻害及播期延迟应对. 应用气象学报, 2022, 33(4): 454-465.
SONG Y L, ZHOU G S, GUO J P, LI Y, PAN Y R, FU Y, YANG R G, BAI X Y, XU J X. Freezing injury of winter wheat in Northern China and delaying sowing date to adapt. Journal of Applied Meteorological Science, 2022, 33(4): 454-465. (in Chinese)
[16]
张镇涛, 杨晓光, 高继卿, 王晓煜, 白帆, 孙爽, 刘志娟, 明博, 谢瑞芝, 王克如, 李少昆. 气候变化背景下华北平原夏玉米适宜播期分析. 中国农业科学, 2018, 51(17): 3258-3274. doi: 10.3864/j.issn.0578-1752.2018.17.003.
ZHANG Z T, YANG X G, GAO J Q, WANG X Y, BAI F, SUN S, LIU Z J, MING B, XIE R Z, WANG K R, LI S K. Analysis of suitable sowing date for summer maize in North China Plain under climate change. Scientia Agricultura Sinica, 2018, 51(17): 3258-3274. doi: 10.3864/j.issn.0578-1752.2018.17.003. (in Chinese)
[17]
孙新素, 龙致炜, 宋广鹏, 陈长青. 气候变化对黄淮海地区夏玉米-冬小麦种植模式和产量的影响. 中国农业科学, 2017, 50(13): 2476-2487. doi: 10.3864/j.issn.0578-1752.2017.13.007.
SUN X S, LONG Z W, SONG G P, CHEN C Q. Effects of climate change on cropping pattern and yield of summer maize- winter wheat in Huang-Huai-Hai Plain. Scientia Agricultura Sinica, 2017, 50(13): 2476-2487. doi: 10.3864/j.issn.0578-1752.2017.13.007. (in Chinese)
[18]
肖微微, 许晶晶. 气候变化对华北平原主要农作物生长影响研究-以冬小麦、夏玉米为例. 江西农业学报, 2016, 28(6): 65-70.
XIAO W W, XU J J. Impact of climate change on growth of main crops in north China plain: A case study of winter wheat and summer maize. Acta Agriculturae Jiangxi, 2016, 28(6): 65-70. (in Chinese)
[19]
WU Y X, ZHOU G S, SONG Y L, REN S X, GENG J J, ZHAO H R, SONG X Y. A simulation study on optimization of sowing time of maize (Zea mays L.) for maximization of growth and yield in the present context of climate change under the North China Plain. Agronomy, 2023, 13(2): 385.
[20]
徐田军, 吕天放, 赵久然, 王荣焕, 张勇, 蔡万涛, 刘月娥, 刘秀芝, 陈传永, 邢锦丰, 王元东, 刘春阁. 不同播期条件下黄淮海区主推夏播玉米品种籽粒灌浆特性. 作物学报, 2021, 47(3): 566-574.

doi: 10.3724/SP.J.1006.2021.03023
XU T J, T F, ZHAO J R, WANG R H, ZHANG Y, CAI W T, LIU Y E, LIU X Z, CHEN C Y, XING J F, WANG Y D, LIU C G. Grain filling characteristics of summer maize varieties under different sowing dates in the Huang-Huai-Hai region. Acta Agronomica Sinica, 2021, 47(3): 566-574. (in Chinese)
[21]
和骅芸, 胡琦, 潘学标, 马雪晴, 胡莉婷, 王晓晨, 何奇瑾. 气候变化背景下华北平原夏玉米花期高温热害特征及适宜播期分析. 中国农业气象, 2020, 41(1): 1-15.
HE H Y, HU Q, PAN X B, MA X Q, HU L T, WANG X C, HE Q J. Characteristics of heat damage during flowering period of summer maize and suitable sowing date in North China Plain under climate change. Chinese Journal of Agrometeorology, 2020, 41(1): 1-15. (in Chinese)
[22]
张宁, 杜雄, 江东岭, 崔彦宏. 播期对夏玉米生长发育及产量影响的研究. 河北农业大学学报, 2009, 32(5): 7-11.
ZHANG N, DU X, JIANG D L, CUI Y H. Effect of sowing date on growth and yield of summer corn (Zea mays L.). Journal of Agricultural University of Hebei, 2009, 32(5): 7-11. (in Chinese)
[23]
刘佳鸿, 何奇瑾, 管玥, 苏成, 杨夙, 秦志珩, 糜欣苑, 潘学标, 唐昕宁, 闫梦玲. 黄淮海北部地区夏玉米稳产高产的播期优选. 农业工程学报, 2022, 38(5): 131-138.
LIU J H, HE Q J, GUAN Y, SU C, YANG S, QIN Z H, MI X Y, PAN X B, TANG X N, YAN M L. Suitable sowing date for stable and high yield of summer maize in the northern region of Huang-Huai-Hai, China. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(5): 131-138. (in Chinese)
[24]
董秀春, 李鹏, 徐燕. 播期对夏玉米生长发育和产量形成的影响. 山东农业科学, 2015, 47(8): 39-41, 45.
DONG X C, LI P, XU Y. Effect of sowing date on growth and yield of summer maize. Shandong Agricultural Science, 2015, 47(8): 39-41, 45. (in Chinese)
[25]
肖祖栋, 陈先敏, 李斌彬, 申思, 邓涛, 李凤元, 周顺利. 不同品种夏玉米生长发育和产量形成对播期和密度的响应特征. 华北农学报, 2023, 38(1): 110-116.

doi: 10.7668/hbnxb.20193312
XIAO Z D, CHEN X M, LI B B, SHEN S, DENG T, LI F Y, ZHOU S L. Response characteristics of growth-development and yield- formation of different summer maize cultivars to sowing date and planting density. Acta Agriculturae Boreali-Sinica, 2023, 38(1): 110-116. (in Chinese)
[26]
任三学, 周广胜, 赵花荣, 田晓丽, 耿金剑. 华北北部夏玉米适期早播的增产效果. 华北农学报, 2023, 38(6): 81-93.

doi: 10.7668/hbnxb.20194166
REN S X, ZHOU G S, ZHAO H R, TIAN X L, GENG J J. Yield promoting effect of early sowing of summer maize at appropriate time in Northern North China. Acta Agriculturae Boreali-Sinica, 2023, 38(6): 81-93. (in Chinese)

doi: 10.7668/hbnxb.20194166
[27]
CUI X M, XIE W. Adapting agriculture to climate change through growing season adjustments: Evidence from corn in China. American Journal of Agricultural Economics, 2022, 104(1): 249-272.
[28]
齐永青, 孙宏勇, 沈彦俊. 太行山山前平原近50年气候变暖特征及其对冬小麦-夏玉米作物系统的影响. 中国生态农业学报, 2011, 19(5): 1048-1053.
QI Y Q, SUN H Y, SHEN Y J. Characteristics and effects of climate warming on winter wheat/summer maize cropping system in recent 50 years in the piedmont of Mount Taihang. Chinese Journal of Eco-Agriculture, 2011, 19(5): 1048-1053. (in Chinese)
[29]
白帆, 杨晓光, 刘志娟, 孙爽, 张镇涛, 王晓煜, 高继卿, 刘涛. 气候变化背景下播期对东北三省春玉米产量的影响. 中国生态农业学报(中英文), 2020, 28(4): 480-491.
BAI F, YANG X G, LIU Z J, SUN S, ZHANG Z T, WANG X Y, GAO J Q, LIU T. Effects of sowing dates on grain yield of spring maize in the Three-Province of the Northeast China under climate change. Chinese Journal of Eco-Agriculture, 2020, 28(4): 480-491. (in Chinese)
[30]
张娟, 马丰刚, 蒋明洋, 苏丙华, 谷顼, 康建萍, 白洪立, 武军华. 播期对夏玉米生长发育、籽粒灌浆特性和产量的影响. 山东农业科学, 2016, 48(8): 38-41.
ZHANG J, MA F G, JIANG M Y, SU B H, GU X, KANG J P, BAI H L, WU J H. Effects of sowing date on growth, kernel filling and yield of summer maize. Shandong Agricultural Sciences, 2016, 48(8): 38-41. (in Chinese)
[31]
钤太峰, 董秀春, 张秀, 初金鹏, 费立伟, 郑飞娜, 代兴龙, 贺明荣. 播期对冬小麦干物质积累、分配与产量的影响. 山东农业科学, 2019, 51(3): 24-28, 35.
QIAN T F, DONG X C, ZHANG X, CHU J P, FEI L W, ZHENG F N, DAI X L, HE M R. Effect of sowing date on dry matter accumulation, distribution and yield of winter wheat. Shandong Agricultural Sciences, 2019, 51(3): 24-28, 35. (in Chinese)
[32]
刘战东, 肖俊夫, 南纪琴, 冯跃华. 播期对夏玉米生育期、形态指标及产量的影响. 西北农业学报, 2010, 19(6): 91-94.
LIU Z D, XIAO J F, NAN J Q, FENG Y H. Effect of sowing date on growth stages, morphological index and yield of summer maize. Acta Agriculturae Boreali-occidentalis Sinica, 2010, 19(6): 91-94. (in Chinese)
[33]
李令伟, 崔丽娜, 杨连俊, 禹光媛, 张钰. 不同播期对夏玉米产量及产量构成的影响. 安徽农业科学, 2013, 41(18): 7786-7787.
LI L W, CUI L N, YANG L J, YU G Y, ZHANG Y. Effects of different sowing dates on grain yield and its components of summer maize. Journal of Anhui Agricultural Sciences, 2013, 41(18): 7786-7787. (in Chinese)
[34]
国家气象局编定. 农业气象观测规范(上卷). 北京: 气象出版社, 1993.
China Meteorological Administration. Code for Agricultural Meteorological Observation (Volume 1). Beijing: China Meteorological Press, 1993. (in Chinese)
[35]
MINOLI S, JÄGERMEYR J, ASSENG S, URFELS A, MÜLLER C. Global crop yields can be lifted by timely adaptation of growing periods to climate change. Nature Communications, 2022, 13(1): 7079.
[36]
ZHU G X, LIU Z J, QIAO S L, ZHANG Z T, HUANG Q W, SU Z G, YANG X G. How could observed sowing dates contribute to maize potential yield under climate change in Northeast China based on APSIM model. European Journal of Agronomy, 2022, 136:126511.
[37]
陈静, 任佰朝, 赵斌, 刘鹏, 杨今胜, 张吉旺. 基于品种生育期有效积温确定夏玉米适宜播期. 中国农业科学, 2021, 54(17): 3632-3646. doi: 10.3864/j.issn.0578-1752.2021.17.007.
CHEN J, REN B Z, ZHAO B, LIU P, YANG J S, ZHANG J W. Determination on suitable sowing date of summer maize hybrids based on effective accumulated temperature in growth period. Scientia Agricultura Sinica, 2021, 54(17): 3632-3646. doi: 10.3864/j.issn.0578-1752.2021.17.007. (in Chinese)
[38]
SLAFER G A, SAVIN R, SADRAS V O. Wheat yield is not causally related to the duration of the growing season. European Journal of Agronomy, 2023, 148:126885.
[39]
霍治国, 张海燕, 李春晖, 孔瑞, 江梦圆. 中国玉米高温热害研究进展. 应用气象学报, 2023, 34(1): 1-14.
HUO Z G, ZHANG H Y, LI C H, KONG R, JIANG M Y. Review on high temperature heat damage of maize in China. Journal of Applied Meteorological Science, 2023, 34(1): 1-14. (in Chinese)
[40]
付真真, 祝光欣, 刘志娟, 郭世博, 李娥, 杨晓光. 气候变化背景下中国玉米产区开花期高温时空分布特征. 中国农业科学, 2023, 56(14): 2686-2700. doi: 10.3864/j.issn.0578-1752.2023.014.005.
FU Z Z, ZHU G X, LIU Z J, GUO S B, LI E, YANG X G. Spatial-temporal variations of high temperature during flowering period in maize-producing areas of China under climate change. Scientia Agricultura Sinica, 2023, 56(14): 2686-2700. doi: 10.3864/j.issn.0578-1752.2023.014.005. (in Chinese)
[41]
张川, 刘栋, 王洪章, 任昊, 赵斌, 张吉旺, 任佰朝, 刘存辉, 刘鹏. 不同时期高温胁迫对夏玉米物质生产性能及籽粒产量的影响. 中国农业科学, 2022, 55(19): 3710-3722. doi: 10.3864/j.issn.0578-1752.2022.19.003.
ZHANG C, LIU D, WANG H Z, REN H, ZHAO B, ZHANG J W, REN B Z, LIU C H, LIU P. Effects of high temperature stress in different periods on dry matter production and grain yield of summer maize. Scientia Agricultura Sinica, 2022, 55(19): 3710-3722. doi: 10.3864/j.issn.0578-1752.2022.19.003. (in Chinese)
[42]
李小凡, 邵靖宜, 于维祯, 刘鹏, 赵斌, 张吉旺, 任佰朝. 高温干旱复合胁迫对夏玉米产量及光合特性的影响. 中国农业科学, 2022, 55(18): 3516-3529. doi: 10.3864/j.issn.0578-1752.2022.18.004.
LI X F, SHAO J Y, YU W Z, LIU P, ZHAO B, ZHANG J W, REN B Z. Combined effects of high temperature and drought on yield and photosynthetic characteristics of summer maize. Scientia Agricultura Sinica, 2022, 55(18): 3516-3529. doi: 10.3864/j.issn.0578-1752.2022.18.004. (in Chinese)
[43]
ZHANG Y, ZHAO Y X, SUN Q. Increasing maize yields in Northeast China are more closely associated with changes in crop timing than with climate warming. Environmental Research Letters, 2021, 16(5): 054052.
[44]
RIZZO G, MONZON J P, TENORIO F A, HOWARD R, CASSMAN K G, GRASSINI P. Climate and agronomy, not genetics, underpin recent maize yield gains in favorable environments. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(4): e2113629119.
[45]
LESK C, ANDERSON W, RIGDEN A, COAST O, JÄGERMEYR J, MCDERMID S, DAVIS K F, KONAR M. Compound heat and moisture extreme impacts on global crop yields under climate change. Nature Reviews Earth & Environment, 2022, 3: 872-889.
[46]
JÄGERMEYR J, MÜLLER C, RUANE A C, ELLIOTT J, BALKOVIC J, CASTILLO O, FAYE B, FOSTER I, FOLBERTH C, FRANKE J A, et al. Climate impacts on global agriculture emerge earlier in new generation of climate and crop models. Nature Food, 2021, 2: 873-885.

doi: 10.1038/s43016-021-00400-y pmid: 37117503
[47]
LIU Y J, ZHANG J, PAN T, CHEN Q M, QIN Y, GE Q S. Climate-associated major food crops production change under multi-scenario in China. Science of the Total Environment, 2022, 811: 151393.
[48]
WEN P F, WEI Q R, ZHENG L, RUI Z X, NIU M J, GAO C K, GUAN X K, WANG T C, XIONG S P. Adaptability of wheat to future climate change: Effects of sowing date and sowing rate on wheat yield in three wheat production regions in the North China Plain. Science of the Total Environment, 2023, 901: 165906.
[49]
马尚宇, 王艳艳, 刘雅男, 姚科郡, 黄正来, 张文静, 樊永惠, 马元山. 播期、播量和施氮量对小麦干物质积累、转运和分配及产量的影响. 中国生态农业学报(中英文), 2020, 28(3): 375-385.
MA S Y, WANG Y Y, LIU Y N, YAO K J, HUANG Z L, ZHANG W J, FAN Y H, MA Y S. Effect of sowing date, planting density, and nitrogen application on dry matter accumulation, transfer, distribution, and yield of wheat. Chinese Journal of Eco-Agriculture, 2020, 28(3): 375-385. (in Chinese)
[50]
孟繁圆, 冯利平, 张丰瑶, 张祎, 伍露, 王春雷, 闫锦涛, 彭明喜, 莫志鸿, 余卫东. 北部冬麦区冬小麦越冬冻害时空变化特征. 作物学报, 2019, 45(10): 1576-1585.

doi: 10.3724/SP.J.1006.2019.81076
MENG F Y, FENG L P, ZHANG F Y, ZHANG Y, WU L, WANG C L, YAN J T, PENG M X, MO Z H, YU W D. Temporal and spatial variations of winter wheat freezing injury in northern winter wheat region. Acta Agronomica Sinica, 2019, 45(10): 1576-1585. (in Chinese)
[51]
XIAO D P, LIU D L, WANG B, FENG P Y, BAI H Z, TANG J Z. Climate change impact on yields and water use of wheat and maize in the North China Plain under future climate change scenarios. Agricultural Water Management, 2020, 238: 106238.
[52]
许吟隆, 赵明月, 李阔, 赵运成, 王淳一. 农业适应气候变化研究进展回顾与展望. 中国生态农业学报(中英文), 2023, 31(8): 1155-1170.
XU Y L, ZHAO M Y, LI K, ZHAO Y C, WANG C Y. Review on the research progress of agricultural adaptation to climate change and perspectives. Chinese Journal of Eco-Agriculture, 2023, 31(8): 1155-1170. (in Chinese)
[53]
TESTER R F, MORRISON W R, ELLIS R H, PIGGO J R, BATTS G R, WHEELER T R, MORISON J I L, HADLEY P, LEDWARD D A. Effects of elevated growth temperature and carbon dioxide levels on some physicochemical properties of wheat starch. Journal of Cereal Science, 1995, 22(1): 63-71.
[54]
苗建利, 王晨阳, 郭天财, 马冬云, 胡吉帮, 冯辉. 高温与干旱互作对两种筋力小麦品种籽粒淀粉及其组分含量的影响. 麦类作物学报, 2008, 28(2): 254-259.
MIAO J L, WANG C Y, GUO T C, MA D Y, HU J B, FENG H. Effects of post-anthesis interactions of high temperature and drought stresses on content and composition of grain starch in two wheat cultivars with different gluten strength. Journal of Triticeae Crops, 2008, 28(2): 254-259. (in Chinese)
[55]
XIAO G J, ZHANG Q, ZHANG F J, MA F, WANG J, HUANG J Y, LUO C K, HE X P, QIU Z J. Warming influences the yield and water use efficiency of winter wheat in the semiarid regions of Northwest China. Field Crops Research, 2016, 199: 129-135.
[56]
田云录, 陈金, 邓艾兴, 郑建初, 张卫建. 非对称性增温对冬小麦籽粒淀粉和蛋白质含量及其组分的影响. 作物学报, 2011, 37(2): 302-308.
TIAN Y L, CHEN J, DENG A X, ZHENG J C, ZHANG W J. Effects of asymmetric warming on contents and components of starch and protein in grains of winter wheat under FATI facility. Acta Agronomica Sinica, 2011, 37(2): 302-308. (in Chinese)
[57]
宋艳玲, 周广胜, 郭建平, 董静, 潘亚茹, 张仁祖, 张利华, 吴世明, 贾红, 宋强, 李轲, 陈耿, 徐金霞. 气候变暖对冬小麦徐麦33产量和品质影响. 应用气象学报, 2023, 34(5): 552-561.
SONG Y L, ZHOU G S, GUO J P, DONG J, PAN Y R, ZHANG R Z, ZHANG L H, WU S M, JIA H, SONG Q, LI K, CHEN G, XU J X. Influences of global warming on yield structure and quality of winter wheat Xumai 33. Journal of Applied Meteorological Science, 2023, 34(5):552-561. (in Chinese)
[58]
崔昊, 石祖梁, 蔡剑, 姜东, 曹卫星, 戴廷波. 大气CO2浓度和氮肥水平对小麦籽粒产量和品质的影响. 应用生态学报, 2011, 22(4): 979-984.
CUI H, SHI Z L, CAI J, JIANG D, CAO W X, DAI T B. Effects of atmospheric CO2 concentration enhancement and nitrogen application rate on wheat grain yield and quality. Chinese Journal of Applied Ecology, 2011, 22(4): 979-984. (in Chinese)
[59]
谢立勇, 李悦, 钱凤魁, 赵洪亮, 韩雪, 林而达. 粮食生产系统对气候变化的响应:敏感性与脆弱性. 中国人口·资源与环境, 2014, 24(5): 25-30.
XIE L Y, LI Y, QIAN F K, ZHAO H L, HAN X, LIN E D. Analysis on agricultural sensitivity and vulnerability to climate change and countermeasures. China Population, Resources and Environment, 2014, 24(5): 25-30. (in Chinese)
[60]
谢立勇, 林而达. 二氧化碳浓度增高对稻、麦品质影响研究进展. 应用生态学报, 2007, 18(3): 659-664.
XIE L Y, LIN E D. Effects of CO2 enrichment on grain quality of rice and wheat: A research review. Chinese Journal of Applied Ecology, 2007, 18(3):659-664. (in Chinese)
[61]
吴志祥, 周兆德. 气候变化对我国农业生产的影响及对策. 华南热带农业大学学报, 2004, 10(2):7-11.
WU Z X, ZHOU Z D. Effects of climatic changes on China’s agriculture and corresponding countermeasures. Journal of South China University of Tropical Agriculture, 2004, 10(2): 7-11. (in Chinese)
[62]
信志红, 郭建平, 谭凯炎, 刘凯文, 杨荣光, 张利华, 孙义. 冬小麦籽粒品质评价及其对气象因子的响应研究. 中国生态农业学报(中英文), 2019, 27(8): 1205-1217.
XIN Z H, GUO J P, TAN K Y, LIU K W, YANG R G, ZHANG L H, SUN Y. Evaluation of grain quality of winter wheat and its response to meteorological factors. Chinese Journal of Eco-Agriculture, 2019, 27(8): 1205-1217. (in Chinese)
[63]
信志红, 郭建平, 谭凯炎, 刘凯文, 杨荣光, 张利华, 孙义. 冬小麦氨基酸品质与气候生态因子关系研究. 干旱气象, 2020, 38(1): 148-156.
XIN Z H, GUO J P, TAN K Y, LIU K W, YANG R G, ZHANG L H, SUN Y. Relationship between amino acid quality of winter wheat and meteorological ecological factors. Journal of Arid Meteorology, 2020, 38(1): 148-156. (in Chinese)
[64]
谭凯炎, 周广胜, 任三学, 耿金剑. 气候变化可能不会引起我国北方冬小麦营养品质下降. 气候变化研究进展, 2019, 15(3): 282-289.
TAN K Y, ZHOU G S, REN S X, GENG J J. Climate change will probably not cause the decline of winter wheat nutritional quality in northern China. Climate Change Research, 2019, 15(3): 282-289. (in Chinese)
[1] ZANG ShaoLong, LIU LinRu, GAO YueZhi, WU Ke, HE Li, DUAN JianZhao, SONG Xiao, FENG Wei. Classification and Identification of Nitrogen Efficiency of Wheat Varieties Based on UAV Multi-Temporal Images [J]. Scientia Agricultura Sinica, 2024, 57(9): 1687-1708.
[2] FAN Hong, YIN Wen, HU FaLong, FAN ZhiLong, ZHAO Cai, YU AiZhong, HE Wei, SUN YaLi, WANG Feng, CHAI Qiang. Compensation Potential of Dense Planting on Nitrogen Reduction in Maize Yield in Oasis Irrigation Area [J]. Scientia Agricultura Sinica, 2024, 57(9): 1709-1721.
[3] HAN XiaoJie, REN ZhiJie, LI ShuangJing, TIAN PeiPei, LU SuHao, MA Geng, WANG LiFang, MA DongYun, ZHAO YaNan, WANG ChenYang. Effects of Different Nitrogen Application Rates on Carbon and Nitrogen Content of Soil Aggregates and Wheat Yield [J]. Scientia Agricultura Sinica, 2024, 57(9): 1766-1778.
[4] ZHAO BoHui, ZHANG YingQuan, JING DongLin, LIU BaoHua, CHENG YuanYuan, SU YuHuan, TANG Na, ZHANG Bo, GUO BoLi, WEI YiMin. A Study on the Quality Stability of Wheat Grains at Designated Locations Across Multiple Years [J]. Scientia Agricultura Sinica, 2024, 57(9): 1833-1844.
[5] HE YongQiang, ZHANG JinKui, XU JinSong, DING XiaoYu, CHENG Yong, XU BenBo, ZHANG XueKun. Effect of 14-Hydroxylated Brassinosteroids Growth Regulator on Growth and Yield of Rapeseed [J]. Scientia Agricultura Sinica, 2024, 57(8): 1444-1454.
[6] LI YongFei, LI ZhanKui, ZHANG ZhanSheng, CHEN YongWei, KANG JianHong, WU HongLiang. Effects of Postponing Nitrogen Fertilizer Application on Flag Leaf Physiological Characteristics and Yield of Spring Wheat Under High Temperature Stress [J]. Scientia Agricultura Sinica, 2024, 57(8): 1455-1468.
[7] LIU ZeHou, WANG Qin, YE MeiJin, WAN HongShen, YANG Ning, YANG ManYu, YANG WuYun, LI Jun. Utilization Efficiency of Improving the Resistance for Pre-Harvest Sprouting by Synthetic Hexaploid Wheat and Chinese Wheat Landrace [J]. Scientia Agricultura Sinica, 2024, 57(7): 1255-1266.
[8] LIANG WangZhuang, TANG YaNan, LIU JiaHui, GUO XiaoJiang, DONG HuiXue, QI PengFei, WANG JiRui. Effect of Flour and Cooking/Baking Qualities by Sprouted Wheat [J]. Scientia Agricultura Sinica, 2024, 57(7): 1267-1280.
[9] GAO ChenKai, LIU ShuiMiao, LI YuMing, ZHAO ZhiHeng, SHAO Jing, YU HaoLin, WU PengNian, WANG YanLi, GUAN XiaoKang, WANG TongChao, WEN PengFei. The Related Driving Factors of Water Use Efficiency and Its Prediction Model Construction in Winter Wheat [J]. Scientia Agricultura Sinica, 2024, 57(7): 1281-1294.
[10] REN Qiang, XU Ke, FAN ZhiLong, YIN Wen, FAN Hong, HE Wei, HU FaLong, CHAI Qiang. Nitrogen Fertilizer Postponing Application Benefits Wheat-Maize Intercropping by Reducing Soil Evaporation and Improving Water Use Efficiency [J]. Scientia Agricultura Sinica, 2024, 57(7): 1295-1307.
[11] YANG QiRui, LI LanTao, ZHANG Xiao, ZHANG Qian, ZHANG YinJie, ZHANG Duo, WANG YiLun. Effects of Potassium Application Dosage on Yield, Quality and Light Temperature Physiological Characteristics of Summer Peanut [J]. Scientia Agricultura Sinica, 2024, 57(7): 1335-1349.
[12] ZHAO ZhenJian, WANG Kai, CHEN Dong, SHEN Qi, YU Yang, CUI ShengDi, WANG JunGe, CHEN ZiYang, YU ShiXin, CHEN JiaMiao, WANG XiangFeng, TANG GuoQing. Integrated Aanalysis of Genome and DNA Methylation for Screening Key Genes Related to Pork Quality Traits [J]. Scientia Agricultura Sinica, 2024, 57(7): 1394-1406.
[13] YANG Yang, JIA MengHan, CHEN Can, ZHANG YiHan, TONG YuXin. Effects of Different Ratios of Green-Blue Light on Basil Growth and Its Energy Use Efficiency [J]. Scientia Agricultura Sinica, 2024, 57(6): 1167-1179.
[14] DANG JianYou, JIANG WenChao, SUN Rui, SHANG BaoHua, PEI XueXia. Response of Wheat Grain Yield and Water Use Efficiency to Ploughing Time and Precipitation and Its Distribution in Dryland [J]. Scientia Agricultura Sinica, 2024, 57(6): 1049-1065.
[15] ZHAO KaiNan, DING Hao, LIU AKang, JIANG ZongHao, CHEN GuangZhou, FENG Bo, WANG ZongShuai, LI HuaWei, SI JiSheng, ZHANG Bin, BI XiangJun, LI Yong, LI ShengDong, WANG FaHong. Nitrogen Fertilizer Reduction and Postponing for Improving Plant Photosynthetic Physiological Characteristics to Increase Wheat- Maize and Annual Yield and Economic Return [J]. Scientia Agricultura Sinica, 2024, 57(5): 868-884.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!