[1] |
ZOU Z Y, ZOU X X. Geographical and ecological differences in pepper cultivation and consumption in China. Frontiers in Nutrition, 2021, 8: 718517.
|
[2] |
ZHU X Q, LIU D M, HONG Q C, LU Y F, PEI D L. First report of chili pepper fruit rot caused by Fusarium incarnatum in China. Plant Disease, 2021, 105(10): 3304.
|
[3] |
HAN K L, ZHENG H Y, JI M F, CUI W J, HU S Z, PENG J J, ZHAO J P, LU Y W, LIN L, LIU Y, CHEN J P, YAN F. A single amino acid in coat protein of pepper mild mottle virus determines its subcellular localization and the chlorosis symptom on leaves of pepper. Journal of General Virology, 2020, 101(5): 565-570.
doi: 10.1099/jgv.0.001398
pmid: 32149597
|
[4] |
JI M F, ZHAO J P, HAN K L, CUI W J, WU X Y, CHEN B H, LU Y W, PENG J J, ZHENG H Y, RAO S F, WU G W, CHEN J P, YAN F. Turnip mosaic virus P1 suppresses JA biosynthesis by degrading cpSRP54 that delivers AOCs onto the thylakoid membrane to facilitate viral infection. PLoS Pathogens, 2021, 17(12): e1010108.
|
[5] |
JIAO Y B, ZHAO X X, HAO K Q, GAO X R, XING D, WANG Z P, AN M N, XIA Z H, WU Y H. Characterization of small interfering RNAs derived from pepper mild mottle virus in infected pepper plants by high-throughput sequencing. Virus Research, 2022, 307: 198607.
|
[6] |
ZHANG Z M, CHANG X F, LUO S X, WANG Y H, XUAN S X, ZHAO J J, SHEN S X, MA W, CHEN X P. Transcriptome analysis of two pepper genotypes infected with pepper mild mottle virus. Frontiers in Genetics, 2023, 14: 1164730.
|
[7] |
向本春, 谢浩, 崔星明, 李春, 刘素萍, 席德慧, 尹玉琦. 新疆辣椒轻微斑驳病毒的分离鉴定. 病毒学报, 1994, 10(3): 240-245.
|
|
XIANG B C, XIE H, CUI X M, LI C, LIU S P, XI D H, YIN Y Q. Isolation and identification of pepper mid mottle tobamo virus in Xinjiang. Chinese Journal of Virology, 1994, 10(3): 240-245. (in Chinese)
|
[8] |
ZHOU W P, LI Y Y, LI F, TAN G L. First report of natural infection of tomato by pepper mild mottle virus in China. Journal of Plant Pathology, 2021, 103(1): 363.
|
[9] |
OH C, XUN G H, LANE S T, PETROV V A, ZHAO H M, NGUYEN T H. Portable, single nucleotide polymorphism-specific duplex assay for virus surveillance in wastewater. Science of the Total Environment, 2024, 912: 168701.
|
[10] |
邵煜尊, 张万红, 王惠, 王玉洁, 苗圃, 申莉莉, 李莹, 焦裕冰, 杨金广. 辣椒轻斑驳病毒RT-LAMP快速检测方法的建立. 中国蔬菜, 2023(12): 42-48.
|
|
SHAO Y Z, ZHANG W H, WANG H, WANG Y J, MIAO P, SHEN L L, LI Y, JIAO Y B, YANG J G. Establishment of a rapid RT-LAMP detection method for pepper mild mottle virus. China Vegetables, 2023(12): 42-48. (in Chinese)
|
[11] |
JIAO Y B, AN M N, LI X D, YU M, ZHAO X X, XIA Z H, WU Y H. Transcriptomic and functional analyses reveal an antiviral role of autophagy during pepper mild mottle virus infection. BMC Plant Biology, 2020, 20(1): 495.
|
[12] |
HAN K L, ZHENG H Y, YAN D K, ZHOU H J, JIA Z X, ZHAI Y S, WU J, LU Y W, WU G W, RAO S F, CHEN J P, PENG J J, QI R D, YAN F. Pepper mild mottle virus coat protein interacts with pepper chloroplast outer envelope membrane protein OMP24 to inhibit antiviral immunity in plants. Horticulture Research, 2023, 10(5): uhad046.
|
[13] |
TSUDA S, KUBOTA K, KANDA A, OHKI T, MESHI T. Pathogenicity of pepper mild mottle virus is controlled by the RNA silencing suppression activity of its replication protein but not the viral accumulation. Phytopathology, 2007, 97(4): 412-420.
doi: 10.1094/PHYTO-97-4-0412
pmid: 18943281
|
[14] |
DAGVADORJ B, OUTRAM M A, WILLIAMS S J, SOLOMON P S. The necrotrophic effector ToxA from Parastagonospora nodorum interacts with wheat NHL proteins to facilitate Tsn1-mediated necrosis. The Plant Journal, 2022, 110(2): 407-418.
|
[15] |
YANG C L, LIU Q Y, PENG M, CHEN X L, ZHU W L, CHEN X H, LI Q Y, ZENG D G, ZHAO Y Z. Penaeus stylirostris densovirus proteins CP and NS1 interact with peritrophin of Litopenaeus vannamei. Fish & Shellfish Immunology, 2020, 106: 357-364.
|
[16] |
|
|
BIN Y, ZHANG Q, WANG C Q, ZHAO X C, SONG Z, ZHOU C Y. Screening of the host factors interacting with CP of citrus yellow vein clearing virus by yeast two-hybrid system. Scientia Agricultura Sinica, 2023, 56(10): 1881-1892. doi: 10.3864/j.issn.0578-1752.2023.10.006. (in Chinese)
|
[17] |
HU T, GUO D Q, LI B W, WANG L Q, LIU H, YIN J L, JIN T T, LUAN H X, SUN L, LIU M Z, ZHI H J, LI K. Soybean 40S ribosomal protein S8 (GmRPS8) interacts with 6K1 protein and contributes to soybean susceptibility to soybean mosaic virus. Viruses, 2023, 15(12): 2362.
|
[18] |
MÉNDEZ-LÓPEZ E, DONAIRE L, GOSÁLVEZ B, DÍAZ-VIVANCOS P, SÁNCHEZ-PINA M A, TILSNER J, ARANDA M A. Tomato SlGSTU38 interacts with the PepMV coat protein and promotes viral infection. New Phytologist, 2023, 238(1): 332-348.
|
[19] |
ZONG T X, YIN J L, JIN T T, WANG L Q, LUO M X, LI K, ZHI H J. A DnaJ protein that interacts with soybean mosaic virus coat protein serves as a key susceptibility factor for viral infection. Virus Research, 2020, 281: 197870.
|
[20] |
HAN S H, PARK J S, HAN J Y, GONG J S, PARK C H, KIM J K, SEO E Y, DOMIER L L, HAMMOND J, LIM H S. New Korean isolates of pepper mild mottle virus (PMMoV) differ in symptom severity and subcellular localization of the 126 kDa protein. Virus Genes, 2017, 53(3): 434-445.
|
[21] |
ZHENG K Y, ZHANG R H, WAN Q L, ZHANG G, LU Y W, ZHENG H Y, YAN F, PENG J J, WU J. Pepper mild mottle virus can infect and traffick within Nicotiana benthamiana plants in non-virion forms. Virology, 2023, 587: 109881.
|
[22] |
LEE G E, KIM H J, CHO I S, JEONG R D. First report on natural infection of Nepenthes alata by pepper mild mottle virus in Korea. Journal of Plant Pathology, 2023, 105(4): 1725.
|
[23] |
YU M, LIU H, ZHENG H Y, YAN F, ZHAO X X, XIA Z H, AN M N, WU Y H. Viral sequences required for efficient viral infection differ between two Chinese pepper mild mottle virus isolates. Virus Research, 2019, 267: 9-15.
doi: S0168-1702(19)30175-3
pmid: 31039366
|
[24] |
LI N, ZHANG R, ZHOU J P, HUANG Z X. Structures, biochemical characteristics, and functions of β-xylosidases. Journal of Agricultural and Food Chemistry, 2023, 71(21): 7961-7976.
|
[25] |
FARIAS M D P, ALBUQUERQUE P B S, SOARES P A G, DE SÁ D M A T, VICENTE A A, CARNEIRO-DA-CUNHA M G. Xyloglucan from Hymenaea courbaril var. courbaril seeds as encapsulating agent of L-ascorbic acid. International Journal of Biological Macromolecules, 2018, 107: 1559-1566.
|
[26] |
JEWARIA P K, YU M, LI X J. Cell wall and hormone interplay controls growth asymmetry. Trends in Plant Science, 2021, 26(7): 665-667.
doi: 10.1016/j.tplants.2021.04.003
pmid: 33958277
|
[27] |
YU Z P, ZHANG F, FRIML J, DING Z J. Auxin signaling: Research advances over the past 30 years. Journal of Integrative Plant Biology, 2022, 64(2): 371-392.
doi: 10.1111/jipb.13225
|
[28] |
ZHAO S S, LI Y. Current understanding of the interplays between host hormones and plant viral infections. PLoS Pathogens, 2021, 17(2): e1009242.
|
[29] |
PADMANABHAN M S, GOREGAOKER S P, GOLEM S, SHIFERAW H, CULVER J N. Interaction of the tobacco mosaic virus replicase protein with the Aux/IAA protein PAP1/IAA26 is associated with disease development. Journal of Virology, 2005, 79(4): 2549-2558.
doi: 10.1128/JVI.79.4.2549-2558.2005
pmid: 15681455
|
[30] |
ZHANG H H, LI L L, HE Y Q, QIN Q Q, CHEN C H, WEI Z Y, TAN X X, XIE K L, ZHANG R F, HONG G J, et al. Distinct modes of manipulation of rice auxin response factor OsARF 17 by different plant RNA viruses for infection. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(16): 9112-9121.
|
[31] |
LE X H, LEE C P, MILLAR A H. The mitochondrial pyruvate carrier (MPC) complex mediates one of three pyruvate-supplying pathways that sustain Arabidopsis respiratory metabolism. The Plant Cell, 2021, 33(8): 2776-2793.
|
[32] |
SGRIGNANI J, CHEN J J, ALIMONTI A, CAVALLI A. How phosphorylation influences E1 subunit pyruvate dehydrogenase: A computational study. Scientific Reports, 2018, 8: 14683.
doi: 10.1038/s41598-018-33048-z
pmid: 30279533
|
[33] |
ZHOU W J, NIU Y J, NIE Z W, KIM J Y, XU Y N, YAN C G, CUI X S. Nuclear accumulation of pyruvate dehydrogenase alpha 1 promotes histone acetylation and is essential for zygotic genome activation in porcine embryos. Biochimica et Biophysica Acta. Molecular Cell Research, 2020, 1867(4): 118648.
|
[34] |
LIU Z B, SONG J S, MIAO W, YANG B Z, ZHANG Z Q, CHEN W C, TAN F J, SUO H, DAI X Z, ZOU X X, OU L J. Comprehensive proteome and lysine acetylome analysis reveals the widespread involvement of acetylation in cold resistance of pepper (Capsicum annuum L.). Frontiers in Plant Science, 2021, 12(8): 730489.
|
[35] |
YANG Z, DU J, TAN X, ZHANG H, LI L, LI Y, WEI Z, XU Z, LU Y, CHEN J, SUN Z. Histone deacetylase OsHDA706 orchestrates rice broad-spectrum antiviral immunity and is impeded by a viral effector. Cell Reports, 2024, 43(3): 113838.
|
[36] |
DING B, BELLIZZI M D, NING Y S, MEYERS B C, WANG G L. HDT701, a histone H4 deacetylase, negatively regulates plant innate immunity by modulating histone H4 acetylation of defense-related genes in rice. The Plant Cell, 2012, 24(9): 3783-3794.
doi: 10.1105/tpc.112.101972
pmid: 22968716
|
[37] |
CHEN B, WANG Z C, JIAO M J, ZHANG J, LIU J, ZHANG D M, LI Y B, WANG G N, KE H F, CUI Q X, et al. Lysine 2- hydroxyisobutyrylation- and succinylation-based pathways act inside chloroplasts to modulate plant photosynthesis and immunity. Advanced Science, 2023, 10(27): e2301803.
|
[38] |
BATOOL T, MAKKY E A, JALAL M, YUSOFF M M. A comprehensive review on L-asparaginase and its applications. Applied Biochemistry and Biotechnology, 2016, 178(5): 900-923.
doi: 10.1007/s12010-015-1917-3
pmid: 26547852
|
[39] |
HWANG I S, AN S H, HWANG B K. Pepper asparagine synthetase 1 (CaAS1) is required for plant nitrogen assimilation and defense responses to microbial pathogens. The Plant Journal, 2011, 67(5): 749-762.
doi: 10.1111/j.1365-313X.2011.04622.x
pmid: 21535260
|
[40] |
SEIFI H S, DE VLEESSCHAUWER D, AZIZ A, HÖFTE M. Modulating plant primary amino acid metabolism as a necrotrophic virulence strategy. The immune-regulatory role of asparagine synthetasein Botrytis cinerea-tomato interaction. Plant Signaling & Behavior, 2014, 9(2): e27995.
|
[41] |
LIU C Y, TIAN S R, LV X, PU Y D, PENG H R, FAN G J, MA X Z, MA L S, SUN X C. Nicotiana benthamiana asparagine synthetase associates with IP-L and confers resistance against tobacco mosaic virus via the asparagine-induced salicylic acid signalling pathway. Molecular Plant Pathology, 2022, 23(1): 60-77.
|