Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (14): 2889-2900.doi: 10.3864/j.issn.0578-1752.2024.14.015

• ANIMAL SCIENCE·VETERINARY SCIENCE • Previous Articles    

Identification of Copy Number Variation and Its Association with Body Weight and Size of Lion-Head Geese by Next-Generation Sequencing

ZHANG LiYun1(), HUANG ZhiRong1, YANG Liu2, CHEN JunPeng3, LIN ZhenPing3, HUANG HongYan1, WU ZhongPing1, ZHANG XuMeng1, TIAN YunBo1, HUANG YunMao1(), LI XiuJin1()   

  1. 1 Animal Science & Technology,Zhongkai University of Agriculture and Engineering/Science & Technology Innovation Platform of Waterfowl Health Breeding in Guangdong, Guangzhou 510225
    2 Agricultural Genomics Institute at Shenzhen Chinese Academy of Agricultural Sciences, Shenzhen 518120, Guangdong
    3 Baisha Poultry and Livestock Origin Research Institute, Shantou 515821, Guangdong
  • Received:2023-08-29 Accepted:2024-06-07 Online:2024-07-16 Published:2024-07-24
  • Contact: HUANG YunMao, LI XiuJin

Abstract:

【Background】 Many previous studies have reported that copy number variation (CNV) is a kind of deletion or duplication with the length of 50 bp-5 Mb, which can affect the expression of genes. It is closely associated with economically important traits of livestock, which is one kind of promising molecular markers. Lion-head goose is one of the largest goose species in the world. It is originated in Raoping, Guangdong Province and is the raw material for Guangdong marinated geese. So far, there has no genome-wide association study on investigating the relationship between CNV and body weight and size in lion-head geese. 【Objective】 This study identified the CNV and CNV region (CNVR) of lion-head geese by using the second-generation genome sequencing data, and then detected CNV and candidate genes significantly affecting body weight and size through the association between them, which could provide the valuable reference information for molecular breeding of lion-head geese. 【Method】 A total of 111 lion-head geese were collected from Baisha Poultry and Livestock Origin Research Institute in Shantou, including 20 males and 91females. All geese were raised and managed under the uniform standards. The body weight and size traits of 111 geese were measured, and the body size traits included body oblique length, chest depth, chest width and so on. The next-generation genome sequencing data (5×) was generated using blood samples for these geese. SOAPnuke was used for the quality control of sequencing data.The BWA module of Speedseq was used for alignment, and the LUMPY and CNVnator modules of Speedseq were used to detect structural variations (SVs). CNV were selected from SV. The software SVtools was used to genotype CNV, and the association analysis between CNV and body weight and size traits was performed by using the single maker mixed model. CNV significantly associated with traits was screened through the chromosome significance level (0.05/number of CNV on the chromosome), and then annotated the significant CNV including their upstream and downstream 50 kb to identify candidate genes for the body weight and size of lion-head geese. The R package CNVrd2 was used to analyze the linkage disequilibrium (LD) of chromosome-significant CNV and chromosome-significant SNP with physical distance less than 1 Mb. 【Result】 For 111 lion-head geese, this study detected 99158 CNV including 94 560 deletions and 4 598 duplications. The average length of CNV was 11 858 bp, and most (74.06%) of them were located in the range of 50 bp-1 Kb. A total of 5 225 CNVR were detected, which contained 5 029 loss types, 110 gain types, and 86 mixed types. The average length of CNVR was 7 136 bp, and the lengths of most (81.03%) of the CNVRs were 50 bp-1 Kb. Functional annotation showed that 46.92% of CNVR were located in the inter gene region, 10.30% were located the upstream, and 9.35% were located the downstream. There were 6 217 CNV accurately genotyped for association analysis. By the association analysis of body weight and size traits and CNV, a total of 55 CNV exceeded the significance level of chromosomes, and then annotated 45 candidate genes based on these 55 CNV. Among these 45 candidate genes, it was found that 10 genes, such as SETD2, UBR7 and G2E3, simultaneously influenced two or more traits. Chromosome-significant CNV affected body weight and size traits independently of chromosome-significant SNP (r2<0.02). 【Conclusion】 This study for the first time reported the distribution of CNV and CNVR in the genome of lion-head geese as well as the association between CNV and body weight and size by using the next-generation genome sequencing data. It was found that a total of 45 candidate genes influencing the body weight and size traits, in which 11 genes were reported to be related to signal pathways of animal growth, among these 11 genes, SETD2, UBR7, ASB1 and HDAC4 were involved in muscle proliferation, differentiation and metabolism, G2E3, P3C2B, NOVA1 and PDE1B were involved in adipogenesis and obesity, ILKAP was involved in regulating growth factors, KIF1B was involved in bone metabolism, and ZFP37 was involved in glycogen metabolism. These results laid a solid foundation for analyzing molecular genetic mechanism and detecting molecular marker for the growth performance of lion-head goose.

Key words: lion-head goose, body weight and size traits, CNV, candidate gene

Table 1

Descriptive statistics of body weight and size"

测定指标
Trait
观测数(只)
Number
平均值
Mean
标准差
SD
最大值
Max
最小值
Min
变异系数
CV(%)
体重 Body weight (kg) 111 6.11 0.94 8.63 3.98 15.38
胸深Chest depth (cm) 111 11.74 0.54 13.46 10.64 4.63
胸宽Chest width (cm) 111 11.7 0.54 13.86 10.4 4.57
胫长Tibia length (cm) 111 10.27 0.41 11.39 9.21 3.99
体斜长Body oblique length (cm) 111 36.95 1.74 41.8 33.8 4.71
龙骨长Keel length (cm) 111 18.94 1.15 22.5 16.1 6.07
半潜水长Semi-diving length (cm) 111 63.79 3.85 73.9 59.8 6.04
胫围Tibia circumference (cm) 111 6.39 0.35 7.73 5.67 5.48
颈围Neck circumference (cm) 111 12.52 1.03 15.6 11.5 8.23
颈长Neck length (cm) 111 35.3 2.35 42.3 32.5 6.66

Table 2

Descriptive statistics of CNV and CNVR"

类型
Type
数量(个)
Number
平均长度(bp)
Average length
长度中位数(bp)
Median length
长度最小值(bp)
Min length
长度最大值(bp)
Max length
CNV 缺失Deletion 94560 8704 420 51 3588041
重复Duplication 4598 76734 3389 88 4871547
总体All 99158 11858 441 51 4871547
CNVR 缺失Deletion 5029 2015 265 51 3588041
重复Duplication 110 12595 384 88 644201
混合Mixed 86 299583 1614 153 6430879
总体All 5225 7136 277 51 6430879

Fig. 1

The distribution of CNV A: The quantity distribution of CNV across chromosomes; B: The quantity distribution of CNV across different length intervals"

Fig. 2

The descriptive statistics of CNVR A: The autosome location map for CNVR; B: The proportion of quantity different categories of CNVR; C: The quantity distribution of CNVR across different length intervals; D: The function annotation of CNVR"

Fig. 3

Genome-wide association studies between body weight and CNV A: The Manhattan plot for body weight and deletion/duplication CNV; B: The QQ plot for body weight and deletion CNV; C: The QQ plot for body weight and duplication CNV"

Table 3

Significant CNV related to traits"

性状
Trait
染色体
Chromosome
起始位点
Start
结束位点
End
长度
Length
类型
Type
-log10(P 相关基因
Related genes
体重
Body weight
5 55963996 55964083 87 缺失Deletion 5.02339 /
24 1950171 1950304 133 缺失Deletion 3.141067 Z385B
体斜长
Body oblique length
6 31426281 31426385 104 缺失Deletion 3.639657 DDX18
9 11618900 11619036 136 缺失Deletion 4.089755 ILKAP/KIF1B
22 1376313 1376455 142 缺失Deletion 3.331442 /
胸深
Chest depth
1 84857253 84865163 7910 缺失Deletion 4.517457 FV1/POL/RTJK
1 210370756 210372242 1486 重复Duplication 3.263032 ARHGH
2 160644096 160644154 58 缺失Deletion 4.443069 SETD2
4 15223434 15223523 89 缺失Deletion 4.153697 S4A4
10 6195488 6218381 22893 重复Duplication 1.653918 G2E3/ATRIP
13 1664315 1664903 588 缺失Deletion 3.539736 /
17 2574412 2574457 45 缺失Deletion 3.435763 RASL1/DTX1
29 103884 104329 445 缺失Deletion 3.703085 CCD81
胸宽
Chest width
2 160644096 160644154 58 缺失Deletion 4.350129 SETD2
10 6195488 6218381 22893 重复Duplication 1.723656 G2E3/ATRIP
17 2574412 2574457 45 缺失Deletion 3.542544 RASL1/DTX1
28 3222132 3222472 340 重复Duplication 3.257708 ZSCA2/ZFP37
半潜水
Semi-diving length
4 2157550 2157732 182 缺失Deletion 4.634255 /
4 8817672 8823590 5918 重复Duplication 2.308129 UNC5C
5 16355316 16355899 583 缺失Deletion 3.854071 UBR7
6 31818027 31818610 583 缺失Deletion 3.899274 /
7 5970465 5970944 479 缺失Deletion 5.360049 SAC2
21 217452 217543 91 缺失Deletion 3.38304 TRI62
25 3103542 3103852 310 缺失Deletion 5.069086 P3C2B
龙骨长
Keel length
3 55501233 55502372 1139 缺失Deletion 4.406552 /
5 16355316 16355899 583 缺失Deletion 4.230954 UBR7
7 5970465 5970944 479 缺失Deletion 5.829223 SAC2
23 704175 705047 872 缺失Deletion 3.383816 /
27 5248917 5249250 333 重复Duplication 2.710029 SNUT2/PSPB
29 1343087 1344453 1366 重复Duplication 3.203918 /
颈围
Neck circumference
5 42586859 42588820 1961 缺失Deletion 3.846584 NOVA1
6 10553749 11214369 660620 重复Duplication 1.826926 MIPT3/SH3B4/UBP40/Y1987/UD11/ASB1/
HDAC4
7 6788342 6788420 78 缺失Deletion 3.685163 /
22 6766873 6767052 179 缺失Deletion 3.107965 ETS1B
27 4307876 4308376 500 重复Duplication 5.511413 MAD1
29 11596987 11597562 575 重复Duplication 3.322661 PDE1B
颈长
Neck length
1 172772838 172773175 337 缺失Deletion 6.429338 /
2 137370413 137371244 831 缺失Deletion 4.648816 /
3 31975113 31975866 753 缺失Deletion 4.845833 RIMS1
3 66963985 66964154 169 缺失Deletion 5.058238 CNKR3
5 7767038 7767532 494 缺失Deletion 4.447119 C1TC
7 5970465 5970944 479 缺失Deletion 4.742051 SAC2
11 3014235 3014444 209 缺失Deletion 5.683303 UN13C
13 5144239 5144542 303 缺失Deletion 3.701915 /
27 5263207 5263333 126 缺失Deletion 3.504056 NPCL1
胫围
Tibia circumference
4 56511073 56513948 2875 重复Duplication 2.630038 /
23 4097467 4097922 455 缺失Deletion 3.768919 /
胫长
Tibia length
2 91195210 91196835 1625 缺失Deletion 5.487168 DESP
8 19010486 19028003 17517 重复Duplication 2.605107 RTJK/PO11
12 2163032 2163872 840 缺失Deletion 3.346685 /
12 9787236 9787501 265 缺失Deletion 3.333377 /
14 2803528 2803597 69 缺失Deletion 4.215348 /
26 3921754 3922149 395 重复Duplication 2.072884 MAST3
27 5478241 5478319 78 缺失Deletion 3.459357 RETST/ELMD3
28 3221975 3222472 497 重复Duplication 3.463797 ZSCA2/ZFP37
[1]
郭精奇. 饶平狮头鹅美誉传四方. 源流, 2022(8): 40-41.
GUO J Q. Raoping lion goose’s reputation spread everywhere. Origins, 2022(8): 40-41. (in Chinese)
[2]
FREEMAN J L, PERRY G H, FEUK L, REDON R, MCCARROLL S A, ALTSHULER D M, ABURATANI H, JONES K W, TYLER- SMITH C, HURLES M E, et al. Copy number variation: New insights in genome diversity. Genome Research, 2006, 16(8): 949-961.

pmid: 16809666
[3]
SEBAT J, LAKSHMI B, TROGE J, ALEXANDER J, YOUNG J, LUNDIN P, MÅNÉR S, MASSA H, WALKER M, CHI M, et al. Large-scale copy number polymorphism in the human genome. Science, 2004, 305(5683): 525-528.

doi: 10.1126/science.1098918 pmid: 15273396
[4]
党李苹, 周雯馨, 刘瑞芳, 白云, 王哲鹏.略阳乌鸡体重和产蛋数性状遗传参数估计. 中国农业科学, 2020, 53(17): 3620-3628.
DANG L P, ZHOU W X, LIU R F, BAI Y, WANG Z P. Estimation of genetic parameters of body weight and egg number traits of Lueyang black-boned chicken. Scientia Agricultura Sinica, 2020, 53(17): 3620-3628. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2020.17.018
[5]
黄勋和, 翁茁先, 李威娜, 王庆, 何丹林, 罗威, 张细权, 杜炳旺. 中国地方品种黄鸡线粒体DNA D-loop遗传多样性研究. 中国农业科学, 2022, 55(22): 4526-4538. doi: 10.3864/j.issn.0578-1752.2022.22.016.
HUANG X H, WENG Z X, LI W N, WANG Q, HE D L, LUO W, ZHANG X Q, DU B W, Genetic diversity of indigenous yellow- feathered chickens in Southern China inferred from mitochondrial DNA D-loop region. Scientia Agricultura Sinica, 2022, 55(22): 4526-4538. doi: 10.3864/j.issn.0578-1752.2022.22.016. (in Chinese)
[6]
HAN R L, YANG P K, TIAN Y D, WANG D D, ZHANG Z X, WANG L L, LI Z J, JIANG R R, KANG X T. Identification and functional characterization of copy number variations in diverse chicken breeds. BMC Genomics, 2014, 15(1): 934.
[7]
LIN S D, LIN X R, ZHANG Z H, JIANG M Y, RAO Y S, NIE Q H, ZHANG X Q. Copy number variation in SOX6 contributes to chicken muscle development. Genes, 2018, 9(1): 42.
[8]
BAI H, HE Y H, DING Y, CHU Q, LIAN L, HEIFETZ E M, YANG N, CHENG H H, ZHANG H M, CHEN J L, SONG J Z. Genome-wide characterization of copy number variations in the host genome in genetic resistance to Marek’s disease using next generation sequencing. BMC Genetics, 2020, 21(1): 77.
[9]
DE ALMEIDA SANTANA M H, JUNIOR G A O, CESAR A S M, FREUA M C, DA COSTA GOMES R, DA LUZ E SILVA S, LEME P R, FUKUMASU H, CARVALHO M E, VENTURA R V, et al. Copy number variations and genome-wide associations reveal putative genes and metabolic pathways involved with the feed conversion ratio in beef cattle. Journal of Applied Genetics, 2016, 57(4): 495-504.

pmid: 27001052
[10]
FERNANDES A C, DA SILVA V H, GOES C P, MOREIRA G C M, GODOY T F, IBELLI A M G, DE OLIVEIRA PEIXOTO J, CANTÃO M E, LEDUR M C, DE REZENDE F M, COUTINHO L L. Genome-wide detection of CNVs and their association with performance traits in broilers. BMC Genomics, 2021, 22: 354.

doi: 10.1186/s12864-021-07676-1 pmid: 34001004
[11]
CENDRON F, CASSANDRO M, PENASA M. Genome-wide investigation to assess copy number variants in the Italian local chicken population. Journal of Animal Science and Biotechnology, 2024, 15(1): 2.
[12]
YU S M, LIU Z H, LI M, ZHOU D K, HUA P, CHENG H, FAN W L, XU Y X, LIU D P, LIANG S Y, et al. Resequencing of a Pekin duck breeding population provides insights into the genomic response to short-term artificial selection. GigaScience, 2023, 12. doi.org/10.1093/gigascience/giad016.
[13]
ZHANG L H, LI H Y, TANG B H, ZHAO X Y, WU Y P, JIANG T, YAO Y Y, LI J H, YAO Y, WANG L. Genomic signatures reveal selection in Chinese and European domesticated geese. Animal Genetics, 2023, 54(6): 763-771.
[14]
中华人民共和国农业农村部. 家禽生产性能名词术语和度量计算方法: NY/T 823—2020[S]. 北京: 中国农业出版社, 2020.
Ministry of Agriculture and Rural Affairs of the People’s Republic of China. Terms and Measurement Calculation Methods of Poultry Production Performance: NY/T 823—2020[S]. Beijing: China Agriculture Press, 2020. (in Chinese)
[15]
CHEN Y X, CHEN Y S, SHI C M, HUANG Z B, ZHANG Y, LI S K, LI Y, YE J, YU C, LI Z, et al. SOAPnuke: a MapReduce acceleration- supported software for integrated quality control and preprocessing of high-throughput sequencing data. GigaScience, 2018, 7(1): 1-6.
[16]
CHIANG C, LAYER R M, FAUST G G, LINDBERG M R, ROSE D B, GARRISON E P, MARTH G T, QUINLAN A R, HALL I M. SpeedSeq: ultra-fast personal genome analysis and interpretation. Nature Methods, 2015, 12: 966-968.

doi: 10.1038/nmeth.3505 pmid: 26258291
[17]
NANDOLO W, MÉSZÁROS G, WURZINGER M, BANDA L J, GONDWE T N, MULINDWA H A, NAKIMBUGWE H N, CLARK E L, WOODWARD-GREENE M J, LIU M, et al. Detection of copy number variants in African goats using whole genome sequence data. BMC Genomics, 2021, 22(1): 398.
[18]
SUN T, PEI S W, LIU Y K, HANIF Q, XU H Y, CHEN N B, LEI C Z, YUE X P. Whole genome sequencing of Simmental cattle for SNP and CNV discovery. BMC Genomics, 2023, 24(1): 179.
[19]
ZHOU J H, LIU L Y, LOPDELL T J, GARRICK D J, SHI Y G. HandyCNV: standardized summary, annotation, comparison, and visualization of copy number variant, copy number variation region, and runs of homozygosity. Frontiers in Genetics, 2021, 12: 731355.
[20]
LADEIRA G C, PINEDO P J, SANTOS J E P, THATCHER W W, REZENDE F M. PSXII-1 CNV and cnvr detection from high-density SNP genotyping in Holstein cattle. Journal of Animal Science, 2022, 100(Suppl_3): 207.
[21]
GINESTET C. ggplot2: elegant graphics for data analysis. Journal of the Royal Statistical Society Series A: Statistics in Society, 2011, 174(1): 245-246.
[22]
CINGOLANI P. Variant annotation and functional prediction: SnpEff. Methods in Molecular Biology, 2022, 2493: 289-314.

doi: 10.1007/978-1-0716-2293-3_19 pmid: 35751823
[23]
LARSON D E, ABEL H J, CHIANG C, BADVE A, DAS I, ELDRED J M, LAYER R M, HALL I M. Svtools: population-scale analysis of structural variation. Bioinformatics, 2019, 35(22): 4782-4787.

doi: 10.1093/bioinformatics/btz492 pmid: 31218349
[24]
YANG L, NIU Q H, ZHANG T L, ZHAO G Y, ZHU B, CHEN Y, ZHANG L P, GAO X, GAO H J, LIU G E, LI J Y, XU L Y. Genomic sequencing analysis reveals copy number variations and their associations with economically important traits in beef cattle. Genomics, 2021, 113(1): 812-820.
[25]
ZOUBAREV A, HAMER K M, KESHAV K D, MCCARTHY E L, SANTOS J R C, VAN ROSSUM T, MCDONALD C, HALL A, WAN X, LIM R, et al. Gemma: a resource for the reuse, sharing and meta-analysis of expression profiling data. Bioinformatics, 2012, 28(17): 2272-2273.

doi: 10.1093/bioinformatics/bts430 pmid: 22782548
[26]
QUINLAN A R, HALL I M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics, 2010, 26(6): 841-842.

doi: 10.1093/bioinformatics/btq033 pmid: 20110278
[27]
NGUYEN H T, MERRIMAN T R, BLACK M A. The CNVrd2 package: measurement of copy number at complex loci using high-throughput sequencing data. Frontiers in Genetics, 2014, 5: 248.

doi: 10.3389/fgene.2014.00248 pmid: 25136349
[28]
DA SILVA V H. Genome-wide association of copy number variation with egg-laying date in a wild songbird[D]. Wageningen: Wageningen University, 2020.
[29]
HOU Y L, LIU G E, BICKHART D M, CARDONE M F, WANG K, KIM E S, MATUKUMALLI L K, VENTURA M, SONG J Z, VANRADEN P M, et al. Genomic characteristics of cattle copy number variations. BMC Genomics, 2011, 12(1): 127.
[30]
DING R R, ZHUANG Z W, QIU Y B, WANG X W, WU J, ZHOU S P, RUAN D L, XU C N, HONG L J, GU T, et al. A composite strategy of genome-wide association study and copy number variation analysis for carcass traits in a Duroc pig population. BMC Genomics, 2022, 23(1): 590.
[31]
YANG L, XU L Y, ZHOU Y, LIU M, WANG L, KIJAS J W, ZHANG H P, LI L, LIU G E. Diversity of copy number variation in a worldwide population of sheep. Genomics, 2018, 110(3): 143-148.

doi: S0888-7543(17)30082-4 pmid: 28917637
[32]
RAO Y S, LI J, ZHANG R, LIN X R, XU J G, XIE L, XU Z Q, WANG L, GAN J K, XIE X J, et al. Copy number variation identification and analysis of the chicken genome using a 60K SNP BeadChip. Poultry Science, 2016, 95(8): 1750-1756.

doi: 10.3382/ps/pew136 pmid: 27118864
[33]
YI G Q, QU L J, LIU J F, YAN Y Y, XU G Y, YANG N. Genome-wide patterns of copy number variation in the diversified chicken genomes using next-generation sequencing. BMC Genomics, 2014, 15(1): 962.
[34]
GORLA E, COZZI M C, PONCE S I R, RUIZ LÓPEZ F J, VEGA MURILLO V E, CEROLINI S, BAGNATO A, STRILLACCI M G. Genomic variability in Mexican chicken population using Copy Number Variation. International Journal of Health, Animal Science and Food Safety, 2017, 4(1s). doi.org/10.13130/2283-3927/8414.
[35]
WANG X F, NAHASHON S, FEASTER T K, BOHANNON- STEWART A, ADEFOPE N. An initial map of chromosomal segmental copy number variations in the chicken. BMC Genomics, 2010, 11(1): 351.
[36]
林燕, 黄敏, 李秀金, 张续勐, 黄运茂, 田允波, 伍仲平. 利用全基因组重测序数据检测8个鸭品种基因组拷贝数变异. 畜牧兽医学报, 2023: 1-12.
LIN Y, HUANG M, LI X J, ZHANG X M, HUANG Y M, TIAN Y B, WU Z P. Uncovering genome-wide copy number variations in 8 duck breeds using whole genome resequencing data. Acta Veterinaria et Zootechnica Sinica, 2023: 1-12. (in Chinese)
[37]
XU Y X, HU J, FAN W L, LIU H H, ZHANG Y S, GUO Z B, HUANG W, LIU X L, HOU S S. Genome-wide association analysis reveals 6 copy number variations associated with the number of cervical vertebrae in Pekin ducks. Frontiers in Cell and Developmental Biology, 2022, 10: 1041088.
[38]
YI X, TAO Y, LIN X, DAI Y, YANG T L, YUE X J, JIANG X J, LI X Y, JIANG D S, ANDRADE K C, CHANG J. Histone methyltransferase Setd2 is critical for the proliferation and differentiation of myoblasts. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 2017, 1864(4): 697-707.
[39]
HUGHES D, BAEHR L, SHARPLES A, WADDELL D, BODINE S. The effect of Akt-induced skeletal muscle hypertrophy on the UBR family of E3 ubiquitin ligases. Physiology, 2023, 38(S1): 5730427.
[40]
PEZESHKIAN Z, MIRHOSEINI S Z, GHOVVATI S. Identification of hub genes involved in apparent metabolizable energy of chickens. Animal Biotechnology, 2022, 33(2): 242-249.
[41]
MCGEE S L, HARGREAVES M. Histone modifications and skeletal muscle metabolic gene expression. Clinical and Experimental Pharmacology and Physiology, 2010, 37(3): 392-396.

doi: 10.1111/j.1440-1681.2009.05311.x pmid: 19793100
[42]
李恒, 字向东, 王会, 熊燕, 吕明杰, 刘宇, 蒋旭东. 基于全基因组重测序的山羊产羔数性状关键调控基因的筛选. 中国农业科学, 2022, 55(23): 4753-4768. doi: 10.3864/j.issn.0578-1752.2022.23.015.
LI H, ZI X D, WANG H, XIONG Y, M J, LIU Y, JIANG X D. Screening of key regulatory genes for litter size trait based on whole genome re-sequencing in goats(Capra hircus). Scientia Agricultura Sinica, 2022, 55(23): 4753-4768. doi: 10.3864/j.issn.0578-1752.2022.23.015. (in Chinese)
[43]
POWELL D R, DOREE D D, DACOSTA C M, PLATT K A, HANSEN G M, VAN SLIGTENHORST I, DING Z M, REVELLI J P, BROMMAGE R. Obesity of G2e3 knockout mice suggests that obesity-associated variants near human G2E3 decrease G2E3 activity. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 2020, 13: 2641-2652.
[44]
RASHEED S, YAN J S, LAU A, CHAN A S. HIV replication enhances production of free fatty acids, low density lipoproteins and many key proteins involved in lipid metabolism: a proteomics study. PLoS ONE, 2008, 3(8): e3003.
[45]
YANG Z G, DONG P, CAO J K, LIN N, MA S Z, CAO R, CAI L, WANG L, CAO C C, XUE Y C, PAN J, LI X, WANG K, LIU Q W, LI C, GONG F X, FU X, XIAO R. NOVA1 prevents overactivation of the unfolded protein response and facilitates chromatin access during human white adipogenesis. Nucleic Acids Research, 2023, 51(13): 6981-6998.
[46]
PAN D N, MAO C X, QUATTROCHI B, FRIEDLINE R H, ZHU L J, JUNG D Y, KIM J K, LEWIS B, WANG Y X. MicroRNA-378 controls classical brown fat expansion to counteract obesity. Nature Communications, 2014, 5: 4725.

doi: 10.1038/ncomms5725 pmid: 25145289
[47]
LEUNG-HAGESTEIJN C. Modulation of integrin signal transduction by ILKAP, a protein phosphatase 2C associating with the integrin- linked kinase, ILK1. The EMBO Journal, 2001, 20(9): 2160-2170.
[48]
CHRISTOU M A, NTZANI E E, KARASIK D. Genetic pleiotropy of bone-related phenotypes: insights from osteoporosis. Current Osteoporosis Reports, 2020, 18(5): 606-619.
[49]
LI C Y, WANG J P, SONG K, MENG J, XU F, LI L, ZHANG G F. Construction of a high-density genetic map and fine QTL mapping for growth and nutritional traits of Crassostrea gigas. BMC Genomics, 2018, 19(1): 626.
[50]
WU Y Y, LIU F, WAN R H, JIAO B Q. A novel SETD2 variant causing global development delay without overgrowth in a Chinese 3-year-old boy. Frontiers in Genetics, 2023, 14: 1153284.
[51]
VALIENTE A, LAFUENTE A, BERNARDO M. Systematic review of the Genomewide Association Studies (GWAS) in schizophrenia. Revista De Psiquiatría y Salud Mental (English Edition), 2011, 4(4): 218-227.
[52]
ZAIN S M, MOHAMED R, COOPER D N, RAZALI R, RAMPAL S, MAHADEVA S, CHAN W K, ANWAR A, ROSLI N S M, MAHFUDZ A S, et al. Genome-wide analysis of copy number variation identifies candidate gene loci associated with the progression of non-alcoholic fatty liver disease. PLoS ONE, 2014, 9(4): e95604.
[1] ZHANG Ying, SHI TingRui, CAO Rui, PAN WenQiu, SONG WeiNing, WANG Li, NIE XiaoJun. Genome-Wide Association Study of Drought Tolerance at Seedling Stage in ICARDA-Introduced Wheat [J]. Scientia Agricultura Sinica, 2024, 57(9): 1658-1673.
[2] XU Na, TANG Ying, XU ZhengJin, SUN Jian, XU Quan. Genetic Analysis and Candidate Gene Identification on Fertility and Inheritance of Hybrid Sterility of XI and GJ Cross [J]. Scientia Agricultura Sinica, 2024, 57(8): 1417-1429.
[3] ZHANG BiDong, LIN Hong, ZHU SiYing, LI ZhongCheng, ZHUANG Hui, LI YunFeng. Identification and Candidate Gene Analysis of the ABNORMAL HULL 1 (ah1) Mutant in Rice (Oryza sativa L.) [J]. Scientia Agricultura Sinica, 2024, 57(3): 429-441.
[4] HAN XuDong, YANG ChuanQi, ZHANG Qing, LI YaWei, YANG XiaXia, HE JiaTian, XUE JiQuan, ZHANG XingHua, XU ShuTu, LIU JianChao. QTL Mapping and Candidate Gene Screening for Nitrogen Use Efficiency in Maize [J]. Scientia Agricultura Sinica, 2024, 57(21): 4175-4191.
[5] MA JingE, XIONG XinWei, ZHOU Min, WU SiQi, HAN Tian, RAO YouSheng, WANG ZhangFeng, XU JiGuo. Full-Length Transcriptomic Analysis of Chicken Pituitary Reveals Candidate Genes for Testicular Trait [J]. Scientia Agricultura Sinica, 2024, 57(20): 4130-4144.
[6] SHANG Hang, CHENG YuKun, REN Yi, GENG HongWei. Genome-Wide Association Analysis of Starch Gelatinization Traits in Winter Wheat [J]. Scientia Agricultura Sinica, 2024, 57(18): 3507-3521.
[7] LIU DeLong, LI ShiRu, WANG ChuanXing, GUO ShuQing, MA ZhiXiu, WU YongJiang, HAN HuiBing, LI YuJie, ZHANG PanPan, YANG Pu. Phenotypical Variation and Dynamic QTL Mapping of Plant Height in Foxtail Millet at Different Developmental Stages [J]. Scientia Agricultura Sinica, 2024, 57(18): 3533-3550.
[8] BAI BingNan, QIAO Dan, GE Qun, LUAN YuJuan, LIU XiaoFang, LU QuanWei, NIU Hao, GONG JuWu, GONG WanKui, ELAMEER ELSAMMAN, YAN HaoLiang, LI JunWen, LIU AiYing, SHI YuZhen, WANG HaiZe, YUAN YouLu. QTN Mining and Candidate Gene Screening of Upland Cotton (Gossypium hirsutum L.) Seed-Related Traits [J]. Scientia Agricultura Sinica, 2024, 57(15): 2901-2913.
[9] MIAO Long, SHU Kuo, HU YanJiao, HUANG Ru, HE GenHua, ZHANG WenMing, WANG XiaoBo, QIU LiJuan. Identification and Gene Mapping of Hard Seededness Mutant Mzp661 in Soybean [J]. Scientia Agricultura Sinica, 2024, 57(11): 2065-2078.
[10] ZHANG YuMei, DING WenTao, LAN XinLong, LI QingHua, HU RunFang, GUO Na, LIN GuoQiang, ZHAO JinMing. Genome Wide Association Analysis of Soluble Sugar Content in Fresh Seeds of Soybean Landraces [J]. Scientia Agricultura Sinica, 2024, 57(11): 2079-2091.
[11] LI ShengYou, WANG ChangLing, YAN ChunJuan, ZHANG LiJun, SUN XuGang, CAO YongQiang, WANG WenBin, SONG ShuHong. Evaluation of Drought Resistance in Soybean Germplasm and Identification of Candidate Drought-Resistant Genes [J]. Scientia Agricultura Sinica, 2024, 57(10): 1857-1869.
[12] WANG HuiLing, YAN AiLing, WANG XiaoYue, LIU ZhenHua, REN JianCheng, XU HaiYing, SUN Lei. Genome-Wide Association Studies for Grape Berry Weight Related Traits [J]. Scientia Agricultura Sinica, 2023, 56(8): 1561-1573.
[13] WANG Mai, DONG QingFeng, GAO ShenAo, LIU DeZheng, LU Shan, QIAO PengFang, CHEN Liang, HU YinGang. Genome-Wide Association Studies and Mining for Favorable Loci of Root Traits at Seedling Stage in Wheat [J]. Scientia Agricultura Sinica, 2023, 56(5): 801-820.
[14] JIA XiaoYun, WANG ShiJie, ZHU JiJie, ZHAO HongXia, LI Miao, WANG GuoYin. Construction of A High-Density Genetic Map and QTL Mapping for Yield Related Traits in Upland Cotton [J]. Scientia Agricultura Sinica, 2023, 56(4): 587-598.
[15] ZENG Jian, WANG RuMeng, GONG Pan, YANG Xiao, YIN XiaoQi, LI JiangHe, CHEN ShiLong, YAO Lei, SONG HaiXing, KANG Lei, ZHANG ZhenHua. Genome-Wide Association Study of Nitrogen Efficiency Related Traits at Seedling Stage in Brassica juncea [J]. Scientia Agricultura Sinica, 2023, 56(20): 3946-3959.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!