Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (11): 2079-2091.doi: 10.3864/j.issn.0578-1752.2024.11.003

• SPECIAL FOCUS: SOYBEAN DISEASE RESISTANCE, YIELD AND QUALITY CORRELATION • Previous Articles     Next Articles

Genome Wide Association Analysis of Soluble Sugar Content in Fresh Seeds of Soybean Landraces

ZHANG YuMei1(), DING WenTao2,3(), LAN XinLong1, LI QingHua4, HU RunFang1, GUO Na2,3, LIN GuoQiang1(), ZHAO JinMing2,3()   

  1. 1 Crop Research Institute, Fujian Academy of Agricultural Sciences/Engineering Research Center for Characteristic Dry Crop Varieties Breeding/Fujian Key Laboratory of Vegetable Genetics and Breeding, Fuzhou 350013
    2 Zhongshan Biological Breeding Laboratory (ZSBBL), Nanjing 210014
    3 College of Agriculture, Nanjing Agricultural University/National Innovation Platform for Soybean Breeding and Industry-Education Integration/Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture and Rural Affairs/National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing 210095
    4 Putian Agricultural Sciences Research Institute, Putian 351106, Fujian
  • Received:2022-11-28 Accepted:2023-01-03 Online:2024-06-01 Published:2024-06-07
  • Contact: LIN GuoQiang, ZHAO JinMing

Abstract:

【Objective】Soluble sugar content is one of the important quality traits of vegetable soybean. The genetic variation and genetic mechanism of soluble sugar content in fresh soybean seeds were studied to provide a basis for germplasm innovation and quality breeding of vegetable soybean.【Method】Using 133 soybean landraces from the Northeast region, the North region, the Huanghuaihai region and the South region, the soluble sugar content of fresh seeds was determined in the three environments of Lianjiang in spring, Fuqing in spring and autumn, in 2021. In combination with 82 187 high-quality SNP markers, the whole genome association analysis of soluble sugar content was conducted based on the mixed linear model MLM (Q+K), and the SNP loci with significantly related to soluble sugar content were identified. The candidate intervals were selected by the significant SNP loci and the extension of 119.07 kb linkage disequilibrium decay distance at both ends. The candidate genes were predicted according to the annotation and tissue expression information of the genes in the candidate intervals.【Result】The variation range of soluble sugar content in fresh seeds under three environments was 3.37-33.84 mg·g-1, the genetic variation coefficient was 24.59%-32.69%, and the heritability of soluble sugar content was 68.14%. 6, 8 and 22 SNPs were significantly associated with the soluble sugar content of fresh seeds were detected in Lianjiang in spring, Fuqing in spring and autumn, respectively, and phenotypic variation was 12.43%-29.27%. A total of 86 genes were obtained in the candidate regions of 9 significant SNP loci with higher interpretation rate of phenotypic variation, and 9 candidate genes were further screened by gene annotation and tissue expression information. These candidate genes are mainly involved in biological processes such as transcription factors, glycoprotein families and carbohydrate synthesis and transport. Among them, Glyma.01g016500, Glyma.13g042100, Glyma.16g131800 and Glyma.16g155300 were more highly expressed in soybean seeds and pods, which can be used as the most potential candidate genes for soluble sugar in fresh soybean seeds.【Conclusion】Through genome-wide association analysis, 36 SNPs significantly associated with soluble sugar content in fresh seeds were detected, and 9 candidate genes were further screened out, which may be involved in the regulation of soluble sugar content in fresh soybean seeds. Among them, Glyma.01g016500, Glyma.13g042100, Glyma.16g131800 and Glyma.16g155300 can be the key candidate genes for regulating soluble sugar content in fresh soybean seeds.

Key words: soybean, fresh seeds, soluble sugar contents, genome wide association analysis, candidate genes

Table 1

Descriptive statistic, ANOVOA and heritability (h2) of soluble sugar content in fresh seeds of soybean landraces"

环境
Environments
均值
Mean
(mg·g-1)
标准差
SD
(mg·g-1)
最小值
Min.
(mg·g-1)
最大值
Max.
(mg·g-1)
变异系数
CV
(%)
显著性Significance 遗传率
h2
(%)
FG FE FG×E
2021CLJ 8.73 2.850 3.37 19.05 32.69 3.01** 4.38** 7.20** 68.14
2021CFQ 10.74 2.641 5.68 18.79 24.59
2021QFQ 11.19 3.431 4.22 33.84 30.66
平均Mean 10.31 2.161 6.03 22.10 20.96

Fig.1

The frequency distribution and boxplot of basic statistics of soluble sugar content in soybean landraces fresh seeds 2021CLJ: Lianjiang in Spring 2021; 2021CFQ: Fuqing in Spring 2021; 2021QFQ: Fuqing in Autumn 2021. The same as below"

Fig. 2

Manhattan plots and Q-Q plots of GWAS for soluble sugar content in soybean landraces fresh seeds"

Table 2

Significantly associated SNPs of soluble sugar content in soybean landraces fresh seeds"

环境
Environments
标记
Markers
染色体
Chromosome
物理位置
Position (bp)
等位变异
Allelic
显著性
-log10(P)
表型变异解释率
R2 (%)
2021CLJ AX-90503091 1 51857659 G/A 3.53 14.28
AX-90375080 6 4456132 A/G 3.72 15.15
AX-90439820 14 7015035 C/T 3.59 14.64
AX-90326993 16 28742781 T/C 3.66 14.68
AX-90345551 16 28826370 C/T 3.86 15.72
AX-90366289 16 32782857 T/G 3.69 14.92
2021CFQ AX-90498034 3 38220637 G/A 3.71 14.08
AX-90388849 3 38318720 C/A 3.85 14.75
AX-90399131 6 41556768 G/A 3.99 15.32
AX-90305393 6 41636432 T/C 3.65 13.81
AX-90414763 6 41661485 T/C 3.90 15.08
AX-90521281 6 41672853 G/T 3.90 15.08
AX-90430712 6 41739316 G/A 3.56 13.43
AX-90491158 18 833161 A/C 3.79 14.36
2021QFQ AX-90523492 1 1643221 T/C 4.13 19.65
AX-90471910 2 15509622 T/G 3.73 14.71
AX-90463831 5 37457082 G/A 4.33 16.52
AX-90337094 8 18928439 C/G 3.87 13.99
AX-90515230 8 18936718 C/T 4.04 16.18
AX-90318719 8 27518867 T/G 3.52 12.43
AX-90511533 8 34944396 C/T 3.70 13.72
AX-90474383 9 6551732 T/G 3.58 13.30
AX-90385515 9 6624803 A/C 3.51 13.64
AX-90358417 9 6771694 T/A 3.81 13.83
AX-90308466 9 6801826 C/T 3.58 13.28
AX-90423241 9 6931879 T/C 3.57 12.90
AX-90343217 9 6940434 C/T 3.71 13.46
AX-90409115 9 6969624 T/C 3.73 13.94
AX-90407481 10 3759843 G/A 3.82 14.71
AX-90467097 10 41183218 C/T 3.69 14.45
AX-90376167 11 32722314 A/G 3.54 12.78
AX-90350462 13 13577053 A/G 4.35 16.45
AX-90317931 13 18042528 T/G 3.89 13.17
AX-90364912 15 5490816 C/T 3.91 16.89
AX-90351400 16 31631250 C/T 6.81 29.27
AX-90304999 18 46549803 G/A 3.69 13.49

Table 3

Gene information associated with significant markers"

标记
Marker
物理位置
Position (bp)
染色体
Chromosome
等位变异
Allelic
关联基因
Associated gene
位置与变异
Region and variant
AX-90523492 1643221 1 T>C Glyma.01g015600 基因下游Downstream
Glyma.01g015800 基因下游Downstream
Glyma.01g015900 基因下游Downstream
Glyma.01g016100 基因下游Downstream
Glyma.01g016500 基因下游Downstream
Glyma.01g016800 基因下游Downstream
Glyma.01g016900 基因下游Downstream
Glyma.01g017000 基因下游Downstream
Glyma.01g017200 外显子,同义突变Exon, synonymous
Glyma.01g017300 基因上游Upstream
Glyma.01g017400 基因上游Upstream
Glyma.01g018300 基因上游Upstream
AX-90375080 4456132 6 A>G Glyma.06g057700 基因下游Downstream
Glyma.06g058000 基因下游Downstream
Glyma.06g058100 基因下游Downstream
Glyma.06g058500 基因下游Downstream
Glyma.06g058600 基因下游Downstream
Glyma.06g059000 内含子突变Intron variant
Glyma.06g059500 基因上游Upstream
Glyma.06g059700 基因上游Upstream
Glyma.06g060200 基因上游Upstream
Glyma.06g060300 基因上游Upstream
AX-90399131 41556768 6 G>A Glyma.06g245400 基因下游Downstream
AX-90414763 90414763 6 T>C Glyma.06g245500 基因下游Downstream
AX-90521281 90521281 6 G>T Glyma.06g245600 基因下游Downstream
Glyma.06g245700 基因下游Downstream
Glyma.06g245800 基因下游Downstream
Glyma.06g245900 基因下游Downstream
Glyma.06g246000 基因下游Downstream
Glyma.06g246100 上游基因突变Upstream gene variant
Glyma.06g246200 基因上游Upstream
Glyma.06g246300 基因上游Upstream
Glyma.06g246400 基因上游Upstream
Glyma.06g246500 基因上游Upstream
Glyma.06g246600 外显子,非同义突变Exon, nonsynonymous
Glyma.06g246800 外显子,同义突变Exon, synonymous
Glyma.06g246900 基因上游Upstream
Glyma.06g247100 基因上游Upstream
Glyma.06g247200 基因上游Upstream
Glyma.06g247300 基因上游Upstream
Glyma.06g247600 基因上游Upstream
AX-90515230 18936718 8 C>T Glyma.08g230100 基因下游Downstream
Glyma.08g230600 基因下游Downstream
Glyma.08g230800 基因下游Downstream
Glyma.08g230900 基因下游Downstream
Glyma.08g231000 内含子突变Intron variant
Glyma.08g231400 基因上游Upstream
Glyma.08g231500 基因上游Upstream
Glyma.08g231600 基因上游Upstream
Glyma.08g231800 基因上游Upstream
AX-90350462 13577053 13 A>G Glyma.13g042100 基因下游Downstream
Glyma.13g042200 基因下游Downstream
Glyma.13g042300 基因下游Downstream
Glyma.13g042600 外显子,同义突变Exon synonymous
Glyma.13g042700 基因上游Upstream
Glyma.13g042800 基因上游Upstream
Glyma.13g042900 基因上游Upstream
Glyma.13g043000 基因上游Upstream
Glyma.13g043500 基因上游Upstream
Glyma.13g043600 基因上游Upstream
AX-90345551 28826370 16 C>T Glyma.16g131800 基因下游Downstream
Glyma.16g131900 基因下游Downstream
Glyma.16g132000 基因下游Downstream
Glyma.16g132100 基因间变异Intergenic region
Glyma.16g132200 基因间变异Intergenic region
Glyma.16g132500 基因上游Upstream
Glyma.16g132600 基因上游Upstream
Glyma.16g132700 基因上游Upstream
Glyma.16g132800 基因上游Upstream
AX-90351400 31631250 16 C>T Glyma.16g155100 基因下游Downstream
Glyma.16g155200 基因下游Downstream
Glyma.16g155300 基因下游Downstream
Glyma.16g155400 基因下游Downstream
Glyma.16g155500 基因下游Downstream
Glyma.16g155600 基因下游Downstream
Glyma.16g155700 基因下游Downstream
Glyma.16g155800 基因下游Downstream
Glyma.16g156100 外显子,非同义突变Exon, nonsynonymous
Glyma.16g156200 基因上游Upstream
Glyma.16g156300 基因上游Upstream
Glyma.16g156400 基因上游Upstream
Glyma.16g156500 基因上游Upstream
Glyma.16g156600 基因上游Upstream
Glyma.16g156700 基因上游Upstream
Glyma.16g156800 基因上游Upstream
Glyma.16g157100 基因上游Upstream

Table 4

Function annotation for candidate genes of soluble sugar content in soybean landraces fresh seeds"

候选基因
Candidate genes
同源基因
Homologous gene
功能注释
Function annotation
Glyma.01g016100 AT1G05670.1 PPR超家族蛋白PPR superfamily protein
Glyma.01g016500 AT4G25960.1 P-糖蛋白2 P-glycoprotein 2
Glyma.06g058600 AT5G21280.1 富含羟脯氨酸的糖蛋白Glycoprotein rich in hydroxyproline
Glyma.08g231800 AT1G30320.1 Remorin家族蛋白Remorin family protein
Glyma.13g042100 AT5G53140.1 蛋白磷酸酶2C家族蛋白Protein phosphatase 2C family proteins
Glyma.16g131800 AT4G36360.1 β-半乳糖苷酶3 β-galactosidase 3
Glyma.16g155300 AT3G60530.1 GATA转录因子GATA transcription factors
Glyma.16g156800 AT1G22710.1 蔗糖质子转运体2 Sucrose proton transporter 2
Glyma.16g157100 AT1G71880.1 蔗糖质子转运体1 Sucrose proton transporter 1

Fig. 3

Tissue expression heat map of candidate genes for soluble sugar content in fresh seeds of soybean landraces"

[1]
黄美. 我国大豆地方品种群体籽粒可溶性糖含量的遗传变异和QTL关联定位研究[D]. 南京: 南京农业大学, 2012.
HUANG M. Genetic variability and QTL association mapping of seed soluble sugar content in Chinese landrace populations soybean[D]. Nanjing: Nanjing Agricultural University, 2012. (in Chinese)
[2]
王一璞, 武国瑞, 杨万明, 杜维俊, 赵晋忠, 岳爱琴, 张永坡, 高春艳, 王敏. 不同类型大豆籽粒可溶性糖组分含量比较. 山西农业科学, 2020, 48(5): 700-703, 726.
WANG Y P, WU G R, YANG W M, DU W J, ZHAO J Z, YUE A Q, ZHANG Y P, GAO C Y, WANG M. Comparison of soluble sugar components content in different types of soybean seeds. Journal of Shanxi Agricultural Sciences, 2020, 48(5): 700-703, 726. (in Chinese)
[3]
张玉梅, 胡润芳, 林国强. 菜用大豆品质性状研究进展. 大豆科学, 2013, 32(5): 698-702.
ZHANG Y M, HU R F, LIN G Q. Research advance on quality traits of vegetable soybean. Soybean Science, 2013, 32(5): 698-702. (in Chinese)
[4]
HU R F, ZHANG Y M, CHEN Y H, LIN G Q. Dynamic metabolic profiling in vegetable soybean seed development. Emirates Journal of Food and Agriculture, 2018, 30(2): 90-98.
[5]
HOU A, CHEN P, ALLOATTI J, LI D, MOZZONI L, ZHANG B, SHI A. Genetic variability of seed sugar content in worldwide soybean germplasm collections. Crop Science, 2009, 49(3): 903-912.
[6]
张秋英, 李彦生, 刘长锴, 田博文, 涂冰洁, 毛健伟. 菜用大豆食用品质关键组分及其积累动态研究. 作物学报, 2015, 41(11): 1692-1700.

doi: 10.3724/SP.J.1006.2015.01692
ZHANG Q Y, LI Y S, LIU C K, TIAN B W, TU B J, MAO J W. Key components of eating quality and their dynamic accumulation in vegetable soybean varieties [Glycine max (L.) Merr.]. Acta Agronomica Sinica, 2015, 41(11): 1692-1700. (in Chinese)
[7]
KUMAR V, RANI A, GOYAL L, PRATAP D, BILLORE S D, CHAUHAN G S. Evaluation of vegetable-type soybean for sucrose, taste-related amino acids, and isoflavones contents. International Journal of Food Properties, 2011, 14(5): 1142-1151.
[8]
SHANMUGASUNDARAM S, CHENG S T, HUANG M T. Quality requirement and improvement of vegetable soybean. Vegetable Soybean: Research Needs for Production and Quality Improvement. 1991: 30-42.
[9]
王丹英, 汪自强, 方勇, 徐律平. 菜用大豆食味品质及其与内含物关系研究. 金华职业技术学院学报, 2002, 2(3): 15-17, 61.
WANG D Y, WANG Z Q, FANG Y, XU J P. Studies on the relationship between vegetable soybean eating quality and its components. Journal of Jinhua College of Profession and Technology, 2002, 2(3): 15-17, 61. (in Chinese)
[10]
WANG Y Q, CHEN P Y, ZHANG B. Quantitative trait loci analysis of soluble sugar contents in soybean. Plant Breeding, 2014, 133(4): 493-498.
[11]
MEBRAHTU T, MOHAMED A. Genetic variation for green pod yield and quality among vegetable soybean genotypes. Journal of Crop Improvement, 2006, 16(1/2): 113-130.
[12]
FLINT-GARCIA S A, THORNSBERRY J M, BUCKLER E S. Structure of linkage disequilibrium in plants. Annual Review of Plant Biology, 2003, 54: 357-374.
[13]
KLOTH K J, THOEN M P M, BOUWMEESTER H J, JONGSMA M A, DICKE M. Association mapping of plant resistance to insects. Trends in Plant Science, 2012, 17(5): 311-319.

doi: 10.1016/j.tplants.2012.01.002 pmid: 22322003
[14]
ZHANG P, ZHONG KZ, SHAHID M Q, TONG H H. Association analysis in rice: From application to utilization. Frontiers in Plant Science, 2016, 7: 1202.

doi: 10.3389/fpls.2016.01202 pmid: 27582745
[15]
TAKAGI H, ABE A, YOSHIDA K, KOSUGI S, NATSUME S, MITSUOKA C, UEMURA A, UTSUSHI H, TAMIRU M, TAKUNO S, INNAN H, CANO L M, KAMOUN S, TERAUCHI R. QTL-seq: Rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. The Plant Journal, 2013, 74(1): 174-183.

doi: 10.1111/tpj.12105 pmid: 23289725
[16]
WANG Q, TANG J, HAN B, HUANG X H. Advances in genome- wide association studies of complex traits in rice. Theoretical and Applied Genetics, 2020, 133(5): 1415-1425.
[17]
SCHMUTZ J, CANNON S B, SCHLUETER J, MA J X, MITROS T, NELSON W, HYTEN D L, SONG Q J, THELEN J J, CHENG J L, XU D, HELLSTEN U, MAY G D, YU Y, SAKURAI T, UMEZAWA T, BHATTACHARYYA M K, SANDHU D, VALLIYODAN B, LINDQUIST E, PETO M, GRANT D, SHU S Q, GOODSTEIN D, BARRY K, FUTRELL-GRIGGS M, ABERNATHY B, DU J C, TIAN Z X, ZHU L C, GILL N, JOSHI T, LIBAULT M, SETHURAMAN A, ZHANG X C, SHINOZAKI K, NGUYEN H T, WING R A, CREGAN P, SPECHT J, GRIMWOOD J, ROKHSAR D, STACEY G, SHOEMAKER R C, JACKSON S A. Genome sequence of the palaeopolyploid soybean. Nature, 2010, 463(7278): 178-183.
[18]
ZHOU Z K, JIANG Y, WANG Z, GOU Z H, LYU J, LI W Y, YU Y J, SHU L P, ZHAO Y J, MA Y M, FANG C, SHEN Y T, LIU T F, LI C C, LI Q, WU M, WANG M, WU Y S, DONG Y, WAN W T, WANG X, DING Z L, GAO Y D, XIANG H, ZHU B G, LEE S H, WANG W, TIAN Z X. Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean. Nature Biotechnology, 2015, 33(4): 408-414.

doi: 10.1038/nbt.3096 pmid: 25643055
[19]
LEE J S, KIM S M, KANG S. Fine mapping of quantitative trait loci for sucrose and oligosaccharide contents in soybean [Glycine max (L.) Merr.] using 180K Axiom® SoyaSNP genotyping platform. Euphytica, 2016, 208(1): 195-203.
[20]
邱丽娟, 李英慧, 关荣霞, 刘章雄, 王丽侠, 常汝镇. 大豆核心种质和微核心种质的构建、验证与研究进展. 作物学报, 2009, 35(4): 571-579.
QIU L J, LI Y H, GUAN R X, LIU Z X, WANG L X, CHANG R Z. Establishment, representative testing and research progress of soybean core collection and mini core collection. Acta Agronomica Sinica, 2009, 35(4): 571-579. (in Chinese)

doi: 10.3724/SP.J.1006.2009.00571
[21]
LI X N, ZHANG X L, ZHU L M, BU Y P, WANG X F, ZHANG X, ZHOU Y, WANG X T, GUO N, QIU L J, ZHAO J M, XING H. Genome-wide association study of four yield-related traits at the R6 stage in soybean. BMC Genetics, 2019, 20(1): 39.

doi: 10.1186/s12863-019-0737-9 pmid: 30922237
[22]
SHANMUGAVELAN P, KIM S Y, KIM J B, KIM H W, CHO S M, KIM S N, KIM S Y, CHO Y S, KIM H R. Evaluation of sugar content and composition in commonly consumed Korean vegetables, fruits, cereals, seed plants, and leaves by HPLC-ELSD. Carbohydrate Research, 2013, 380: 112-117.

doi: 10.1016/j.carres.2013.06.024 pmid: 24021435
[23]
PURCELL S, NEALE B, TODD-BROWN K, THOMAS L, FERREIRA M A, BENDER D, MALLER J, SKLAR P, DE BAKKER P I, DALY MJ, SHAM P C. PLINK: A tool set for whole-genome association and population-based linkage analyses. The American Journal of Human Genetics, 2007, 81(3): 559-575.
[24]
ZHANG X L, DING W T, XUE D, LI X N, ZHOU Y, SHEN J C, FENG J Y, GUO N, QIU L J, XING H, ZHAO J M. Genome-wide association studies of plant architecture-related traits and 100-seed weight in soybean landraces. BMC Genomic Data, 2021, 22(1): 10.

doi: 10.1186/s12863-021-00964-5 pmid: 33676409
[25]
TURNER S D. qqman: An R package for visualizing GWAS results using Q-Q and Manhattan plots. Journal of Open Source Software, 2018, 3(25): 731.
[26]
CINGOLANI P. Variant annotation and functional prediction: SnpEff. Methods in Molecular Biology, 2022, 2493: 289-314.

doi: 10.1007/978-1-0716-2293-3_19 pmid: 35751823
[27]
WEN S Y, NEUHAUS H E, CHENG J T, BIE Z L. Contributions of sugar transporters to crop yield and fruit quality. Journal of Experimental Botany, 2022, 73(8): 2275-2289.

doi: 10.1093/jxb/erac043 pmid: 35139196
[28]
JIANG G L, RUTTO L K, REN S X, BOWEN R A, BERRY H, EPPS K. Genetic analysis of edamame seed composition and trait relationships in soybean lines. Euphytica, 2018, 214(9): 1-10.
[29]
宋雯雯, 李继存, 赵云, 周静, 黄新阳, 曾海燕, 杨光明, 李素真, 吴存祥, 韩天富. 中国大豆微核心种质光温综合反应敏感性的鉴定. 植物遗传资源学报, 2020, 21(1): 146-153.

doi: 10.13430/j.cnki.jpgr.20190606004
SONG W W, LI J C, ZHAO Y, ZHOU J, HUANG X Y, ZENG H Y, YANG G M, LI S Z, WU C X, HAN T F. Identification of photothermal comprehensive responses in Chinese soybean mini core collection. Journal of Plant Genetic Resources, 2020, 21(1): 146-153. (in Chinese)
[30]
MAJOR D J, JOHNSON D R, TANNER J W, ANDERSON I C. Effects of daylength and temperature on soybean development. Crop Science, 1975, 15(2): 174-179.
[31]
郁晓敏, 袁凤杰, 傅旭军, 朱丹华. 浙江大豆核心亲本可溶性糖含量分析. 中国粮油学报, 2015, 30(7): 19-22.
YU X M, YUAN F J, FU X J, ZHU D H. Analysis of seed soluble sugar content in Zhejiang soybean core collections. Journal of the Chinese Cereals and Oils Association, 2015, 30(7): 19-22. (in Chinese)
[32]
LI Y S, DU M, ZHANG Q Y, WANG G H, LIU X B. Greater differences exist in seed protein, oil, total soluble sugar and sucrose content of vegetable soybean genotypes [Glycine max (L.) Merrill] in Northeast China. Australian Journal of Crop Science, 2012, 12: 1681-1686.
[33]
赵福成, 景立权, 闫发宝, 陆大雷, 王桂跃, 陆卫平. 灌浆期高温胁迫对甜玉米籽粒糖分积累和蔗糖代谢相关酶活性的影响. 作物学报, 2013, 39(9): 1644-1651.
ZHAO F C, JING L Q, YAN F B, LU D L, WANG G Y, LU W P. Effects of heat stress during grain filling on sugar accumulation and enzyme activity associated with sucrose metabolism in sweet corn. Acta Agronomica Sinica, 2013, 39(9): 1644-1651. (in Chinese)
[34]
任雷, 胡晓辉, 杨振超, 皱志荣, 李鹏飞. 光照强度对厚皮甜瓜糖分积累与蔗糖代谢相关酶的影响. 西北农林科技大学学报(自然科学版), 2010, 38(6): 120-126.
REN L, HU X H, YANG Z C, ZOU Z R, LI P F. Effects of light intensity on sugar accumulation and sucrose-metabolizing enzymes in muskmelon. Journal of Northwest A & F University (Nature Science Edition), 2010, 38(6): 120-126. (in Chinese)
[35]
WU X Y, HAN W, YANG Z Q, ZHANG Y X, ZHENG Y J. The difference in temperature between day and night affects the strawberry soluble sugar content by influencing the photosynthesis, respiration and sucrose phosphatase synthase. Horticultural Science, 2021, 48(4): 174-182.
[36]
HOU J F, WANG C L, HONG X J, ZHAO J M, XUE C C, GUO N, GAI J Y, XING H. Association analysis of vegetable soybean quality traits with SSR markers. Plant Breeding, 2011, 130(4): 444-449.
[37]
SONG J F, LIU C, LI D, GU Z. Evaluation of sugar, free amino acid, and organic acid compositions of different varieties of vegetable soybean (Glycine max [L.] Merr). Industrial Crops and Products, 2013, 50: 743-749.
[38]
KUMAR V, RANI A, GOYAL L, DIXIT A K, MANJAYA J G, DEV J, SWAMY M. Sucrose and raffinose family oligosaccharides (RFOs) in soybean seeds as influenced by genotype and growing location. Journal of Agricultural and Food Chemistry, 2010, 58(8): 5081-5085.

doi: 10.1021/jf903141s pmid: 20353171
[39]
PAN W, HAN X, HUANG S, YU J, ZHAO Y, QU K, ZHANG Z, YIN Z, QI H, YU G, ZHANG Y, XIN D, ZHU R, LIU C, WU X, JIANG H, HU Z, ZUO Y, CHEN Q, QI Z. Identification of candidate genes related to soluble sugar contents in soybean seeds using multiple genetic analyses. Journal of Integrative Agriculture, 2022, 21(7): 1886-1902.
[40]
LU W C, SUI M N, ZHAO X C, JIA H C, HAN D Z, YAN X F, HAN Y P. Genome-wide identification of candidate genes underlying soluble sugar content in vegetable soybean (Glycine max L.) via association and expression analysis. Frontiers in Plant Science, 2022, 13: 930639.
[41]
王洁, 蔡昱萌, 张楠, 张雅丽. 植物蔗糖转运蛋白表达的调控因素与分子机制. 生物技术通报, 2021, 37(3): 115-124.

doi: 10.13560/j.cnki.biotech.bull.1985.2020-1027
WANG J, CAI Y M, ZHANG N, ZHANG Y L. Regulatory factors and molecular mechanism of sucrose transporters’ expressions in plant. Biotechnology Bulletin, 2021, 37(3): 115-124. (in Chinese)

doi: 10.13560/j.cnki.biotech.bull.1985.2020-1027
[42]
KÜHN C, GROF C P. Sucrose transporters of higher plants. Current Opinion in Plant Biology, 2010, 13(3): 287-297.
[43]
PATIL G, VALLIYODAN B, DESHMUKH R, PRINCE S, NICANDER B, ZHAO M, SONAH H, SONG L, LIN L, CHAUDHARY J, LIU Y, JOSHI T, XU D, NGUYEN H T. Soybean (Glycine max) SWEET gene family: Insights through comparative genomics, transcriptome profiling and whole genome re-sequence analysis. BMC Genomics, 2015, 16: 520.

doi: 10.1186/s12864-015-1730-y pmid: 26162601
[44]
WANG S D, LIU S L, WANG J, YOKOSHO K, ZHOU B, YU Y C, LIU Z, FROMMER W B, MA J F, CHEN L Q, GUAN Y F, SHOU H X, TIAN Z X. Simultaneous changes in seed size, oil content and protein content driven by selection of SWEET homologues during soybean domestication. National Science Review, 2020, 7(11): 1776-1786.
[1] ZHANG Ying, SHI TingRui, CAO Rui, PAN WenQiu, SONG WeiNing, WANG Li, NIE XiaoJun. Genome-Wide Association Study of Drought Tolerance at Seedling Stage in ICARDA-Introduced Wheat [J]. Scientia Agricultura Sinica, 2024, 57(9): 1658-1673.
[2] XU Na, TANG Ying, XU ZhengJin, SUN Jian, XU Quan. Genetic Analysis and Candidate Gene Identification on Fertility and Inheritance of Hybrid Sterility of XI and GJ Cross [J]. Scientia Agricultura Sinica, 2024, 57(8): 1417-1429.
[3] ZHANG BiDong, LIN Hong, ZHU SiYing, LI ZhongCheng, ZHUANG Hui, LI YunFeng. Identification and Candidate Gene Analysis of the ABNORMAL HULL 1 (ah1) Mutant in Rice (Oryza sativa L.) [J]. Scientia Agricultura Sinica, 2024, 57(3): 429-441.
[4] MIAO Long, SHU Kuo, HU YanJiao, HUANG Ru, HE GenHua, ZHANG WenMing, WANG XiaoBo, QIU LiJuan. Identification and Gene Mapping of Hard Seededness Mutant Mzp661 in Soybean [J]. Scientia Agricultura Sinica, 2024, 57(11): 2065-2078.
[5] MIAO Long, YANG Lei, XU JingHao, LI Na, WANG FeiYu, QIU LiJuan, WANG XiaoBo. Establishment of Evaluation System and Screening of Disease- Resistant Accessions for Phomopsis Seed Decay in Soybean Germination Stage [J]. Scientia Agricultura Sinica, 2024, 57(11): 2092-2101.
[6] SHOU XinYue, LIU Zhi, CHEN YueHan, LI ChenHui, SUN BinCheng, SUN RuJian, HAN DeZhi, LU WenCheng, SHEN YongHui, WANG XiaoBo, YAN Long. Genome-Wide Association Analysis of Soybean Nodulation-Related Traits in the Northern Hebei [J]. Scientia Agricultura Sinica, 2024, 57(11): 2102-2113.
[7] ZHOU YeYing, XIE ZiWen, ZHONG PeiGe, LI ShuangWei, MA YunTao. Quantification of Row Orientation Effects on Radiation Distribution in Maize-Soybean Intercropping Based on Functional-Structural Plant Model [J]. Scientia Agricultura Sinica, 2024, 57(10): 1882-1899.
[8] LI ShengYou, WANG ChangLing, YAN ChunJuan, ZHANG LiJun, SUN XuGang, CAO YongQiang, WANG WenBin, SONG ShuHong. Evaluation of Drought Resistance in Soybean Germplasm and Identification of Candidate Drought-Resistant Genes [J]. Scientia Agricultura Sinica, 2024, 57(10): 1857-1869.
[9] WANG Mai, DONG QingFeng, GAO ShenAo, LIU DeZheng, LU Shan, QIAO PengFang, CHEN Liang, HU YinGang. Genome-Wide Association Studies and Mining for Favorable Loci of Root Traits at Seedling Stage in Wheat [J]. Scientia Agricultura Sinica, 2023, 56(5): 801-820.
[10] GAO Jing, CHEN JiYu, TAN XianMing, WU YuShan, YANG WenYu, YANG Feng. Effect of Light Intensity on Leaf Hydraulic Conductivity and Vein Traits of Soybean at Seedling Stage [J]. Scientia Agricultura Sinica, 2023, 56(22): 4417-4427.
[11] ZENG Jian, WANG RuMeng, GONG Pan, YANG Xiao, YIN XiaoQi, LI JiangHe, CHEN ShiLong, YAO Lei, SONG HaiXing, KANG Lei, ZHANG ZhenHua. Genome-Wide Association Study of Nitrogen Efficiency Related Traits at Seedling Stage in Brassica juncea [J]. Scientia Agricultura Sinica, 2023, 56(20): 3946-3959.
[12] MA YanMing, LOU HongYao, ZHANG ShengJun, WANG Wei, GUO Ying, NI ZhongFu, LIU Jie. Genome-Wide Association Analysis of Yield Traits in Xinjiang Winter Wheat Germplasm [J]. Scientia Agricultura Sinica, 2023, 56(18): 3487-3499.
[13] CHENG Li, YANG ShengNan, ZHU YanSong, WANG Xu, ZHAO WanTong, LI RenJing, LI Pei, YUAN ZhongJie, JIANG Dong. Genetic Variation Analysis and Candidate Genes Mining of Regulating Flesh Color in Pomelo [J]. Scientia Agricultura Sinica, 2023, 56(17): 3420-3434.
[14] SUN Tao, FENG XiaoMin, GAO XinHao, DENG AiXing, ZHENG ChengYan, SONG ZhenWei, ZHANG WeiJian. Effects of Diversified Cropping on the Soil Aggregate Composition and Organic Carbon and Total Nitrogen Content [J]. Scientia Agricultura Sinica, 2023, 56(15): 2929-2940.
[15] CAO Jie, GU YongZhe, HONG HuiLong, WU HaiTao, ZHANG Xia, SUN JianQiang, BAO LiGao, QIU LiJuan. Pigment Identification and Gene Mapping in Red Seed Coat of Soybean [J]. Scientia Agricultura Sinica, 2023, 56(14): 2643-2659.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!