Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (14): 2874-2888.doi: 10.3864/j.issn.0578-1752.2024.14.014

• ANIMAL SCIENCE·VETERINARY SCIENCE • Previous Articles     Next Articles

The Function of lncRNA RRAS2-AS1 in LPS Induced Bovine Mammary Epithelial Cells Inflammation

WANG JinPeng1,2(), LUORENG ZhuoMa1, LI YanXia1, FENG Fen1, WANG ZhengXing1, PAN ChuanYing2, LAN XianYong2, WANG XingPing1()   

  1. 1 College of Animal Science and Technology, Ningxia University, Yinchuan 750021
    2 College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi
  • Received:2023-11-30 Accepted:2024-06-21 Online:2024-07-16 Published:2024-07-24
  • Contact: WANG XingPing

Abstract:

【Background】 Bovine mastitis is one of the most serious diseases in dairy cows, which seriously affects milk quality and not only causes economic losses, but also even jeopardizes human health. Previous studies have shown that lncRNAs were widely involved in inflammation and immune regulation in humans and animals. lncRNA RRAS2-AS1 was a newly identified differentially expressed lncRNA in our previous study, and its expression pattern and function are still unclear. 【Objective】 The aim of this study was intended to investigate the mechanism of lncRNA RRAS2-AS1 in the inflammatory response of bovine mammary epithelial cells (bMECs) in dairy cows, so as to provide a theoretical basis for the resolution of molecular regulatory mechanisms of bovine mastitis and molecular breeding for anti-mastitis.【Method】 The cloning of lncRNA RRAS2-AS1 was performed by RT-PCR and RACE, and the target genes prediction and functional enrichment analysis of lncRNA RRAS2-AS1 were performed by bioinformatics methods. The bMECs were identified by immunofluorescence staining, and the subcellular localization of lncRNA RRAS2-AS1 was detected by cytoplasmic isolation and semi-quantitative PCR. The expression patterns of lncRNA RRAS2-AS1 in lipopolysaccharide (LPS) induced bMECs inflammatory response and in bovine mammary tissues with mastitis were detected using qRT-PCR. An inflammatory cell model was constructed using LPS-induced bMECs, on this basis, the effects of lncRNA RRAS2-AS1 on the expression of pro-inflammatory cytokine genes, proliferation-related genes and apoptosis-related genes at the mRNA and/or protein levels in inflammatory bMECs were studied using lncRNA overexpression, qRT-PCR and ELISA techniques. At the same time, the effects of lncRNA RRAS2-AS1 on the proliferation, viability, and apoptosis of bMECs were further verified using EdU, CCK-8 and flow cytometry.【Result】 The length of lncRNA RRAS2-AS1 was 363 bp, which was mainly localized in the cytoplasm. The expression assay results showed that, compared with the control group, the expression of lncRNA RRAS2-AS1 was significantly down-regulated in LPS induced bMECs inflammation and in bovine mammary tissues with mastitis (P<0.05). The results of lncRNA RRAS2-AS1 overexpression assay showed that, compared with the control group, the expression of key genes the inflammatory signaling pathway (TLR4 and NF-κB1), pro-inflammatory cytokine genes (IL-1β, IL-6 and IL-8), pro-apoptotic genes (BAD, CASP3, BAX, etc.) were significantly down-regulated (P<0.01) in the lncRNA RRAS2-AS1 overexpression group, while the expression levels of proliferation marker genes (CDK2, CDK4, and PCNA) were significantly up-regulated (P<0.05). In addition, the cell viability of the lncRNA RRAS2-AS1 overexpression group was significantly increased (P<0.05), while the apoptosis rate of bMECs was significantly reduced (P<0.01).【Conclusion】 lncRNA RRAS2-AS1 was significantly down-regulated in LPS induced bMECs inflammation and in bovine mammary tissues with mastitis. Overexpression of lncRNA RRAS2-AS1 decreased the expression of pro-inflammatory cytokines IL-6, IL-8, and IL-1β at mRNA and protein levels, and promoted cell viability and proliferation and inhibited apoptosis, which attenuated the inflammatory response of LPS-induced bMECs. These and the results laid the foundation for analyzing the molecular regulatory network of mastitis in dairy cows.

Key words: cow, mastitis, lncRNA RRAS2-AS1, cell proliferation, cell apoptosis

Table 1

Touch down PCR amplification procedure"

循环步骤 Circulation procedure 温度 Temperature 时间 Time 循环数 Number of cycles
预变性 Pre-denaturation 95 ℃ 5 min 1
变性 Denaturation 95 ℃ 30 sec 35
退火 Annealing 64 ℃-58 ℃ 30 sec
延伸 Extension 72 ℃ 1000 bp/ min
彻底延伸 Final extension 72 ℃ 5 min 1
保温 Hold 4 ℃ 1

Table 2

the primer sequences used for qRT-PCR"

基因名
Gene name
登录号
GenBank ID
引物序列(5′-3′)
Primer sequences(5′-3′)
产物长度
Product length(bp)
lncRNA RRAS2-AS1 / F: CGAAGCGCGGAGAAGCTA 80
R: TGCGAAGTCGTGTGGAGGA
IL-6 NM_173923.2 F: CACTCCATTCGCTGTCT 227
R: GTGTCTCCTTGCTGCTT
IL-8 NM_173925.2 F: ACACATTCCACACCTTTCCAC 149
R: ACCTTCTGCACCCACTTTTC
IL-1β NM_174093.1 F: ATGAAGAGCTGCATCCAACACCTG 110
R: ACCGACACCACCTGCCTGAAG
NF-κB1 NM_001076409.1 F: ACGGGGAAGGTCTGAATG 220
R: GTAGTCCCGTCATAAGTGG
TLR4 NM_174198.6 F: GCCGTAAGGTTATTGTCGTG 125
R: CAGGACGATGAAGATGATGC
CDK2 NM_001014934.1 F: GATGGACGGAGCTTGTTATCG 182
R: ATCACACTCACACTGGAGAAGA
CDK4 NM_001037594.2 F: CCTTCATGCCAACTGCATCG 148
R: CCAGAGTGTAACAACCACAGGT
PCNA NM_001034494.1 F: GAACCTCACCAGCATGTCCA 86
R: ACGTGTCCGCGTTATCTTCA
BAD NM_001035459.2 F: TCAGCAAGCACTGGCTAACA 268
R: TGAAACTCGTCGCTCATCCT
CASP3 NM_001077840.1 F: AAGATTTAGTGCCGATGC 175
R: GACCACCAAGTTCTAGGATA
CASP9 NM_001205504.2 F: CCTGCCTTACCATTCACC 205
R: GCATTCTGCTCCTCCTCC
BAX NM_173894.1 F: GCAAACTGGTGCTCAAGG 189
R: GCACTCCAGCCACAAAGA
BCL2 NM_001166486.1 F: GATGACCGAGTACCTGAACCG 120
R: GACAGCCAGGAGAAATCAAACA
GAPDH NM_001034034.2 F: GGCATCGTGGAGGGACTTATG 186
R: GCCAGTGAGCTTCCCGTTGAG
RPS18 NM_001033614.2 F: GTGGTGTTGAGGAAAGCAGACA 79
R: TGATCACACGTTCCACCTCATC

Fig. 1

Detection of Cytokeratin 18 protein in bMECs using immunofluorescence(100 ×) A: Bright field; B: DAPI staining; C: Immunofluorescence with Cytokeratin 18 labeled with Cy3; D: Merge of B and C"

Fig. 2

The agarose gel electrophoresis and the sequence analysis of lncRNA RRAS2-AS1 A: Agarose gel electrophoresis of PCR product of lncRNA RRAS2-AS1; B: Comparison results of sequencing sequence of lncRNA RRAS2-AS1 and RNA-seq sequence; C: Agarose gel electrophoresis of 3′RACE fragment; D: Splicing sequence of lncRNA RRAS2-AS1 Note: M: DNA marker; 1, 2, 3: lncRNA RRAS2-AS1; 3′: 3′RACE"

Fig. 3

The results of subcellular localization of lncRNA RRAS2-AS1 A: Agarose gel electrophoresis of PCR product of lncRNA RRAS2-AS1; B: Detection results of subcellular localization. M: DNA marker; 1: Nucleus; 2: Cytoplasm; 3: Whole cell; 4: Negative control (NC)"

Fig. 4

The relative expression of lncRNA RRAS2-AS1 in bMECs inflammation and in bovine mammary tissues with mastitis A: The expression of lncRNA RRAS2-AS1 in bMECs inflammation; B: The expression of inflammatory factors in bovine mammary gland tissues; C: The expression of lncRNA RRAS2-AS1 in bovine mammary gland tissues"

Fig. 5

Detection of overexpression efficiency of lncRNA RRAS2-AS1 A: Identification of overexpression recombinant vectors by NheI and XhoI double restriction enzyme; B: The overexpression efficiency was determined by qRT-PCR. M: DNA marker; 1: The product of double restriction enzyme"

Fig. 6

Effect of lncRNA RRAS2-AS1 on the expression of inflammatory factors in LPS-induced bMECs A: Detection results of inflammatory factors on the mRNA levels; B: Detection results of inflammatory factors on the protein levels"

Fig. 7

Effect of lncRNA RRAS2-AS1 on apoptosis of in LPS-induced bMECs A: Detection results of cell apoptosis related genes on mRNA expression levels; B and C: The results of flow cytometry analysis"

Fig. 8

Effects of lncRNA RRAS2-AS1 on LPS-induced bMECs proliferation and viability(100 ×) A: Detection results of proliferative gene on the mRNA levels; B: CCK-8 assay of cell viability; C and D: EdU assay of cell proliferation"

[1]
WANG J P, HU Q C, YANG J, LUORENG Z M, WANG X P, MA Y, WEI D W. Differential expression profiles of lncRNA following LPS-induced inflammation in bovine mammary epithelial cells. Frontiers in Veterinary Science, 2021, 8: 758488.
[2]
KEANE O M. Symposium review: Intramammary infections—Major pathogens and strain-associated complexity. Journal of Dairy Science, 2019, 102(5): 4713-4726.
[3]
NIU L M, LOU F Z, SUN Y, SUN L B, CAI X J, LIU Z Y, ZHOU H, WANG H, WANG Z K, BAI J, et al. A micropeptide encoded by lncRNA MIR155HG suppresses autoimmune inflammation via modulating antigen presentation. Science Advances, 2020, 6(21): eaaz2059.
[4]
ZHANG Y X, DONG X T, GUO X Y, LI C S, FAN Y P, LIU P J, YUAN D W, MA X L, WANG J R, ZHENG J, LI H L, GAO P. LncRNA-BC069792 suppresses tumor progression by targeting KCNQ4 in breast cancer. Molecular Cancer, 2023, 22(1): 41.
[5]
CHEN Y, JING H Y, CHEN M Y, LIANG W, YANG J, DENG G Z, GUO M Y. Transcriptional profiling of exosomes derived from Staphylococcus aureus-infected bovine mammary epithelial cell line MAC-T by RNA-seq analysis. Oxidative Medicine and Cellular Longevity, 2021, 2021: 8460355.
[6]
CHEN Z, ZHANG Y, ZHOU J P, LU L, WANG X L, LIANG Y S, LOOR J J, GOU D M, XU H F, YANG Z P. Tea tree oil prevents mastitis-associated inflammation in lipopolysaccharide-stimulated bovine mammary epithelial cells. Frontiers in Veterinary Science, 2020, 7: 496.

doi: 10.3389/fvets.2020.00496 pmid: 32851050
[7]
王继卿, 郝志云, 沈继源, 柯娜, 黄兆春, 梁维炜, 罗玉柱, 胡江, 刘秀, 李少斌. 小尾寒羊泌乳性状重要lncRNAs的筛选、鉴定及功能分析. 中国农业科学, 2021, 54(14): 3113-3123. doi: 10.3864/j.issn.0578-1752.2021.14.016.
WANG J Q, HAO Z Y, SHEN J Y, KE N, HUANG Z C, LIANG W W, LUO Y Z, HU J, LIU X, LI S B. Screening, identification and functional analysis of important LncRNAs for lactation traits in small-tailed Han sheep. Scientia Agricultura Sinica, 2021, 54(14): 3113-3123. doi: 10.3864/j.issn.0578-1752.2021.14.016. (in Chinese)
[8]
郭云鹏, 谭皓云, 郭宏, 符梦云, 李新, 胡德宝, 张林林, 丁向彬, 郭益文. Lnc721靶向调控MMP9对牛骨骼肌卫星细胞增殖分化的影响. 中国农业科学, 2023, 56(24): 4944-4955. doi: 10.3864/j.issn.0578-1752.2023.24.012.
GUO Y P, TAN H Y, GUO H, FU M Y, LI X, HU D B, ZHANG L L, DING X B, GUO Y W. LNC721 targeted regulation MMP9 affects bovine skeletal muscle satellite cell proliferation and differentiation. Scientia Agricultura Sinica, 2023, 56(24): 4944-4955. doi: 10.3864/j.issn.0578-1752.2023.24.012. (in Chinese)
[9]
YANG W, LI X Z, QI S P, LI X R, ZHOU K, QING S Z, ZHANG Y, GAO M Q. lncRNA H19 is involved in TGF-β1-induced epithelial to mesenchymal transition in bovine epithelial cells through PI3K/AKT Signaling Pathway. PeerJ, 2017, 5: e3950.
[10]
WANG X X, WANG H, ZHANG R Q, LI D, GAO M Q. LRRC75A antisense lncRNA1 knockout attenuates inflammatory responses of bovine mammary epithelial cells. International Journal of Biological Sciences, 2020, 16(2): 251-263.

doi: 10.7150/ijbs.38214 pmid: 31929753
[11]
MA M R, PEI Y F, WANG X X, FENG J X, ZHANG Y, GAO M Q. LncRNA XIST mediates bovine mammary epithelial cell inflammatory response via NF-κB/NLRP3 inflammasome pathway. Cell Proliferation, 2019, 52(1): e12525.
[12]
WANG H, WANG X X, LI X R, WANG Q W, QING S Z, ZHANG Y, GAO M Q. A novel long non-coding RNA regulates the immune response in MAC-T cells and contributes to bovine mastitis. The FEBS Journal, 2019, 286(9): 1780-1795.
[13]
焦鹏, 王兴平, 汪书哲, 王晋鹏, 罗仍卓么, 贾立, 魏大为, 马云. 奶牛乳腺炎差异表达lncRNA BCL2对炎症及凋亡相关mRNA表达的影响. 畜牧兽医学报, 2022, 53(7): 2160-2171.

doi: 10.11843/j.issn.0366-6964.2022.07.013
JIAO P, WANG X P, WANG S Z, WANG J P, LUORENG Z M, JIA L, WEI D W, MA Y. Effect of differentially expressed lncRNA BCL2 in dairy cow with mastitis on the expression of inflammation and apoptosis related mRNA. Acta Veterinaria et Zootechnica Sinica, 2022, 53(7): 2160-2171. (in Chinese)

doi: 10.11843/j.issn.0366-6964.2022.07.013
[14]
FENG F, LI Y X, WANG J P, DONG Y W, LI Y H, LUORENG Z M, WANG X P. LncRNA CA12-AS1 targets miR-133a to promote LPS-induced inflammatory response in bovine mammary epithelial cells. International Journal of Biological Macromolecules, 2024, 261: 129710.
[15]
ZHANG X L, CHENG Z X, WANG L X, JIAO B L, YANG H, WANG X. MiR-21-3p centric regulatory network in dairy cow mammary epithelial cell proliferation. Journal of Agricultural and Food Chemistry, 2019, 67(40): 11137-11147.

doi: 10.1021/acs.jafc.9b04059 pmid: 31532202
[16]
ÖZDEMIR S, ALTUN S. Genome-wide analysis of mRNAs and lncRNAs in Mycoplasma bovis infected and non-infected bovine mammary gland tissues. Molecular and Cellular Probes, 2020, 50: 101512.
[17]
WANG X Z, SU F, YU X H, GENG N, LI L P, WANG R, ZHANG M H, LIU J Z, LIU Y X, HAN B. RNA-seq whole transcriptome analysis of bovine mammary epithelial cells in response to intracellular Staphylococcus aureus. Frontiers in Veterinary Science, 2020, 7: 642.
[18]
罗仍卓么, 王晋鹏, 焦鹏, 李彦霞, 董益闻, 魏大为, 王兴平. 奶牛乳腺炎模型的建立及炎症相关因子基因mRNA转录水平的分析. 畜牧兽医学报, 2022, 53(8): 2763-2772.

doi: 10.11843/j.issn.0366-6964.2022.08.033
LUORENG Z M, WANG J P, JIAO P, LI Y X, DONG Y W, WEI D W, WANG X P. Construction of dairy cow mastitis model and analysis of mRNA transcription level of inflammation related cytokine genes. Acta Veterinaria et Zootechnica Sinica, 2022, 53(8): 2763-2772. (in Chinese)

doi: 10.11843/j.issn.0366-6964.2022.08.033
[19]
JIAO P, WANG J P, YANG J, WANG X P, LUORENG Z M. Bta-miR-223 targeting the RHOB gene in dairy cows attenuates LPS-induced inflammatory responses in mammary epithelial cells. Cells, 2022, 11(19): 3144.
[20]
YANG J, HU Q C, WANG J P, REN Q Q, WANG X P, LUORENG Z M, WEI D W, MA Y. RNA-seq reveals the role of miR-29c in regulating inflammation and oxidative stress of bovine mammary epithelial cells. Frontiers in Veterinary Science, 2022, 9: 865415.
[21]
LUORENG Z M, WEI D W, WANG X P. MiR-125b regulates inflammation in bovine mammary epithelial cells by targeting the NKIRAS2 gene. Veterinary Research, 2021, 52(1): 122.
[22]
LI Y H, REN Q Q, WANG X P, LUORENG Z M, WEI D W. Bta-miR-199a-3p inhibits LPS-induced inflammation in bovine mammary epithelial cells via the PI3K/AKT/NF-κB signaling pathway. Cells, 2022, 11(21): 3518.
[23]
GUIMARÃES J L B, BRITO M A V P, LANGE C C, SILVA M R, RIBEIRO J B, MENDONÇA L C, MENDONÇA J F M, SOUZA G N. Estimate of the economic impact of mastitis: a case study in a Holstein dairy herd under tropical conditions. Preventive Veterinary Medicine, 2017, 142: 46-50.

doi: S0167-5877(16)30711-5 pmid: 28606365
[24]
MARTIN P, BARKEMA H W, BRITO L F, NARAYANA S G, MIGLIOR F. Symposium review: Novel strategies to genetically improve mastitis resistance in dairy cattle. Journal of Dairy Science, 2018, 101(3): 2724-2736.

doi: S0022-0302(18)30015-8 pmid: 29331471
[25]
MI S Y, TANG Y J, DARI G, SHI Y J, ZHANG J N, ZHANG H L, LIU X Q, LIU Y B, TAHIR U, YU Y. Transcriptome sequencing analysis for the identification of stable lncRNAs associated with bovine Staphylococcus aureus mastitis. Journal of Animal Science and Biotechnology, 2021, 12(1): 120.
[26]
王晋鹏. 奶牛乳腺上皮细胞炎症相关lncRNAs的筛选及关键lncRNA的功能研究[D]. 银川: 宁夏大学, 2023.
WANG J P. Screening of inflammation-related lncRNAs in bovine mammary epithelial cells and function study of key lncRNA[D]. Yinchuan: Ningxia University, 2023. (in Chinese)
[27]
MENG M J, HUO R, WANG Y, MA N N, SHI X L, SHEN X Z, CHANG G J. Lentinan inhibits oxidative stress and alleviates LPS-induced inflammation and apoptosis of BMECs by activating the Nrf2 signaling pathway. International Journal of Biological Macromolecules, 2022, 222: 2375-2391.
[28]
CHE H Y, ZHOU C H, LYU C C, MENG Y, HE Y T, WANG H Q, WU H Y, ZHANG J B, YUAN B. Allicin alleviated LPS-induced mastitis via the TLR4/NF-κB signaling pathway in bovine mammary epithelial cells. International Journal of Molecular Sciences, 2023, 24(4): 3805.
[29]
SHELDON I M, ROBERTS M H. Toll-like receptor 4 mediates the response of epithelial and stromal cells to lipopolysaccharide in the endometrium. PLoS ONE, 2010, 5(9): e12906.
[30]
CIESIELSKA A, MATYJEK M, KWIATKOWSKA K. TLR4 and CD14 trafficking and its influence on LPS-induced pro-inflammatory signaling. Cellular and Molecular Life Sciences, 2021, 78(4): 1233-1261.

doi: 10.1007/s00018-020-03656-y pmid: 33057840
[31]
LUKEWICH M K, LOMAX A E. Toll-like receptor 4 activation reduces adrenal chromaffin cell excitability through a nuclear factor-κB-dependent pathway. Endocrinology, 2013, 154(1): 351-362.

doi: 10.1210/en.2012-1534 pmid: 23125310
[32]
PODMOLÍKOVÁ L, MUKANYANGEZI M F, NIETO-MARÍN P, GIGLIO D. Cholinergic regulation of proliferation of the urothelium in response to E. coli lipopolysaccharide exposition. International Immunopharmacology, 2018, 56: 222-229.
[33]
LI Y H, HU Q C, LUORENG Z M, YANG J, WANG X P, MA Y, WEI D W. Differential mRNA expression profiling reveals the role of miR-375 in inflammation of bovine mammary epithelial cells. Animals, 2022, 12(11): 1431.
[34]
HIRANO S, ZHOU Q, FURUYAMA A, KANNO S. Differential regulation of IL-1β and IL-6 release in murine macrophages. Inflammation, 2017, 40(6): 1933-1943.

doi: 10.1007/s10753-017-0634-1 pmid: 28766178
[35]
BENT R, MOLL L, GRABBE S, BROS M. Interleukin-1 beta—a friend or foe in malignancies? International Journal of Molecular Sciences, 2018, 19(8): 2155.
[36]
ZHU Q, LI C, YU Z X, ZOU P F, MENG Q X, YAO C L. Molecular and immune response characterizations of IL-6 in large yellow croaker (Larimichthys crocea). Fish & Shellfish Immunology, 2016, 50: 263-273.
[37]
BLUTHÉ R M, MICHAUD B, POLI V, DANTZER R. Role of IL-6 in cytokine-induced sickness behavior a study with IL-6 deficient mice. Physiology & Behavior, 2000, 70(3/4): 367-373.
[38]
HE W, QU T, YU Q, WANG Z, LV H, ZHANG J, ZHAO X, WANG P. LPS induces IL-8 expression through TLR4, MyD88, NF-kappaB and MAPK pathways in human dental pulp stem cells. International Endodontic Journal, 2013, 46(2): 128-136.

doi: 10.1111/j.1365-2591.2012.02096.x pmid: 22788664
[39]
FOUSEK K, HORN L A, PALENA C. Interleukin-8: a chemokine at the intersection of cancer plasticity, angiogenesis, and immune suppression. Pharmacology & Therapeutics, 2021, 219: 107692.
[40]
刘玉芳, 陈玉林, 周祖阳, 储明星. miR-221-3p靶向BCL2L11调控小尾寒羊卵泡颗粒细胞凋亡. 中国农业科学, 2022, 55(9): 1868-1876. doi: 10.3864/j.issn.0578-1752.2022.09.015.
LIU Y F, CHEN Y L, ZHOU Z Y, CHU M X. miR-221-3p regulates ovarian granulosa cells apoptosis by targeting BCL2L11 in small-tail Han sheep. Scientia Agricultura Sinica, 2022, 55(9): 1868-1876. doi: 10.3864/j.issn.0578-1752.2022.09.015. (in Chinese)
[41]
姜超, 张久盘, 宋雅萍, 宋小雨, 吴昊, 魏大为. FoxO1对牛骨骼肌细胞增殖、凋亡和分化的调控. 中国农业科学, 2024, 57(6): 1191-1203. doi: 10.3864/j.issn.0578-1752.2024.06.013.
JIANG C, ZHANG J P, SONG Y P, SONG X Y, WU H, WEI D W. Study on the role of FoxO1 in regulating the proliferation, apoptosis and differentiation of bovine skeletal muscle cells. Scientia Agricultura Sinica, 2024, 57(6): 1191-1203. doi: 10.3864/j.issn.0578-1752.2024.06.013. (in Chinese)
[42]
SAMMAD A, LUO H P, HU L R, ZHU H B, WANG Y C. Transcriptome reveals granulosa cells coping through redox, inflammatory and metabolic mechanisms under acute heat stress. Cells, 2022, 11(9): 1443.
[43]
UNNISA A, GREIG N H, KAMAL M A. Inhibition of caspase 3 and caspase 9 mediated apoptosis: a multimodal therapeutic target in traumatic brain injury. Current Neuropharmacology, 2023, 21(4): 1001-1012.
[44]
UDAYANTHA H M V, SAMARAWEERA A V, LIYANAGE D S, GAYASHANI SANDAMALIKA W M, LIM C, YANG H, LEE J H, LEE S, LEE J. Molecular characterization, antiviral activity, and UV-B damage responses of Caspase-9 from Amphiprion clarkii. Fish & Shellfish Immunology, 2022, 125: 247-257.
[45]
LI Y Q, LI Y L, LI X T, LV J Y, GAO Y, LI W N, GONG Q H, YANG D L. Osthole alleviates neointimal hyperplasia in balloon-induced arterial wall injury by suppressing vascular smooth muscle cell proliferation and downregulating cyclin D1/CDK4 and cyclin E1/CDK2 expression. Frontiers in Physiology, 2021, 11: 514494.
[46]
JIN X, GE L P, LI D Q, SHAO Z M, DI G H, XU X E, JIANG Y Z. LncRNA TROJAN promotes proliferation and resistance to CDK4/6 inhibitor via CDK2 transcriptional activation in ER+ breast cancer. Molecular Cancer, 2020, 19(1): 87.
[47]
YU S M, QIAO X, SONG X R, YANG Y, ZHANG D, SUN W D, WANG L L, SONG L S. The proliferating cell nuclear antigen (PCNA) is a potential proliferative marker in oyster Crassostrea gigas. Fish & Shellfish Immunology, 2022, 122: 306-315.
[1] LIU ZhuoLin, LIU HongYun. The Potential and Mechanisms of Apigenin to Relieve Heat Stress and Hypoxia in Dairy Cows Based on Network Pharmacology and Molecular Docking [J]. Scientia Agricultura Sinica, 2024, 57(5): 1010-1022.
[2] ZHANG Yi, LIU Ying, CHENG CunGang, LI YanQing, LI Zhuang. Effects of Combined Application Proportion of Cow Manure and Chemical Fertilizer on Soil Organic Carbon Pool and Enzyme Activity in Apple Orchard [J]. Scientia Agricultura Sinica, 2024, 57(20): 4107-4118.
[3] LIU BingQi, LUO ChunHai, YAO WeiJia, WANG Wei, LIU JiaJin, LI DanYang, FU ShiXin. Mechanism of miRNA-424-5p Regulate the Decomposition of Collagen on Retained Fetal Membranes of Dairy Cows Through VEGFA Pathway [J]. Scientia Agricultura Sinica, 2024, 57(15): 3083-3092.
[4] ZHU BingLin, YU JiaLi, CHEN JiaYue, TIAN Yuan, WAN Yuan, LIU ChenYang, WANG XiaoYu, WANG MiaoLi, CHENG Gong. Cloning, Expression Characterization, and Functional Analysis of the Snail1 in Qinchuan Cattle and Its Impact on Proliferation of Bovine Adipocytes [J]. Scientia Agricultura Sinica, 2024, 57(13): 2674-2686.
[5] WANG Peng, LIU ZiYi, LIU YuFang, CHU MingXing. miR-535 Targets the GAB2 Gene to Promote Goat Granulosa Cell Proliferation Through Activation of the PI3K/AKT Signaling Pathway [J]. Scientia Agricultura Sinica, 2023, 56(23): 4757-4771.
[6] TANG YuLin, ZHANG Bo, REN Man, ZHANG RuiXue, QIN JunJie, ZHU Hao, GUO YanSheng. Evaluation of Regulatory Effect of Guiqi Yimu Oral Liquid on Rumen of Postpartum Dairy Cows Based on UPLC-MS/MS Metabolomics Technology [J]. Scientia Agricultura Sinica, 2023, 56(2): 368-378.
[7] WEI Yao, ZHANG RuiMen, AN Qiang, WANG LeYi, ZHANG YongWang, ZOU ChaoXia, ZHANG ErKang, MO BiYun, SHI DeShun, YANG SuFang, DENG YanFei, WEI YingMing. CircCEP85L Regulates the Proliferation and Myogenic Differentiation of Bovine MuSCs [J]. Scientia Agricultura Sinica, 2023, 56(18): 3670-3681.
[8] CHEN YuMei, ZHANG CongCong, HU LiRong, FANG Hao, DOU JinHuan, GUO Gang, WANG Yan, LIU QiaoXiang, WANG YaChun, XU Qing. Effect of Heat Stress on DNA Methylation of GNAS Promoter Region in Dairy Cows [J]. Scientia Agricultura Sinica, 2023, 56(12): 2395-2406.
[9] YANG XinRan,MA XinHao,DU JiaWei,ZAN LinSen. Expression Pattern of m6A Methylase-Related Genes in Bovine Skeletal Muscle Myogenesis [J]. Scientia Agricultura Sinica, 2023, 56(1): 165-178.
[10] REN Yifang,YANG ZhangPing,LING Fenghua,XIAO LiangWen. Risk Zoning of Heat Stress Risk Zoning of Dairy Cows in Jiangsu Province and Its Characteristics Affected by Climate Change [J]. Scientia Agricultura Sinica, 2022, 55(22): 4513-4525.
[11] XIA YuXin,LIANG Yan,WANG HaiYang,GUO MengLing,ZHOU Bu,DAI Xu,YANG ZhangPing,MAO YongJiang. Effects of the Number of Subclinical Mastitis and Somatic Cell Score in Milk of Parity 1 on Somatic Cell Score of Holstein Cows for Parity 2 [J]. Scientia Agricultura Sinica, 2022, 55(20): 4052-4064.
[12] MingJie XING,XianHong GU,XiaoHong WANG,Yue HAO. Effects of IL-15 Overexpression on Myoblast Differentiation of Porcine Skeletal Muscle Cells [J]. Scientia Agricultura Sinica, 2022, 55(18): 3652-3663.
[13] CHEN Zhi,ZHANG Yi,LU QinYue,GUO JiaHe,LIANG Yan,ZHANG MingYiXing,YANG ZhangPing. Effect and Mechanism of Tea Tree Oil on LPS Induced Mastitis in Dairy Cows [J]. Scientia Agricultura Sinica, 2021, 54(14): 3124-3133.
[14] SONG MeiJie,OU AiQun,XUE XiaoFeng,WU LiMing,SHOU QiYang,WANG Kai. Protective Effects of Chinese Propolis Extract Against Lipopolysaccharide- Induced Acute Mastitis and Mammary Barrier Functions in Mice [J]. Scientia Agricultura Sinica, 2021, 54(12): 2675-2688.
[15] LAI YuTing,ZHU FeiFei,WANG YiMin,GUO Hong,ZHANG LinLin,LI Xin,GUO YiWen,DING XiangBin. Effects of PSMB5 on the Proliferation and Myogenic Differentiation of Skeletal Muscle Satellite Cells [J]. Scientia Agricultura Sinica, 2020, 53(20): 4287-4296.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!