Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (20): 3946-3959.doi: 10.3864/j.issn.0578-1752.2023.20.003

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Genome-Wide Association Study of Nitrogen Efficiency Related Traits at Seedling Stage in Brassica juncea

ZENG Jian1(), WANG RuMeng1(), GONG Pan1, YANG Xiao1, YIN XiaoQi1, LI JiangHe1, CHEN ShiLong1, YAO Lei1, SONG HaiXing1, KANG Lei2(), ZHANG ZhenHua1()   

  1. 1 College of Resources, Hunan Agricultural University, Changsha 410128
    2 College of Agronomy, Hunan Agricultural University, Changsha 410128
  • Received:2023-04-10 Accepted:2023-06-09 Online:2023-10-16 Published:2023-10-31
  • Contact: KANG Lei, ZHANG ZhenHua

Abstract:

【Objective】The genome-wide association analysis was performed to identify SNP loci significantly associated with nitrogen use efficiency (NUE) traits in Brassica juncea at seedling stage and to predict the relevant candidate genes, providing a theoretical basis for revealing the molecular mechanism of nitrogen use efficiency in rapeseed and creating nitrogen-efficient germplasm. 【Method】The population of 153 Brassica juncea resources was used as the analysis population. Two treatments, low N and normal N, were established using three replicates for each treatment, and two replicated nutrient culture trials were conducted over a two-year period (2021 and 2022). The relative values of root-shoot ratio and shoot nitrogen concentration (low/normal N) were calculated and utilized as NUE traits for a genome-wide association study (GWAS) aimed at exploring candidate genes for NUE. 【Result】NUE traits of Brassica juncea resources exhibited abundant variation, ranging from 0.21-2.44 with coefficients of variation of 22.92%-26.19%. The GWAS identified 45 significant SNP loci, among which 16 overlapped between the first relative root-shoot ratio (RRSR1) and the second relative root-shoot ratio (RRSR2), accounting for a phenotype variance range of 10.69%-15.39%. Additionally, 29 significant SNP loci were shared between the first relative shoot nitrogen concentration (RSNC1) and the second relative shoot nitrogen concentration (RSNC2), explaining a phenotype variance range of 13.22%-23.96%. 15 candidate genes for NUE were identified within 200 kb upstream and downstream regions of significant SNP loci, including 5 genes related to nitrate transport (BjuNPF5.8, BjuNRT2.7, BjuNPF2.3, BjuCLCb and BjuNRT1.3), 3 genes associated with nitrogen metabolism (BjuASN3, BjuGLU2 and BjuADCS), 4 genes involved in plant growth and development (BjuCOBL8, BjuPYL6, BjuSAUR72 and BjuUP3) and 3 genes participated in stress response (BjuNTP7, BjuJUB1 and BjuPYL6). 【Conclusion】45 SNP loci were detected significantly associated with NUE traits and 15 candidate genes for NUE were identified in this study.

Key words: Brassica juncea, nitrogen use efficiency traits, GWAS, candidate genes

Table 1

Phenotypic variations of nitrogen efficiency related traits"

性状 Traits 最小值 Min 最大值 Max 均值±标准差Mean±SD 变异系数 CV (%) 相关系数 Correlation coefficient
RRSR1 0.59 2.44 1.46±0.35 23.97 0.85**
RRSR2 0.66 1.83 1.16±0.27 23.28
RSNC1 0.29 0.83 0.48±0.11 22.92 0.95**
RSNC2 0.21 0.78 0.42±0.11 26.19

Fig. 1

Phenotype frequency distribution of nitrogen efficiency related traits"

Fig. 2

Kinship analysis of 153 B. juncea a: Frequency plot of relatives; b: Kinship heatmap"

Fig. 3

Analysis of population structure in 153 B. juncea a: Cross validation error values; b: Plots of the first two principal components (PC1 and PC2)"

Fig. 4

Quantile-quantile plots of GLM and MLM model in nitrogen efficiency related traits"

Table 2

The same significant SNP loci detected for the same trait in the association analysis"

性状
Trait
染色体
Chr.
SNP位置
SNP site
重复1 R1 重复2 R2
P
P value
贡献率
R2
显著性
-log10(P)
P
P value
贡献率
R2
显著性
-log10(P)
RSNC A01 3299276 4.18E-06 0.156 5.379 9.57E-06 0.151 5.019
RSNC A01 3299282 1.50E-05 0.144 4.823 1.13E-05 0.151 4.946
RSNC A01 5764206 2.81E-05 0.133 4.551 2.44E-08 0.216 7.613
RSNC A01 7987047 5.17E-06 0.152 5.286 3.83E-08 0.210 7.417
RSNC A01 9879443 2.87E-05 0.137 4.542 2.66E-05 0.141 4.575
RSNC A02 31293392 2.80E-05 0.133 4.553 1.31E-05 0.144 4.884
RSNC A02 4783843 2.69E-05 0.147 4.570 5.37E-06 0.173 5.270
RSNC A02 5196424 2.93E-05 0.134 4.533 2.03E-07 0.194 6.693
RSNC A02 5197874 2.34E-05 0.137 4.630 3.02E-08 0.216 7.520
RSNC A02 5227749 1.76E-05 0.135 4.755 1.00E-07 0.198 6.998
RSNC A02 5227934 8.90E-06 0.147 5.050 8.55E-08 0.206 7.068
RSNC A02 5231658 1.85E-05 0.158 4.733 2.16E-08 0.240 7.666
RSNC A06 11733832 2.95E-05 0.137 4.531 1.36E-05 0.151 4.866
RSNC A07 17007356 1.45E-05 0.156 4.838 1.66E-05 0.160 4.780
RSNC A07 17010239 2.61E-05 0.132 4.584 1.62E-05 0.140 4.791
RSNC A07 17054911 2.43E-05 0.133 4.614 2.39E-05 0.137 4.622
RSNC A07 17055062 2.06E-05 0.136 4.687 2.81E-05 0.135 4.551
RSNC A07 17055097 2.23E-05 0.137 4.652 2.96E-05 0.134 4.529
RSNC A07 17055893 1.79E-05 0.144 4.747 2.69E-05 0.141 4.571
RSNC A07 29692636 3.08E-05 0.135 4.512 6.56E-06 0.152 5.183
RSNC A07 29692637 3.08E-05 0.135 4.512 6.56E-06 0.152 5.183
RSNC A07 29692699 2.60E-05 0.135 4.586 2.34E-06 0.164 5.631
RSNC A07 29693188 1.67E-05 0.142 4.778 4.45E-06 0.157 5.351
RSNC A07 29693225 3.03E-05 0.138 4.519 4.20E-06 0.164 5.377
RSNC A07 29693241 8.19E-06 0.153 5.086 5.89E-06 0.160 5.230
RSNC A07 29693269 2.27E-05 0.143 4.644 2.72E-06 0.169 5.565
RSNC B01 54208618 1.88E-05 0.139 4.727 1.95E-05 0.143 4.710
RSNC B01 54208847 2.12E-05 0.147 4.673 1.99E-05 0.153 4.702
RSNC B01 54208983 2.72E-05 0.141 4.566 2.28E-05 0.145 4.643
RRSR A01 3956738 9.38E-05 0.117 4.028 1.85E-05 0.122 4.732
RRSR A01 3956739 9.38E-05 0.117 4.028 1.85E-05 0.122 4.732
RRSR A02 23835765 1.25E-05 0.154 4.904 3.37E-05 0.127 4.472
RRSR A02 23853725 2.03E-05 0.135 4.693 3.14E-05 0.120 4.504
RRSR A02 23853762 6.77E-05 0.124 4.169 4.87E-05 0.115 4.312
RRSR A02 23853786 6.35E-05 0.124 4.197 9.25E-05 0.107 4.034
RRSR A02 23861655 4.36E-05 0.130 4.361 3.01E-05 0.119 4.521
RRSR A02 23864619 4.63E-05 0.131 4.335 8.63E-05 0.108 4.064
RRSR A02 23866416 9.28E-05 0.120 4.032 6.50E-05 0.113 4.187
RRSR A02 23868460 9.36E-05 0.140 4.029 2.85E-05 0.141 4.546
RRSR A02 23868483 7.52E-05 0.129 4.124 9.32E-05 0.113 4.031
RRSR A02 23868846 3.48E-05 0.136 4.459 2.20E-05 0.126 4.658
RRSR A02 23868869 3.75E-05 0.132 4.427 3.00E-05 0.121 4.522
RRSR A04 20292414 7.12E-05 0.122 4.148 8.15E-05 0.108 4.089
RRSR A04 20293014 8.62E-05 0.120 4.064 1.20E-05 0.128 4.919
RRSR A05 22237279 2.64E-05 0.140 4.578 2.80E-05 0.122 4.553

Fig. 5

Genome-wide association study of nitrogen efficiency related traits"

Table 3

Nitrogen efficiency related candidate genes in regions of 200 kb flanking sequence from the significant SNP loci"

性状
Trait
SNP位置
SNP position
显著性-log10(P) 芥菜型油菜基因
Brassica juncea genes
距SNP距离
Distance (kb)
基因注释或编码蛋白
Gene annotation or coding protein
其他名称
Other names
重复1 R1重复2 R2
RSNC A01:5764206 4.551 7.613 BjuA01g08460S 116.1 天冬酰胺合成酶 Asparagine synthetase ASN3
RSNC A01:5764206 4.551 7.613 BjuA01g08630S 3.1 COBRA-like蛋白8 COBRA-like protein 8 COBL8
RSNC A01:9879443 4.542 4.575 BjuA01g13530S 0.4 应激反应A/B桶状结构域蛋白
Stress responsive A/B barrel domain protein
UP3
RSNC A02:31293392 4.553 4.884 BjuA02g37890S 21.1 NRT1/PTR家族蛋白 NRT1/PTR family protein NPF5.8
RSNC A02:31293392 4.553 4.884 BjuA02g38070S 119.0 NRT2家族蛋白 NRT2 family protein NRT2.7
RSNC A02:5231658 4.733 7.666 BjuA02g07750S 10.1 氯离子通道蛋白 Chloride channel protein CLCb
RSNC A07:17007356 4.838 4.780 BjuA07g16440S 13.7 氨基脱氧分支酸合成酶
Aminodeoxychorismate synthase
ADCS
RRSR A01:3956738 4.028 4.732 BjuA01g05410S 181.1 SAUR家族蛋白 SAUR family protein SAUR72
RRSR A01:3956738 4.028 4.732 BjuA01g05480S 133.9 NAC转录因子 NAC transcription factor JUB1
RRSR A02:23835765 4.904 4.472 BjuA02g26040S 3.8 BHLH转录因子 BHLH transcription factor BHLH109
RRSR A02:23868869 4.427 4.522 BjuA02g26100S 15.2 NRT1/PTR家族蛋白 NRT1/PTR family protein NPF2.3
RRSR A04:20292414 4.148 4.089 BjuA04g25540S 112.1 脱落酸受体PYR/PYL家族蛋白
Abscisic acid receptor PYR/PYL family protein
PYL6
RRSR A04:20293014 4.064 4.919 BjuA04g26100S 165.3 Fd-GOGAT蛋白 Fd-GOGAT protein GLU2
RRSR A04:20293014 4.064 4.919 BjuA04g25700S 0.0 核苷酸转移酶 Nucleotidyl transferase NTP7
RRSR A05:22237279 4.578 4.553 BjuA05g23430S 109.0 NRT1/PTR家族蛋白 NRT1/PTR family protein NRT1.3

Fig. 6

Haplotype analysis of candidate genes RRSR and RSNC: the average of the relative values of RSR and SNC for the two batches of data. Different letters at the top of the box plot indicate significant differences at P<0.05"

[1]
JIN J Y. Changes in the efficiency of fertiliser use in China. Journal of the Science of Food and Agriculture, 2012, 92(5): 1006-1009.

doi: 10.1002/jsfa.4700 pmid: 22234968
[2]
袁力行, 申建波, 崔振岭, 张福锁. 植物营养学科发展报告. 农学学报, 2018, 8(1): 39-43.
YUAN L X, SHEN J B, CUI Z L, ZHANG F S. Advances and prospects of plant nutrition. Journal of Agriculture, 2018, 8(1): 39-43. (in Chinese)
[3]
GALLOWAY J N, TOWNSEND A R, ERISMAN J W, BEKUNDA M, CAI Z C, FRENEY J R, MARTINELLI L A, SEITZINGER S P, SUTTON M A. Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions. Science, 2008, 320(5878): 889-892.

doi: 10.1126/science.1136674 pmid: 18487183
[4]
徐爱遐. 芥菜型油菜(Brassica juncea)遗传多样性及其黄籽与芥酸性状的分子标记[D]. 杨凌: 西北农林科技大学, 2008.
XU A X. Genetic diversity and molecular markers of yellow seed and erucic acid in Brassica juncea[D]. Yangling: Northwest Agriculture and Forestry University, 2008. (in Chinese)
[5]
刘淑艳, 刘忠松, 官春云. 芥菜型油菜种质资源研究进展. 植物遗传资源学报, 2007, 8(3): 351-358.
LIU S Y, LIU Z S, GUAN C Y. Advances in germplasm of oilseed Brassica juncea. Journal of Plant Genetic Resources, 2007, 8(3): 351-358. (in Chinese)
[6]
TANG Y F, SUN X C, HU C X, TAN Q L, ZHAO X H. Genotypic differences in nitrate uptake, translocation and assimilation of two Chinese cabbage cultivars [Brassica campestris L. ssp. Chinensis (L.)]. Plant Physiology and Biochemistry, 2013, 70: 14-20.
[7]
张振华. 作物硝态氮转运利用与氮素利用效率的关系. 植物营养与肥料学报, 2017, 23(1): 217-223.
ZHANG Z H. The relationship between nitrate transport and utilization in crop and nitrogen utilization efficiency. Journal of Plant Nutrition and Fertilizer, 2017, 23(1): 217-223. (in Chinese)
[8]
SINGH R P, TRIPATHI R D, SINHA S K, MAHESHWARI R, SRIVASTAVA H S. Response of higher plants to lead contaminated environment. Chemosphere, 1997, 34(11): 2467-2493.

pmid: 9192470
[9]
CRAWFORD N M, FORDE B G. Molecular and developmental biology of inorganic nitrogen nutrition. The Arabidopsis Book, 2002, 1: e0011.

doi: 10.1199/tab.0011
[10]
SCHEIBLE W R, LAUERER M, SCHULZE E D, CABOCHE M, STITT M. Accumulation of nitrate in the shoot acts as a signal to regulate shoot‐root allocation in tobacco. The Plant Journal, 1997, 11(4): 671-691.

doi: 10.1046/j.1365-313X.1997.11040671.x
[11]
CAMPBELL W H. Nitrate reductase structure, function and regulation: Bridging the gap between biochemistry and physiology. Annual Review of Plant Physiology and Plant Molecular Biology, 1999, 50: 277-303.

pmid: 15012211
[12]
顾炽明, 韩配配, 胡琼, 李银水, 廖祥生, 张志华, 谢立华, 胡小加, 秦璐, 廖星. 甘蓝型油菜苗期氮效率评价. 中国油料作物学报, 2018, 40(6): 851-860.

doi: 10.7505/j.issn.1007-9084.2018.06.015
GU C M, HAN P P, HU Q, LI Y S, LIAO X S, ZHANG Z H, XIE L H, HU X J, QIN L, LIAO X. Nitrogen efficiency evaluation in rapeseed (Brassica napus L.) at seedling stage. Chinese Journal of Oil Crop Sciences, 2018, 40(6): 851-860. (in Chinese)

doi: 10.7505/j.issn.1007-9084.2018.06.015
[13]
AHMAD N, SU B, IBRAHIM S, KUANG L Q, TIAN Z, WANG X F, WANG H Z, DUN X L. Deciphering the genetic basis of root and biomass traits in rapeseed (Brassica napus L.) through the integration of GWAS and RNA-Seq under nitrogen stress. International Journal of Molecular Sciences, 2022, 23(14): 7958.

doi: 10.3390/ijms23147958
[14]
LI Q, DING G D, YANG N M, WHITE P J, YE X S, CAI H M, LU J W, SHI L, XU F S. Comparative genome and transcriptome analysis unravels key factors of nitrogen use efficiency in Brassica napus L.. Plant, Cell & Environment, 2020, 43(3): 712-731.
[15]
HE X Y, ZHANG H, YE X S, HONG J, DING G D. Nitrogen assimilation related genes in Brassica napus: Systematic characterization and expression analysis identified hub genes in multiple nutrient stress responses. Plants, 2021, 10(10): 2160.

doi: 10.3390/plants10102160
[16]
HUANG Y, WANG H, ZHU Y, HUANG X, LI S, WU X, ZHAO Y, BAO Z, QIN L, JIN Y, CUI Y, MA G, XIAO Q, WANG Q, WANG J, YANG X, LIU H, LU X, LARKINS B A, WANG W, WU Y. THP 9 enhances seed protein content and nitrogen-use efficiency in maize. Nature, 2022, 612(7939): 292-300.

doi: 10.1038/s41586-022-05441-2
[17]
LIU Y, WANG H, JIANG Z, WANG W, XU R, WANG Q, ZHANG Z, LI A, LIANG Y, OU S, LIU X, CAO S, TONG H, WANG Y, ZHOU F, LIAO H, HU B, CHU C. Genomic basis of geographical adaptation to soil nitrogen in rice. Nature, 2021, 590(7847): 600-605.

doi: 10.1038/s41586-020-03091-w
[18]
TANG W, YE J, YAO X, ZHAO P, XUAN W, TIAN Y, ZHANG Y, XU S, AN H, CHEN G, YU J, WU W, GE Y, LIU X, LI J, ZHANG H, ZHAO Y, YANG B, JIANG X, PENG C, ZHOU C, TERZAGHI W, WANG C, WAN J. Genome-wide associated study identifies NAC42-activated nitrate transporter conferring high nitrogen use efficiency in rice. Nature Communications, 2019, 10(1): 5279.

doi: 10.1038/s41467-019-13187-1 pmid: 31754193
[19]
SIDDIQI M Y, GLASS A D M. Utilization index: A modified approach to the estimation and comparison of nutrient utilization efficiency in plants. Journal of Plant Nutrition, 1981, 4(3): 289-302.

doi: 10.1080/01904168109362919
[20]
KANG L, QIAN L W, ZHENG M, CHEN L Y, CHEN H, YANG L, YOU L, YANG B, YAN M L, GU Y G, WANG T Y, SCHIESSL S V, AN H, BLISCHAK P, LIU X J, LU H F, ZHANG D W, RAO Y, JIA D H, ZHOU D G, XIAO H G, WANG Y G, XIONG X H, MASON A S, CHRIS PIRES J, SNOWDON R J, HUA W, LIU Z S. Genomic insights into the origin, domestication and diversification of Brassica juncea. Nature Genetics, 2021, 53(9): 1392-1402.

doi: 10.1038/s41588-021-00922-y
[21]
ALEXANDER D H, NOVEMBRE J, LANGE K. Fast model-based estimation of ancestry in unrelated individuals. Genome Research, 2009, 19(9): 1655-1664.

doi: 10.1101/gr.094052.109 pmid: 19648217
[22]
CHALHOUB B, DENOEUD F, LIU S Y, PARKIN I A P, TANG H B, WANG X Y, CHIQUET J, BELCRAM H, TONG C B, SAMANS B, CORRÉA M, DA SILVA C, JUST J, FALENTIN C, KOH C S, LE CLAINCHE I, BERNARD M, BENTO P, NOEL B, LABADIE K, ALBERTI A, CHARLES M, ARNAUD D, GUO H, DAVIAUD C, ALAMERY S, JABBARI K, ZHAO M X, EDGER P P, CHELAIFA H, TACK D, LASSALLE G, MESTIRI I, SCHNEL N, LE PASLIER M C, FAN G Y, RENAULT V, BAYER P E, GOLICZ A A, MANOLI S, LEE T H, THI V H D, CHALABI S, HU Q, FAN C C, TOLLENAERE R, LU Y H, BATTAIL C, SHEN J X, SIDEBOTTOM C H D, WANG X F, CANAGUIER A, CHAUVEAU A, BÉRARD A, DENIOT G, GUAN M, LIU Z S, SUN F M, LIM Y P, LYONS E, TOWN C D, BANCROFT I, WANG X W, MENG J L, MA J X, PIRES J C, KING G J, BRUNEL D, DELOURME R, RENARD M, AURY J M, ADAMS K L, BATLEY J, SNOWDON R J, TOST J, EDWARDS D, ZHOU Y M, HUA W, SHARPE A G, PATERSON A H, GUAN C Y, WINCKER P. Plant genetics. Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science, 2014, 345(6199): 950-953.

doi: 10.1126/science.1253435
[23]
LI F, CHEN B Y, XU K, WU J F, SONG W L, BANCROFT I, HARPER A L, TRICK M, LIU S Y, GAO G Z, WANG N, YAN G X, QIAO J W, LI J, LI H, XIAO X, ZHANG T Y, WU X M. Genome-wide association study dissects the genetic architecture of seed weight and seed quality in rapeseed (Brassica napus L.). DNA Research, 2014, 21(4): 355-367.

doi: 10.1093/dnares/dsu002
[24]
ZHANG J, MASON A S, WU J, LIU S, ZHANG X C, LUO T, REDDEN R, BATLEY J, HU L Y, YAN G J. Identification of putative candidate genes for water stress tolerance in canola (Brassica napus). Frontiers in Plant Science, 2015, 6: 1058.
[25]
贺亚军, 吴道明, 游婧璨, 钱伟. 油菜耐盐相关性状的全基因组关联分析及其候选基因预测. 中国农业科学, 2017, 50(7): 1189-1201.

doi: 10.3864/j.issn.0578-1752.2017.07.002
HE Y J, WU D M, YOU J C, QIAN W. Genome-wide association analysis of salt tolerance related traits in Brassica napus and candidate gene prediction. Scientia Agricultura Sinica, 2017, 50(7): 1189-1201. (in Chinese)
[26]
LI F, CHEN B Y, XU K, GAO G Z, YAN G X, QIAO J W, LI J, LI H, LI L X, XIAO X, ZHANG T Y, NISHIO T, WU X M. A genome-wide association study of plant height and primary branch number in rapeseed (Brassica napus). Plant Science, 2016, 242: 169-177.

doi: 10.1016/j.plantsci.2015.05.012
[27]
张春, 赵小珍, 庞承珂, 彭门路, 王晓东, 陈锋, 张维, 陈松, 彭琦, 易斌, 孙程明, 张洁夫, 傅廷栋. 甘蓝型油菜千粒重全基因组关联分析. 作物学报, 2021, 47(4): 650-659.

doi: 10.3724/SP.J.1006.2021.04136
ZHANG C, ZHAO X Z, PANG C K, PENG M L, WANG X D, CHEN F, ZHANG W, CHEN S, PENG Q, YI B, SUN C M, ZHANG J F, FU T D. Genome-wide association study of 1000-seed weight in rapeseed (Brassica napus L.). Acta Agronomica Sinica, 2021, 47(4): 650-659. (in Chinese)

doi: 10.3724/SP.J.1006.2021.04136
[28]
LI L, LONG Y, ZHANG L B, DALTON-MORGAN J, BATLEY J, YU L J, MENG J L, LI M T. Genome wide analysis of flowering time trait in multiple environments via high-throughput genotyping technique in Brassica napus L.. PLoS ONE, 2015, 10(3): e0119425.

doi: 10.1371/journal.pone.0119425
[29]
AKHATAR J, GOYAL A, KAUR N, ATRI C, MITTAL M, SINGH M P, KAUR R, RIALCH I, BANGA S S. Genome wide association analyses to understand genetic basis of flowering and plant height under three levels of nitrogen application in Brassica juncea (L.) Czern & Coss. Scientific Reports, 2021, 11: 4278.

doi: 10.1038/s41598-021-83689-w
[30]
GUPTA S, AKHATAR J, KAUR P, SHARMA A, SHARMA P, MITTAL M, BHARTI B, BANGA S S. Genetic analyses of nitrogen assimilation enzymes in Brassica juncea (L.) Czern & Coss. Molecular Biology Reports, 2019, 46(4): 4235-4244.

doi: 10.1007/s11033-019-04878-5
[31]
GUPTA N, GUPTA M, AKHATAR J, GOYAL A, KAUR R, SHARMA S, GOYAL P, MUKTA A, KAUR N, MITTAL M, SINGH M P, BHARTI B, SARDANA V K, BANGA S S. Association genetics of the parameters related to nitrogen use efficiency in Brassica juncea L.. Plant Molecular Biology, 2021, 105(1): 161-175.

doi: 10.1007/s11103-020-01076-x
[32]
CHEN S Y, GU T Y, QI Z A, YAN J, FANG Z J, LU Y T, LI H, GONG J M. Two NPF transporters mediate iron long-distance transport and homeostasis in Arabidopsis. Plant Communications, 2021, 2(6): 100244.

doi: 10.1016/j.xplc.2021.100244
[33]
CHOPIN F, ORSEL M, DORBE M F, CHARDON F, TRUONG H N, MILLER A J, KRAPP A, DANIEL-VEDELE F. The Arabidopsis ATNRT2.7 nitrate transporter controls nitrate content in seeds. The Plant Cell, 2007, 19(5): 1590-1602.

doi: 10.1105/tpc.107.050542
[34]
王娟, 陈皓宁, 石大川, 于天一, 闫彩霞, 孙全喜, 苑翠玲, 赵小波, 牟艺菲, 王奇, 李春娟, 单世华. 花生高亲和硝酸盐转运蛋白基因AhNRT2.7a响应低氮胁迫的功能研究. 中国农业科学, 2022, 55(22): 4356-4372.

doi: 10.3864/j.issn.0578-1752.2022.22.003
WANG J, CHEN H N, SHI D C, YU T Y, YAN C X, SUN Q X, YUAN C L, ZHAO X B, MOU Y F, WANG Q, LI C J, SHAN S H. Functional analysis of AhNRT2.7a in response to low-nitrogen in peanut. Scientia Agricultura Sinica, 2022, 55(22): 4356-4372. (in Chinese)
[35]
TAOCHY C, GAILLARD I, IPOTESI E, OOMEN R, LEONHARDT N, ZIMMERMANN S, PELTIER J B, SZPONARSKI W, SIMONNEAU T, SENTENAC H, GIBRAT R, BOYER J C. The Arabidopsis root stele transporter NPF2.3 contributes to nitrate translocation to shoots under salt stress. The Plant Journal, 2015, 83(3): 466-479.

doi: 10.1111/tpj.12901 pmid: 26058834
[36]
VON DER FECHT-BARTENBACH J, BOGNER M, DYNOWSKI M, LUDEWIG U. CLC-b-mediated NO3-/H+ exchange across the tonoplast of Arabidopsis vacuoles. Plant and Cell Physiology, 2010, 51(6): 960-968.

doi: 10.1093/pcp/pcq062
[37]
TONG W, IMAI A, TABATA R, SHIGENOBU S, YAMAGUCHI K, YAMADA M, HASEBE M, SAWA S, MOTOSE H, TAKAHASHI T. Polyamine resistance is increased by mutations in a nitrate transporter gene NRT1.3 (AtNPF6.4) in Arabidopsis thaliana. Frontiers in Plant Science, 2016, 7: 834.
[38]
PERSSON S, WEI H R, MILNE J, PAGE G P, SOMERVILLE C R.Identification of genes required for cellulose synthesis by regression analysis of public microarray data sets. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(24): 8633-8638.
[39]
SCHINDELMAN G, MORIKAMI A, JUNG J, BASKIN T I, CARPITA N C, DERBYSHIRE P, MCCANN M C, BENFEY P N. COBRA encodes a putative GPI-anchored protein, which is polarly localized and necessary for oriented cell expansion in Arabidopsis. Genes & Development, 2001, 15(9): 1115-1127.

doi: 10.1101/gad.879101
[40]
SANTOSH KUMAR V V, YADAV S K, VERMA R K, SHRIVASTAVA S, GHIMIRE O, PUSHKAR S, RAO M V, SENTHIL KUMAR T, CHINNUSAMY V. The abscisic acid receptor OsPYL6 confers drought tolerance to indica rice through dehydration avoidance and tolerance mechanisms. Journal of Experimental Botany, 2021, 72(4): 1411-1431.

doi: 10.1093/jxb/eraa509 pmid: 33130892
[41]
QIU T, QI M Y, DING X H, ZHENG Y Y, ZHOU T J, CHEN Y, HAN N, ZHU M Y, BIAN H W, WANG J H. The saur 41 subfamily of small auxin up RNA genes is abscisic acid inducible to modulate cell expansion and salt tolerance in Arabidopsis thaliana seedlings. Annals of Botany, 2020, 125(5): 805-819.

doi: 10.1093/aob/mcz160
[42]
QUAN S, YANG P F, CASSIN-ROSS G, KAUR N, SWITZENBERG R, AUNG K, LI J Y, HU J P. Proteome analysis of peroxisomes from etiolated Arabidopsis seedlings identifies a peroxisomal protease involved in β-oxidation and development. Plant Physiology, 2013, 163(4): 1518-1538.

doi: 10.1104/pp.113.223453
[43]
GAUFICHON L, MARMAGNE A, YONEYAMA T, HASE T, CLÉMENT G, TRASSAERT M, XU X L, SHAKIBAEI M, NAJIHI A, SUZUKI A. Impact of the disruption of ASN3-encoding asparagine synthetase on Arabidopsis development. Agronomy, 2016, 6(1): 12.

doi: 10.3390/agronomy6010012
[44]
SIECIECHOWICZ K A, JOY K W, IRELAND R J. The metabolism of asparagine in plants. Phytochemistry, 1988, 27(3): 663-671.

doi: 10.1016/0031-9422(88)84071-8
[45]
陈敬东. 基于GWAS与RNA-SEQ技术挖掘甘蓝型油菜氮高效相关QTLs与候选基因[D]. 武汉: 江汉大学, 2022.
CHEN J D. QTLs and candidate genes related to nitrogen efficiency in Brassica napus were identified using GWAS and RNA-seq[D]. Wuhan: Jianghan University, 2022. (in Chinese)
[46]
COSCHIGANO K T, MELO-OLIVEIRA R, LIM J, CORUZZI G M. Arabidopsis gls mutants and distinct Fd-GOGAT genes. Implications for photorespiration and primary nitrogen assimilation. The Plant Cell, 1998, 10(5): 741-752.

doi: 10.1105/tpc.10.5.741
[47]
阚静, 李莉, 许激扬. 叶酸的生物合成及其代谢工程研究进展. 中国生化药物杂志, 2009, 30(4): 284-286.
KAN J, LI L, XU J Y. Research progress in folic acid biosynthesis and its metabolic engineering. Chinese Journal of Biochemical Pharmaceutics, 2009, 30(4): 284-286. (in Chinese)
[48]
LI W C, LIANG Q J, MISHRA R C, SANCHEZ-MUÑOZ R, WANG H, CHEN X, VAN DER STRAETEN D, ZHANG C Y, XIAO Y L. The 5-formyl-tetrahydrofolate proteome links folates with C/N metabolism and reveals feedback regulation of folate biosynthesis. The Plant Cell, 2021, 33(10): 3367-3385.

doi: 10.1093/plcell/koab198 pmid: 34352110
[49]
SHAHNEJAT-BUSHEHRI S, TARKOWSKA D, SAKURABA Y, BALAZADEH S. Arabidopsis NAC transcription factor JUB 1 regulates GA/BR metabolism and signalling. Nature Plants, 2016, 2: 16013.
[50]
NOWAK K, GAJ M D. Stress-related function of bHLH109 in somatic embryo induction in Arabidopsis. Journal of Plant Physiology, 2016, 193: 119-126.

doi: 10.1016/j.jplph.2016.02.012
[51]
岳路明. 核苷酸转移酶在拟南芥非生物胁迫应答中的功能研究[D]. 深圳: 深圳大学, 2017.
YUE L M. Study on the functional of nucleotidyl transferase in abiotic stress response of Arabidopsis thaliana[D]. Shenzhen: Shenzhen University, 2017. (in Chinese)
[52]
HU J H, CHEN B Y, ZHAO J, ZHANG F G, XIE T, XU K, GAO G Z, YAN G X, LI H G, LI L X, JI G X, AN H, LI H, HUANG Q, ZHANG M L, WU J F, SONG W L, ZHANG X J, LUO Y J, PIRES C, BATLEY J, TIAN S L, WU X M. Genomic selection and genetic architecture of agronomic traits during modern rapeseed breeding. Nature Genetics, 2022, 54(5): 694-704.

doi: 10.1038/s41588-022-01055-6
[1] JIANG Dong, WANG Xu, LI RenJing, ZHAO XiaoDong, DAI XiangSheng, LIU ZhengWei. Population Genomic Structure of Pomelo Germplasm and Fruit Acidity Associated Genes Identification by Genotyping-by-Sequencing Technology [J]. Scientia Agricultura Sinica, 2023, 56(8): 1547-1560.
[2] WANG Mai, DONG QingFeng, GAO ShenAo, LIU DeZheng, LU Shan, QIAO PengFang, CHEN Liang, HU YinGang. Genome-Wide Association Studies and Mining for Favorable Loci of Root Traits at Seedling Stage in Wheat [J]. Scientia Agricultura Sinica, 2023, 56(5): 801-820.
[3] SUN YanFa, WU Qiong, LIN RuLong, CHEN HongPing, GAN QiuYun, SHEN Yue, WANG YaRu, XUE PengFei, CHEN FeiFan, LIU JianTao, ZHOU ChenXin, LAN ShiShi, PAN HaoZhe, DENG Fan, YUE Wen, JIANG XiaoBing, LI Yan. Genome-Wide Association Study of Egg Quality Traits in Longyan Shan-Ma Duck [J]. Scientia Agricultura Sinica, 2023, 56(3): 572-586.
[4] MA YanMing, LOU HongYao, ZHANG ShengJun, WANG Wei, GUO Ying, NI ZhongFu, LIU Jie. Genome-Wide Association Analysis of Yield Traits in Xinjiang Winter Wheat Germplasm [J]. Scientia Agricultura Sinica, 2023, 56(18): 3487-3499.
[5] YU YongChao, FAN WenJing, LIU Ming, ZHANG QiangQiang, ZHAO Peng, JIN Rong, WANG Jing, ZHU XiaoYa, TANG ZhongHou. Genome-Wide Association Study of Nitrogen Use Efficient Traits in Sweetpotato Seeding Stage and Screening and Validation of Candidate Genes [J]. Scientia Agricultura Sinica, 2023, 56(18): 3500-3510.
[6] CHENG Li, YANG ShengNan, ZHU YanSong, WANG Xu, ZHAO WanTong, LI RenJing, LI Pei, YUAN ZhongJie, JIANG Dong. Genetic Variation Analysis and Candidate Genes Mining of Regulating Flesh Color in Pomelo [J]. Scientia Agricultura Sinica, 2023, 56(17): 3420-3434.
[7] DONG YiFan, REN Yi, CHENG YuKun, WANG Rui, ZHANG ZhiHui, SHI XiaoLei, GENG HongWei. Genome-Wide Association Study of Grain Main Quality Related Traits in Winter Wheat [J]. Scientia Agricultura Sinica, 2023, 56(11): 2047-2063.
[8] YIN YanZhen, HOU LiMing, LIU Hang, TAO Wei, SHI ChuanZong, LIU KaiYue, ZHANG Ping, NIU PeiPei, LI Qiang, LI PingHua, HUANG RuiHua. Identifying Quantitative Trait Loci Associated with Teat Number of Pig by Genomic Analysis [J]. Scientia Agricultura Sinica, 2023, 56(10): 1994-2006.
[9] HU Sheng,LI YangYang,TANG ZhangLin,LI JiaNa,QU CunMin,LIU LieZhao. Genome-Wide Association Analysis of the Changes in Oil Content and Protein Content Under Drought Stress in Brassica napus L. [J]. Scientia Agricultura Sinica, 2023, 56(1): 17-30.
[10] LI Heng,ZI XiangDong,WANG Hui,XIONG Yan,LÜ MingJie,LIU Yu,JIANG XuDong. Screening of Key Regulatory Genes for Litter Size Trait Based on Whole Genome Re-Sequencing in Goats (Capra hircus) [J]. Scientia Agricultura Sinica, 2022, 55(23): 4753-4768.
[11] PANG HongBo, CHENG Lu, YU MingLan, CHEN Qiang, LI YueYing, WU LongKun, WANG Ze, PAN XiaoWu, ZHENG XiaoMing. Genome-Wide Association Study of Cold Tolerance at the Germination Stage of Rice [J]. Scientia Agricultura Sinica, 2022, 55(21): 4091-4103.
[12] XIE XiaoYu, WANG KaiHong, QIN XiaoXiao, WANG CaiXiang, SHI ChunHui, NING XinZhu, YANG YongLin, QIN JiangHong, LI ChaoZhou, MA Qi, SU JunJi. Restricted Two-Stage Multi-Locus Genome-Wide Association Analysis and Candidate Gene Prediction of Boll Opening Rate in Upland Cotton [J]. Scientia Agricultura Sinica, 2022, 55(2): 248-264.
[13] WANG Juan, MA XiaoMei, ZHOU XiaoFeng, WANG Xin, TIAN Qin, LI ChengQi, DONG ChengGuang. Genome-Wide Association Study of Yield Component Traits in Upland Cotton (Gossypium hirsutum L.) [J]. Scientia Agricultura Sinica, 2022, 55(12): 2265-2277.
[14] ZHANG PengFei,SHI LiangYu,LIU JiaXin,LI Yang,WU ChengBin,WANG LiXian,ZHAO FuPing. Advance in Genome-Wide Scan of Runs of Homozygosity in Domestic Animals [J]. Scientia Agricultura Sinica, 2021, 54(24): 5316-5326.
[15] ZHANG PengXia,ZHOU XiuWen,LIANG Xue,GUO Ying,ZHAO Yan,LI SiShen,KONG FanMei. Genome-Wide Association Analysis for Yield and Nitrogen Efficiency Related Traits of Wheat at Seedling Stage [J]. Scientia Agricultura Sinica, 2021, 54(21): 4487-4499.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!