Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (14): 2755-2770.doi: 10.3864/j.issn.0578-1752.2024.14.005

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Effects of Different Intercropping Methods on Mesona Chinesis Quality and Its Rhizosphere Soil Characteristic

SU HaiLan(), ZHU YanMing, CHEN Hong, NIU YuQing, ZHENG MeiXia, ZHU YuJing()   

  1. Institute of Crop Sciences, Fujian Academy of Agricultural Sciences/Fujian Germplasm Resources Center, Fuzhou 350011
  • Received:2024-01-11 Accepted:2024-04-11 Online:2024-07-16 Published:2024-07-24
  • Contact: ZHU YuJing

Abstract:

【Objective】 Exploring the impact of intercropping on the quality of Mesona chinensis and its mechanism of action, providing a theoretical basis for the development of high-quality cultivation techniques for Mesona chinensis. 【Method】 A field randomized block experiment was conducted, including three cropping systems, such as soybean/Mesona chinesi/corn intercropping (S/M/C), soybean/Mesona chinesi intercropping (S/M), and Mesona chinesi monoculture (M). The effects of different intercropping systems on the quality of Mesona chinensis and its rhizosphere soil characteristics were analyzed. 【Result】 The S/M/C and S/M intercropping were beneficial for promoting the accumulation of trace elements in Mesona chinensis leaves and stems, such as Ca (11.36%-24.20% in leaves and 33.44%-38.16% in stems), Mg (34.41%-52.00% in leaves and 15.20%-91.99% in stems), Fe (15.21%-15.46% in leaves), and Cu (17.19%-30.73% in stems). The S/M/C intercropping significantly increased the flavonoid content in the stems of Mesona chinensis by 44.42%. The two intercropping systems significantly reduced the nutrient contents of total nitrogen (TN), alkaline nitrogen (AHN), and available potassium (AK) in the rhizosphere soil of Mesona chinensis, which significantly improved the soil pH (4.82 in M, 5.22 in S/M, and 5.51 in S/M/C). However, pH was the most important soil factor driving changes in bacterial community structure in this study. The S/M/C intercropping significantly improved the bacterial diversity in the rhizosphere soil of Mesona chinensis. The two intercropping systems significantly increased the relative abundance of the dominant bacterial genus Bacillus, from 3.24% (M) to 5.28% (S/M) and 8.09% (S/M/C), respectively. In addition, the S/M/C intercropping promoted the recruitment of more bacterial phyla, such as Bdellovibrionota, Dependentiae, WS2, as well as bacterial genera such as Metrocystis in the rhizosphere soil of Mesona chinensis.【Conclusion】 The S/M/C intercropping could promote the accumulation of flavonoids in Mesona chinensis, which was beneficial for improving its quality. The improvement of soil pH might be the main factor driving the change of soil bacterial diversity and community structure in the S/M/C intercropping. The enrichment of specific bacterial phyla and genera in the rhizosphere soil of Mesona chinensis in S/M/C intercropping were beneficial for improving the biological characteristics of soil. Therefore, the reasonable intercropping such as S/M/C was an effective measure to achieve high-quality cultivation of Mesona chinensis.

Key words: intercropping, Mesona chinesis, quality, soil nutrients, bacterial diversity

Fig. 1

The effects of different intercropping systems on the content of nutritional elements in Mesona chinesis"

Fig. 2

The effects of different intercropping systems on the content of active ingredients in Mesona chinesis"

Fig. 3

Changes in physicochemical properties of crop rhizosphere soil in monoculture and intercropping systems"

Fig. 4

The effect of intercropping on bacterial diversity in rhizosphere soil"

Fig. 5

The effects of different intercropping systems on bacterial species composition in rhizosphere soil"

Fig. 6

Chan ges in relative abundance of differential bacteria in the rhizosphere soil of Mesona chinensis in the monoculture and intercropping systems"

Fig. 7

Correlation analysis between the dominant bacteria and the physicochemical properties in rhizosphere soil"

Fig. 8

Correlation analysis between ingredients and dominant bacteria in Mesona chinesis"

[1]
黄素华, 韦范, 全昌乾, 徐梅华, 缪剑华, 汤丹峰. 氮磷钾复合肥对仙草产量及代谢物的影响. 分子植物育种, 2023, 1-10. http://kns.cnki.net/kcms/detail/46.1068.S.20230821.1419.005.html
HUANG S H, WEI F, QUAN C Q, XU M H, MIAO J H, TANG D F. Effect of Nitrogen, Phosphorus and Potassium Compound Fertilizer on the Yield and Metabolites of Xiancao (Platostoma palustre). Molecular Plant Breeding, 2023, 1-10. http://kns.cnki.net/kcms/detail/46.1068.S.20230821.1419.005.html (in Chinese)
[2]
林丽华, 黄莉鑫, 谢建华. 凉粉草功能活性成分及其生物活性研究进展. 食品工业科技, 2016, 37(20): 356-359.
LIN L H, HUANG L X, XIE J H. Review on main chemical constituents and biological activities of Mesona chinensis. Science and Technology of Food Industry, 2016, 37(20): 356-359. (in Chinese)
[3]
夏微. 基于SLAF-seq技术的凉粉草居群遗传多样性分析[D]. 广州: 华南农业大学, 2018.
XIA W. Genetic diversity analysis of Mesona blume population based on SLAF-seq technology[D]. Guangzhou: South China Agricultural University, 2018. (in Chinese)
[4]
郭秀芝, 彭政, 王铁霖, 蒋待泉, 王红阳, 杜用玺, 孙楷, 张燕, 郭兰萍. 间套作体系下种间互作对药用植物影响的研究进展. 中国中药杂志, 2020, 45(9): 2017-2022.
GUO X Z, PENG Z, WANG T L, JIANG D Q, WANG H Y, DU Y X, SUN K, ZHANG Y, GUO L P. Research progress in effects of interspecific interaction on medicinal plants in intercropping system. China Journal of Chinese Materia Medica, 2020, 45(9): 2017-2022. (in Chinese)
[5]
AMANI MACHIANI M, JAVANMARD A, MORSHEDLOO M R, MAGGI F. Evaluation of competition, essential oil quality and quantity of peppermint intercropped with soybean. Industrial Crops and Products, 2018, 111: 743-754.
[6]
FALLAH S, ROSTAEI M, LORIGOOINI Z, ABBASI SURKI A. Chemical compositions of essential oil and antioxidant activity of dragonhead (Dracocephalum moldavica) in sole crop and dragonhead- soybean (Glycine max) intercropping system under organic manure and chemical fertilizers. Industrial Crops and Products, 2018, 115: 158-165.
[7]
王琪, 王红兰, 孙辉, 崔俊芳, 杨萍, 朱文涛, 蒋舜媛. 蚕豆间作对羌活次生代谢产物及根际土壤微生物多样性的影响. 中国中药杂志, 2022, 47(10): 2597-2604.
WANG Q, WANG H L, SUN H, CUI J F, YANG P, ZHU W T, JIANG S Y. Effect of intercropping with Vicia faba on secondary metabolites and rhizosphere soil microbial diversity of Notopterygium incisum. China Journal of Chinese Materia Medica, 2022, 47(10): 2597-2604. (in Chinese)
[8]
孙鹏. 穿龙薯蓣与薏苡间作研究[D]. 济南: 山东中医药大学, 2012.
SUN P. Study on intercropping Dioscorea nipponica makino with Coix lachryrma-jobi L[D]. Jinan: Shandong University of Traditional Chinese Medicine, 2012. (in Chinese)
[9]
LUO Y, SHEN M Y, LI E P, XIAO Y H, WEN H L, REN Y M, XIE J H. Effect of Mesona chinensis polysaccharide on pasting, rheological and structural properties of corn starches varying in amylose contents. Carbohydrate Polymers, 2020, 230: 115713.
[10]
黎萍, 黄小娟, 梁振华, 李恒锐, 杨海霞, 马仙花, 刘连军. 木薯与凉粉草套种高产高效栽培技术研究. 农业研究与应用, 2021, 34(1): 15-19.
LI P, HUANG X J, LIANG Z H, LI H R, YANG H X, MA X H, LIU L J. Study on high-yield and high-efficient cultivation techniques of cassava interplanting with Mesona chinensis. Agricultural Research and Application, 2021, 34(1): 15-19. (in Chinese)
[11]
吕金凤, 甘艳. 黑老虎套种凉粉草高产高效种植模式. 农业与技术, 2020, 40(16): 91-93.
J F, GAN Y. High-yield and high-efficiency planting mode of interplanting Mesona blume with black tiger. Agriculture and Technology, 2020, 40(16): 91-93. (in Chinese)
[12]
赵小光, 赵兴忠, 刘颢萌, 肖金平张璞张雅蕾王丽萍. 玉米大豆间作对大豆农艺、品质和产量性状的影响. 农学学报, 2023, 13(8): 18-24.

doi: 10.11923/j.issn.2095-4050.cjas2023-0022
ZHAO X G, ZHAO X Z, LIU H M, XIAO J P, ZHANG P, ZHANG Y L, WANG L P. Effects of Maize and Soybean Intercropping on Agronomic, Quality and Yield Traits of Soybean. Journal of Agriculture, 2023, 13(8): 18-24. (in Chinese)

doi: 10.11923/j.issn.2095-4050.cjas2023-0022
[13]
顾琼, 金文标, 陈远清, 郭仕达, 万超凡. 利用卷枝毛霉成球特性高效收获微藻. 环境科学, 2017, 38(2): 688-696.
GU Q, JIN W B, CHEN Y Q, GUO S D, WAN C F. Highly efficient bioflocculation of microalgae using Mucor circinelloides. Environmental Science, 2017, 38(2): 688-696. (in Chinese)
[14]
葛素囡, 张生翾, 王芳, 魏欢, 谢文磊, 谢建, 李驰, 赵胡. 外源物质对新疆紫草毛状根次生代谢产物含量的影响. 食品科学, 2016, 37(9): 160-164.

doi: 10.7506/spkx1002-6630-201609030
GE S N, ZHANG S X, WANG F, WEI H, XIE W L, XIE J, LI C, ZHAO H. Effects of exogenous substances on the content of secondary metabolites in Arnebia euchroma johnst hairy roots. Food Science, 2016, 37(9): 160-164. (in Chinese)
[15]
杜婷, 陈玉莲, 毕境徽, 杨玉婷, 张丽, 游成铭, 谭波, 徐振锋, 王丽霞, 刘思凝, 李晗. 林窗对川西亚高山凋落叶总酚和缩合单宁损失动态的影响. 植物生态学报, 2023, 47(5): 660-671.

doi: 10.17521/cjpe.2021.0321
DU T, CHEN Y L, BI J H, YANG Y T, ZHANG L, YOU C M, TAN B, XU Z F, WANG L X, LIU S N, LI H. Effects of forest gap on losses of total phenols and condensed tannins of foliar litter in a subalpine forest of western Sichuan, China. Chinese Journal of Plant Ecology, 2023, 47(5): 660-671. (in Chinese)

doi: 10.17521/cjpe.2021.0321
[16]
鲍士旦. 土壤农化分析. 3版. 北京: 中国农业出版社, 2000.
BAO S D. Soil and agricultural chemistry analysis. 3rd ed. Beijing: China Agriculture Press, 2000. (in Chinese)
[17]
邹温馨, 苏卫华, 陈远学, 陈新平, 郎明. 长期施氮对酸性紫色土氨氧化微生物群落及其硝化作用的影响. 中国农业科学, 2022, 55(3): 529-542. doi: 10.3864/j.issn.0578-1752.2022.03.009.
ZOU W X, SU W H, CHEN Y X, CHEN X P, LANG M. Effects of long-term nitrogen application on ammonia oxidizer communities for nitrification in acid purple soil. Scientia Agricultura Sinica, 2022, 55(3): 529-542. doi: 10.3864/j.issn.0578-1752.2022.03.009. (in Chinese)
[18]
马玉全, 王小龙, 李玉梅, 王孝娣, 刘凤之, 王海波. 不同砧木对葡萄‘87-1’氮磷钾等养分吸收利用的影响. 中国农业科学, 2022, 55(19): 3822-3830. doi: 10.3864/j.issn.0578-1752.2022.19.011.
MA Y Q, WANG X L, LI Y M, WANG X D, LIU F Z, WANG H B. Differences in nutrient absorption and utilization of 87-1 grape variety under different rootstock facilities. Scientia Agricultura Sinica, 2022, 55(19): 3822-3830. doi: 10.3864/j.issn.0578-1752.2022.19.011. (in Chinese)
[19]
夏海勇, 薛艳芳, 孟维伟, 于丽敏, 刘灵艳, 张正. 间套作体系作物-土壤铁和锌营养研究进展. 应用生态学报, 2015, 26(4): 1263-1270.
XIA H Y, XUE Y F, MENG W W, YU L M, LIU L Y, ZHANG Z. Research advances in iron and zinc transfer from soil to plant in intercropping systems. Chinese Journal of Applied Ecology, 2015, 26(4): 1263-1270. (in Chinese)
[20]
夏海勇, 孔玮琳, 薛燕慧, 汤艳艳, 汪宝卿, 刘开昌, 万书波. 间作对玉米磷、铁、锌和钙素吸收及其在植株体内转移分配的影响. 山东农业科学, 2017, 49(7): 86-90.
XIA H Y, KONG W L, XUE Y H, TANG Y Y, WANG B Q, LIU K C, WAN S B. Effects of intercropping on absorption of phosphorus, iron, zinc and calcium from soil and translocation and allocation in maize plants. Shandong Agricultural Sciences, 2017, 49(7): 86-90. (in Chinese)
[21]
DAI J, QIU W, WANG N Q, WANG T Q, NAKANISHI H, ZUO Y M. From leguminosae/gramineae intercropping systems to see benefits of intercropping on iron nutrition. Frontiers in Plant Science, 2019, 10: 605.

doi: 10.3389/fpls.2019.00605 pmid: 31139203
[22]
RHODES R, MILES N, HUGHES J C. Interactions between potassium, calcium and magnesium in sugarcane grown on two contrasting soils in South Africa. Field Crops Research, 2018, 223: 1-11.
[23]
HANUDIN E, WISMARINI H, HERTIANI T, SUNARMINTO B H. Effect of shading, nitrogen and magnesium fertilizer on phyllanthin and total flavonoid yield of Phyllanthus niruri in Indonesia soil. Journal of Medicinal Plants Research, 2012, 6(30): 4586-4592.
[24]
GONZÁLEZ-MENDOZA D, TRONCOSO-ROJAS R, GONZALEZ- SOTO T, GRIMALDO-JUAREZ O, CECEÑA-DURAN C, DURAN- HERNANDEZ D, GUTIERREZ-MICELI F. Changes in the phenylalanine ammonia lyase activity, total phenolic compounds, and flavonoids in Prosopis glandulosa treated with cadmium and copper. Anais da Academia Brasileira de Ciências, 2018, 90(2): 1465-1472.
[25]
YAN Y X, YANG J, GUO Y, YANG J X, WAN X M, ZHAO C, GUO J M, CHEN T B. Potential evaluation of different intercropping remediation modes based on remediation efficiency and economic benefits - a case study of arsenic-contaminated soil. International Journal of Phytoremediation, 2022, 24(1): 25-33.
[26]
常换换, 苏友波, 范茂攀, 王自林, 赵吉霞, 李永梅. 红壤坡耕地玉米大豆间作的根际微生态效应. 山西农业大学学报(自然科学版), 2022, 42(2): 21-28.
[41]
刘少文, 殷敏, 褚光, 徐春梅, 王丹英, 章秀福, 陈松. 长江中下游稻区不同水旱轮作模式和氮肥水平对稻田CH4排放的影响. 中国农业科学, 2019, 52(14): 2484-2499. doi: 10.3864/j.issn.0578-1752.2019.14.008.
LIU S W, YIN M, CHU G, XU C M, WANG D Y, ZHANG X F, CHEN S. Effects of various paddy-upland crop rotations and nitrogen fertilizer levels on CH4 emission in the middle and lower reaches of the Yangtze River. Scientia Agricultura Sinica, 2019, 52(14): 2484-2499. doi: 10.3864/j.issn.0578-1752.2019.14.008. (in Chinese)
[42]
张金梅, 卢红, 李明, 刘玉连, 杨逢春. 两种微生物菌肥对穿心莲生长及其有效成分含量的影响. 山东农业科学, 2023, 55(3): 101-108.
ZHANG J M, LU H, LI M, LIU Y L, YANG F C. Effects of two microbial fertilizers on growth and active ingredient contents of Andrographis paniculata. Shandong Agricultural Sciences, 2023, 55(3): 101-108. (in Chinese)
[43]
郭志祥, 钮颜宇, 徐淑慧, 孙香荣, 李连珍, 李娟. 微生物肥对连作地黄生长及产量品质的影响. 北方园艺, 2022(19): 100-106.
GUO Z X, NIU Y Y, XU S H, SUN X R, LI L Z, LI J. Effects of microbial fertilizers on growth, yield and quality of continuous cropping Rehmannia glutinosa. Northern Horticulture, 2022(19): 100-106. (in Chinese)
[44]
HELGASON T, FITTER A H. Natural selection and the evolutionary ecology of the arbuscular mycorrhizal fungi (Phylum Glomeromycota). Journal of Experimental Botany, 2009, 60(9): 2465-2480.

doi: 10.1093/jxb/erp144 pmid: 19429838
[45]
VERMA R K, VERMA S K, PANKAJ U, GUPTA A K, KHAN K, SHANKAR K. Improvement in the yield and quality of kalmegh (Andrographis paniculata Nees) under the sustainable production system. Natural Product Research, 2015, 29(3): 297-300.
[46]
PUGA-FREITAS R, BLOUIN M. A review of the effects of soil organisms on plant hormone signalling pathways. Environmental and Experimental Botany, 2015, 114: 104-116.
[47]
SINGH S, KUMAR V, DATTA S, RAMAMURTHY P C, SINGH J. Molecular mechanism and signaling pathways interplay between plant hormones during plant-microbe crosstalk. Microbial Management of Plant Stresses. Amsterdam: Elsevier, 2021: 93-105.
[40]
LENG L Q, CHANG J L, GENG K, LU Y H, MA K. Uncultivated Methylocystis species in paddy soil include facultative methanotrophs that utilize acetate. Microbial Ecology, 2015, 70(1): 88-96.
[39]
KUMAR A, TRIPTI, MALEVA M, BRUNO L B, RAJKUMAR M. Synergistic effect of ACC deaminase producing Pseudomonas sp. TR15a and siderophore producing Bacillus aerophilus TR15c for enhanced growth and copper accumulation in Helianthus annuus L. Chemosphere, 2021, 276: 130038.
[38]
LIN W W, LI N, CHEN L S, WU Z Y, LIN W X, SHEN L H. Effects of interspecific maize and soybean interactions on the community structure and diversity of rhizospheric bacteria. Chinese Journal of Eco-Agriculture, 2022, 30(1): 26-37. (in Chinese)
林伟伟, 李娜, 陈丽珊, 吴则焰, 林文雄, 沈荔花. 玉米与大豆种间互作对根际细菌群落结构及多样性的影响. 中国生态农业学报(中英文), 2022, 30(1): 26-37.
[37]
MUJAKIĆ I, PIWOSZ K, KOBLÍŽEK M. Phylum gemmatimonadota and its role in the environment. Microorganisms, 2022, 10(1): 151.
[36]
SHI Z J, ZHANG Z F, YUAN M, WANG S, YANG M, YAO Q, BA W N, ZHAO J, XIE B. Characterization of a high cadmium accumulating soil bacterium, Cupriavidus sp. WS2. Chemosphere, 2020, 247: 125834.
[35]
YEOH Y K, SEKIGUCHI Y, PARKS D H, HUGENHOLTZ P. Comparative genomics of candidate Phylum TM6 suggests that parasitism is widespread and ancestral in this lineage. Molecular Biology and Evolution, 2016, 33(4): 915-927.

doi: 10.1093/molbev/msv281 pmid: 26615204
[34]
LI Q M, ZHOU Y L, WEI Z F, WANG Y. Phylogenomic insights into distribution and adaptation of bdellovibrionota in marine waters. Microorganisms, 2021, 9(4): 757.
[33]
JOHNKE J, FRAUNE S, BOSCH T C G, HENTSCHEL U, SCHULENBURG H. Bdellovibrio and like organisms are predictors of microbiome diversity in distinct host groups. Microbial Ecology, 2020, 79(1): 252-257.
[32]
LI S, WU F Z. Diversity and co-occurrence patterns of soil bacterial and fungal communities in seven intercropping systems. Frontiers in Microbiology, 2018, 9: 1521.

doi: 10.3389/fmicb.2018.01521 pmid: 30034385
[31]
DI T J, ZHU Y Y, QIU M H, KAN J L, ZHANG X M, XU G H, SHEN Q R. Response of plasma membrane H+-ATPase of rice root to ammonium and nitrate nutrition. Chinese Journal of Rice Science, 2007, 21(4): 360-366. (in Chinese)
狄廷均, 朱毅勇, 仇美华, 阚建鸾, 张晓曼, 徐国华, 沈其荣. 水稻根系细胞膜H+-ATPase对铵硝营养的响应差异. 中国水稻科学, 2007, 21(4): 360-366.
[30]
CUI A H, HU Q X, WANG S B, LIU S, SUN J L, BAI Z G, HUANG G Q. Effects of maize and soybean intercropping on resource utilization efficiency and soil nutrient content. Jiangsu Agricultural Sciences, 2023, 51(10): 236-242. (in Chinese)
崔爱花, 胡启星, 王淑彬, 刘帅, 孙巨龙, 白志刚, 黄国勤. 玉米大豆带状间作对资源利用效率及土壤养分含量的影响. 江苏农业科学, 2023, 51(10): 236-242.
[29]
GU J C, WANG W M, WANG Z, LI L H, JIANG G J, WANG J P, CHENG Z B. Effects of maize and soybean intercropping on soil phosphorus bioavailability and microbial community structure in rhizosphere. Chinese Journal of Applied Ecology, 2023, 34(11): 3030-3038. (in Chinese)

doi: 10.13287/j.1001-9332.202311.015
顾嘉诚, 王文敏, 王振, 李鲁华, 蒋贵菊, 王家平, 程志博. 玉米/大豆间作对根际土壤磷素生物有效性和微生物群落结构的影响. 应用生态学报, 2023, 34(11): 3030-3038.

doi: 10.13287/j.1001-9332.202311.015
[28]
LI X F, WANG Z G, BAO X G, SUN J H, YANG S C, WANG P, WANG C B, WU J P, LIU X R, TIAN X L, WANG Y, LI J P, WANG Y, XIA H Y, MEI P P, WANG X F, ZHAO J H, YU R P, ZHANG W P, CHE Z X, GUI L G, CALLAWAY R M, TILMAN D, LI L. Long-term increased grain yield and soil fertility from intercropping. Nature Sustainability, 2021, 4(11): 943-950.
[27]
FENG C, HUANG B, FENG L S, ZHENG J M, BAI W, DU G J, XIANG W Y, CAI Q, ZHANG Z, SUN Z X. Effects of different configurations on nitrogen uptake and utilization characteristics of maize-PeanutIntercropping system in West Liaoning. Scientia Agricultura Sinica, 2022, 55(1): 61-73. doi: 10.3864/j.issn.0578-1752.sas-210177. (in Chinese)
冯晨, 黄波, 冯良山, 郑家明, 白伟, 杜桂娟, 向午燕, 蔡倩, 张哲, 孙占祥. 不同配置对辽西玉米‖花生间作系统氮素吸收利用的影响. 中国农业科学, 2022, 55(1): 61-73. doi: 10.3864/j.issn.0578-1752.sas-210177.
[26]
CHANG H H, SU Y B, FAN M P, WANG Z L, ZHAO J X, LI Y M. Rhizospheric microecological effects of corn and soybean intercropping in sloping farmland with red soil. Journal of Shanxi Agricultural University (Natural Science Edition), 2022, 42(2): 21-28. (in Chinese)
[1] ZHAO BoHui, ZHANG YingQuan, JING DongLin, LIU BaoHua, CHENG YuanYuan, SU YuHuan, TANG Na, ZHANG Bo, GUO BoLi, WEI YiMin. A Study on the Quality Stability of Wheat Grains at Designated Locations Across Multiple Years [J]. Scientia Agricultura Sinica, 2024, 57(9): 1833-1844.
[2] LIANG WangZhuang, TANG YaNan, LIU JiaHui, GUO XiaoJiang, DONG HuiXue, QI PengFei, WANG JiRui. Effect of Flour and Cooking/Baking Qualities by Sprouted Wheat [J]. Scientia Agricultura Sinica, 2024, 57(7): 1267-1280.
[3] REN Qiang, XU Ke, FAN ZhiLong, YIN Wen, FAN Hong, HE Wei, HU FaLong, CHAI Qiang. Nitrogen Fertilizer Postponing Application Benefits Wheat-Maize Intercropping by Reducing Soil Evaporation and Improving Water Use Efficiency [J]. Scientia Agricultura Sinica, 2024, 57(7): 1295-1307.
[4] YANG QiRui, LI LanTao, ZHANG Xiao, ZHANG Qian, ZHANG YinJie, ZHANG Duo, WANG YiLun. Effects of Potassium Application Dosage on Yield, Quality and Light Temperature Physiological Characteristics of Summer Peanut [J]. Scientia Agricultura Sinica, 2024, 57(7): 1335-1349.
[5] ZHAO ZhenJian, WANG Kai, CHEN Dong, SHEN Qi, YU Yang, CUI ShengDi, WANG JunGe, CHEN ZiYang, YU ShiXin, CHEN JiaMiao, WANG XiangFeng, TANG GuoQing. Integrated Aanalysis of Genome and DNA Methylation for Screening Key Genes Related to Pork Quality Traits [J]. Scientia Agricultura Sinica, 2024, 57(7): 1394-1406.
[6] YANG Yang, JIA MengHan, CHEN Can, ZHANG YiHan, TONG YuXin. Effects of Different Ratios of Green-Blue Light on Basil Growth and Its Energy Use Efficiency [J]. Scientia Agricultura Sinica, 2024, 57(6): 1167-1179.
[7] HUANG Hao, WU QingHong, ZHANG Yu, WANG Ye, LIU QingE, FANG YiDa, LUO ZiSheng. Effects of Novel Phase Change Coolant on the Postharvest Quality of Shiitake Mushrooms [J]. Scientia Agricultura Sinica, 2024, 57(5): 989-999.
[8] JIANG Wen, LIANG WenXin, PEI Fei, SU AnXiang, MA GaoXing, FANG Donglu, HU QiuHui, MA Ning. Effect of Pleurotus eryngii Powder on Quality Characteristics of Extruded Rice [J]. Scientia Agricultura Sinica, 2024, 57(4): 779-796.
[9] ZHU DaWei, ZHENG Xin, YU Jing, MOU RenXiang, CHEN MingXue, SHAO YaFang, ZHANG LinPing. Differences in Physicochemical Characteristics and Eating Quality Between High Taste Northern Japonica Rice and Southern Semi- Glutinous Japonica Rice Varieties in China [J]. Scientia Agricultura Sinica, 2024, 57(3): 469-483.
[10] ZHANG YongLi, ZHANG Ning, XU Jiao, XU DouDou, CHENG Fang, ZHANG ChengLong, WU BiBo, GONG YangCang, HE YunXin, WEI ShangZhi, TU XiaoJu, LIU AiYu, ZHOU ZhongHua. Effects of Different Strip Intercropping Patterns on the Growth and Productivity in Cotton [J]. Scientia Agricultura Sinica, 2024, 57(22): 4444-4458.
[11] DONG KuiJun, ZHANG YiTao, LIU HanWen, ZHANG JiZong, WANG WeiJun, WEN YanChen, LEI QiuLiang, WEN HongDa. Effects of Nitrogen Reduction Application of Summer Maize- Soybean Intercropping on Agronomic Traits and Economic Benefits as well as Its Yield of Subsequent Wheat [J]. Scientia Agricultura Sinica, 2024, 57(22): 4495-4506.
[12] XIA Yang, HAN GuangJie, LI ChuanMing, LIU Qin, ZHANG Nan, HUANG LiXin, LU YuRong, XU Bin, XU Jian. Survival Adaptability and Damage Potential of Spodoptera frugiperda in the Soybean-Maize Strip Intercropping [J]. Scientia Agricultura Sinica, 2024, 57(20): 4035-4044.
[13] MA JingE, XIONG XinWei, ZHOU Min, WU SiQi, HAN Tian, RAO YouSheng, WANG ZhangFeng, XU JiGuo. Full-Length Transcriptomic Analysis of Chicken Pituitary Reveals Candidate Genes for Testicular Trait [J]. Scientia Agricultura Sinica, 2024, 57(20): 4130-4144.
[14] XIE Qian, JIANG Lai, DING MingYue, LIU LingLing, CHEN QingXi. Metabolomic Analysis of Canarium album Fresh Food Quality Differences Based on Sensory Evaluation [J]. Scientia Agricultura Sinica, 2024, 57(2): 363-378.
[15] WANG XiaoJun, WANG JinLan, JU ZeLiang, LIANG GuoLing, JIA ZhiFeng, LIU WenHui, MA Xiang, MA JinXiu, LI Wen. Comprehensive Evaluation on Production Performance and Nutritional Quality of Different Varieties of Forage Oat in the Qinghai Lake Area [J]. Scientia Agricultura Sinica, 2024, 57(19): 3730-3742.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!