Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (14): 2732-2743.doi: 10.3864/j.issn.0578-1752.2024.14.003

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Research Progress of Southern Corn Rust and Resistance Breeding

WANG Shuai(), ZHANG RuYang(), WANG RongHuan, SONG Wei(), ZHAO JiuRan()   

  1. Maize Research Institute, Beijing Academy of Agriculture & Forestry Sciences/Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Beijing 100097
  • Received:2023-08-23 Accepted:2023-10-11 Online:2024-07-16 Published:2024-07-24
  • Contact: SONG Wei, ZHAO JiuRan

Abstract:

Maize is the most widely cultivated, used and highest yield crop in the world and China. Southern corn rust (SCR) is an air borne disease caused by Puccinia polysora Underw., which mainly occurs in tropical and subtropical maize growing areas. In recent years, SCR has become one of the major diseases in the Huang-Huai-hai maize production region due to the climate change, which directly leads to compromised grain quality and poor yields in maize and significantly jeopardizes maize production in China. At present, SCR usually spreads in a large area within a short period of time once occurred because most maize varieties promoted in China are susceptible, and conventional chemical measures is usually in vain. Therefore, cultivating resistant cultivars by exploiting resistance genes in maize germplasm resources is the most effective and economical strategy for controlling SCR. The highly resistant germplasm is scarce in maize resources, mainly from tropical and subtropical regions, and barely no temperate germplasm can be directly used in breeding practice. Compared with foreign maize germplasm, the highly resistant maize germplasms of China were much less, mainly from local landraces or P group materials containing tropical origins with relatively limited genetic variation. The identification and cloning of SCR resistance genes in maize is essential for promoting molecular marker-assisted breeding, as well as accelerating the breeding process of new varieties with desired resistance. At present, several SCR resistance genes have been identified and cloned, laying a foundation for molecular marker-assisted selection. Over the years, Chinese breeders have developed a number of elite maize inbred lines resistant to SCR with limited resistance germplasm resources, and successfully created disease-resistant hybrids. Recent studies on the genome of SCR pathogens revealed that pathogens have differentiated into highly toxic lineages in China, thus escaping the recognition of resistance genes. Therefore, the exploration and utilization of extensive genetic resources in resistant germplasm still need to be further strengthened. In this paper, we outlined the biological characteristics and hazards of SCR, systematically summarized the research progresses in the identification and utilization of maize germplasm resources resistant to SCR, the mapping and cloning of SCR resistant genes and the breeding of resistant varieties, and prospect the future research direction of SCR. This review will provide references for the prevention and control of SCR, as well as the breeding of resistant maize varieties.

Key words: maize, southern corn rust, germplasm resources, resistant gene, resistance breeding

Fig. 1

Southern corn rust symptoms"

Table 1

Major resistance gene identified and cloned on the short arm of chromosome 10"

基因
Gene
玉米自交系
Maize inbred line
位置
Location
参考文献
References
Rpp9 PT186208 与玉米普通锈病抗性基因Rp1d相距1.6 cM
It is 1.6 cM away from the maize common rust resistance gene, Rp1d
[32]
RppQ 齐319 Qi319 标记MA7和M-CCG/E-AGA157之间,相距分别为0.46和1.71 cM
It is between marker MA7 and M-CCG/E-AGA157, the physical distance is 0.46 cM and 1.71 cM, respectively
[36-37]
RppP25 P25 SSR标记P091和M271之间,物理距离约40 kb
The physical distance is about 40 kb between SSR markers P091 and M271
[38]
RppD W2D SSR标记umc1291和CAPS858之间,相距分别为2.9和0.8 cM
It is between SSR marker umc1291 and CAPS858, the physical distance is 2.9 cM and 0.8 cM, respectively
[39]
RppCML470 CML470 SSR标记umc1380和umc1291之间,相距分别为3.5和8.8 cM
It is between SSR marker umc1380 and umc1291, the physical distance is 3.5 cM and 8.8 cM, respectively
[40]
RppS SCML205 与标记IDP4823相距8.4 cM It is 8.4 cM away from marker IDP4823 [41]
RppK K22 已克隆Cloned [42]
Rpp12 冀库12 Jiku12 与标记phi063的遗传距离为4.2 cM It is 4.2 cM away from marker phi063 [43]
RppL2204 辽2204 Liao2204 与标记umc1380相距9.6 cM It is 9.6 cM away from marker umc1380 [44]
RppS313 S313 SNP标记A005915和标记A009920间,物理距离0.47 Mb
The physical distance is 0.47 Mb between SNP marker A005915 and A009920
[45]
RppM 京2416K Jing2416K 已克隆Cloned [47-48]
qSCR10.01 P178 标记UMC1380和C(10)3595071,物理距离1.34 Mb
The physical distance is 1.34 Mb between marker UMC1380 and C(10)3595071
[55]
RppC CML496 已克隆Cloned [58-59]

Fig.2

Improvement process of southern corn rust resistance"

[1]
MUELLER D, WISE K, SISSON A, ALLEN T, BERGSTROM G, BISSONNETTE K M, BRADLEY C, BYAMUKAMA E, CHILVERS M, COLLINS A, ESKER P, FASKE T, FRISKOP A, HAGAN A, HEINIGER R, HOLLIER C, ISAKEIT T, JACKSON- -ZIEMS T, JARDINE D, KELLY H, KLECZEWSKI N, KOEHLER A, KOENNING S, MALVICK D, MEHL H, MEYER R, PAUL P, PELTIER A J, PRICE P, ROBERTSON A, ROTH G, SIKORA E, SMITH D L, TANDE C, TELENKO D, TENUTA A, THIESSEN L, WIEBOLD W. Corn yield loss estimates due to diseases in the United States and Ontario, Canada, from 2016 to 2019. Plant Health Progress, 2020, 21(4): 238-247.
[2]
任转滩, 马毅, 任真真, 李合新, 李汉中. 南方玉米锈病的发生及防治对策. 玉米科学, 2005, 13(4): 124-126.
REN Z T, MA Y, REN Z Z, LI H X, LI H Z. The emergence of southern corn rust and its prevention-control countermeasure. Journal of Maize Sciences, 2005, 13(4): 124-126. (in Chinese)
[3]
SUN Q Y, LI L F, GUO F F, ZHANG K Y, DONG J Y, LUO Y, MA Z H. Southern corn rust caused by Puccinia polysora Underw: A review. Phytopathology Research, 2021, 3(1): 25.
[4]
LIU X F, XU J Y, GU Y L, SUN Q Y, YUAN W Y, MA Z H. Occurrence of Puccinia polysora causing southern corn rust in the northeast Huanghuaihai region of China. Plant Disease, 2018, 102(4): 826.
[5]
KING S B. Development of southern rust on maize at different stages of maturity. Plant Disease, 1982, 66(1): 477.
[6]
SCOTT G E, KING S B, ARMOUR J W Jr. Inheritance of resistance to southern corn rust in maize populations. Crop Science, 1984, 24(2): 265-267.
[7]
CROUCH J A, SZABO L J. Real-time PCR detection and discrimination of the southern and common corn rust pathogens Puccinia polysora and Puccinia sorghi. Plant Disease, 2011, 95(6): 624-632.
[8]
王晓鸣, 刘骏, 郭云燕, 段灿星, 朱振东, 孙素丽, 杨知还. 中国玉米南方锈病初侵染源的多源性. 玉米科学, 2020, 28(3): 1-14, 30.
WANG X M, LIU J, GUO Y Y, DUAN C X, ZHU Z D, SUN S L, YANG Z H. Multiorigins of initial infection sources of Puccinia polysora causing southern rust of maize in China. Journal of Maize Sciences, 2020, 28(3): 1-14, 30. (in Chinese)
[9]
HOLLIER C, KING S B. Effect of dew period and temperature on infection of seedling maize plants by Puccinia polysora. Plant Disease, 1985, 69(3): 219-220.
[10]
杨雪, 丁小兰, 何增磊, 马占鸿. 玉米南方锈病发生温度范围测定. 植物保护, 2015, 41(5): 145-147, 150.
YANG X, DING X L, HE Z L, MA Z H. Determination of temperature required by southern corn rust. Plant Protection, 2015, 41(5): 145-147, 150. (in Chinese)
[11]
BREWBAKER J L, KIM S K, SO Y S, LOGROÑO M, MOON H G, MING R, LU X W, JOSUE A D. General resistance in maize to southern rust (Puccinia polysora underw.). Crop Science, 2011, 51(4): 1393-1409.
[12]
段定仁, 何宏珍. 海南岛玉米上的多堆柄锈菌. 真菌学报, 1984, 3(2): 125-126.
DUAN D R, HE H Z. Description of a rust Puccinia polysora on corn in Hainan Island. Mycosystema, 1984, 3(2): 125-126. (in Chinese)
[13]
汤少云, 徐曾娴, 胡冬梅, 王凌锋, 纪辉. 武汉市2014年秋玉米锈病发生特点与防治措施. 湖北植保, 2015(2): 46-47.
TANG S Y, XU Z X, HU D M, WANG L F, JI H. Occurrence characteristics and control measures of corn rust in autumn of 2014 in Wuhan. Hubei Plant Protection, 2015(2): 46-47. (in Chinese)
[14]
刘杰, 姜玉英, 曾娟, 纪国强, 刘莉, 邱坤, 徐永伟. 2015年我国玉米南方锈病重发特点和原因分析. 中国植保导刊, 2016, 36(5): 44-47.
LIU J, JIANG Y Y, ZENG J, JI G Q, LIU L, QIU K, XU Y W. Anaysis on the characteristics and causes of maize southern rust in China in 2015. China Plant Protection, 2016, 36(5): 44-47. (in Chinese)
[15]
赵猛. 2021年黄淮海地区玉米南方锈病发生情况和为害损失调查. 农业科技通讯, 2022(7): 118-120.
ZHAO M. Investigation on the occurrence and damage loss of maize southern rust in Huang-Huai-Hai area in 2021. Bulletin of Agricultural Science and Technology, 2022(7): 118-120. (in Chinese)
[16]
李石初, 杜青. 玉米种质资源抗南方玉米锈病鉴定初报. 现代农业科技, 2010(21): 187, 189.
LI S C, DU Q. Preliminary report on identification of maize germplasm resources resistant to southern maize rust. Modern Agricultural Science and Technology, 2010(21): 187, 189. (in Chinese)
[17]
黄飞燕. 玉米对南方锈病抗性资源筛选及抗病特征[D]. 雅安: 四川农业大学, 2011.
HUANG F Y. Evaluation of maize germplasms for resistance to Puccinia polysora and resistant characteristics[D]. Yaan: Sichuan Agricultural University, 2011. (in Chinese)
[18]
江凯, 杜青, 秦子惠, 陈茂功, 李石初, 孙素丽, 武小菲, 郭云燕, 石云素, 林小虎, 王晓鸣. 玉米种质资源抗南方锈病鉴定. 植物遗传资源学报, 2013, 14(4): 711-714.

doi: 10.13430/j.cnki.jpgr.2013.04.021
JIANG K, DU Q, QIN Z H, CHEN M G, LI S C, SUN S L, WU X F, GUO Y Y, SHI Y S, LIN X H, WANG X M. Identification of resistance to southern corn rust (Puccinia polysora underw) in maize germplasm. Journal of Plant Genetic Resources, 2013, 14(4): 711-714. (in Chinese)
[19]
杜青, 唐照磊, 李石初, 农倩, 覃兰秋. 玉米种质资源抗南方锈病鉴定与评价. 南方农业学报, 2013, 44(5): 765-768.
DU Q, TANG Z L, LI S C, NONG Q, QIN L Q. Identification and evaluation of maize germplasm resources against southern corn rust. Journal of Southern Agriculture, 2013, 44(5): 765-768. (in Chinese)
[20]
韩丽苹. 玉米南方锈病抗性资源鉴定和主效抗病基因定位[D]. 郑州: 河南农业大学, 2014.
HAN L P. Identification of germplasm and mapping major gene resistance to Puccinia polysora in maize[D]. Zhengzhou: Henan Agricultural University, 2014. (in Chinese)
[21]
姚国旗, 曹冰, 单娟, 王云祥, 韩志景, 汪黎明. 玉米南方锈病抗性新种质的筛选. 山东农业科学, 2014, 46(7): 112-116.
YAO G Q, CAO B, SHAN J, WANG Y X, HAN Z J, WANG L M. Screening of new maize germplasms resistant to southern rust. Shandong Agricultural Sciences, 2014, 46(7): 112-116. (in Chinese)
[22]
陈文娟, 李万昌, 杨知还, 孙素丽, 王晓鸣, 朱振东, 段灿星. 玉米抗南方锈病种质资源初步鉴定及遗传多样性分析. 植物遗传资源学报, 2018, 19(2): 225-231, 242.

doi: 10.13430/j.cnki.jpgr.2018.02.005
CHEN W J, LI W C, YANG Z H, SUN S L, WANG X M, ZHU Z D, DUAN C X. Preliminary identification and genetic diversity analysis of maize germplasm resources for resistance to southern corn rust. Journal of Plant Genetic Resources, 2018, 19(2): 225-231, 242. (in Chinese)
[23]
冒宇翔, 薛林, 王莉萍, 陈国清, 陆虎华, 石明亮, 黄小兰, 周广飞, 张振良, 赵浚宇, 郝德荣. 玉米抗锈病自交系种质的发掘与评价. 玉米科学, 2017, 25(4): 55-61.
MAO Y X, XUE L, WANG L P, CHEN G Q, LU H H, SHI M L, HUANG X L, ZHOU G F, ZHANG Z L, ZHAO J Y, HAO D R. Exploitation and evaluation of rust- resistant maize germplasms. Journal of Maize Sciences, 2017, 25(4): 55-61. (in Chinese)
[24]
ZHOU G F, HAO D R, MAO Y X, ZHU Q L, CHEN G Q, LU H H, SHI M L, HUANG X L, ZHANG Z L, ZHAO J Y, XUE L. Identification of genetic loci conferring partial resistance to southern corn rust through a genome-wide association study. European Journal of Plant Pathology, 2018, 150(4): 1083-1090.
[25]
刘秀峰, 吴红宇, 楼辰军, 杨兆顺, 袁文娅, 许高平. 部分玉米种质南繁区自然条件下抗锈性评价. 山西农业科学, 2019, 47(3): 425-427, 436.
LIU X F, WU H Y, LOU C J, YANG Z S, YUAN W Y, XU G P. Evaluation of rust resistance of some maize germplasms under natural conditions in off-season multiplication. Journal of Shanxi Agricultural Sciences, 2019, 47(3): 425-427, 436. (in Chinese)
[26]
蒙成, 黄艳花. 外引改良玉米自交系对广西主要病害抗性鉴定. 江苏农业科学, 2019, 47(7): 111-115.
MENG C, HUANG Y H. Identification of main disease resistance of modified maize self-breeding lines in Guangxi area. Jiangsu Agricultural Sciences, 2019, 47(7): 111-115. (in Chinese)
[27]
李余良, 刘建华, 胡建广, 郑锦荣, 李春艳. 糯玉米种质资源对南方玉米锈病抗性鉴定. 广东农业科学, 2011, 38(S1): 24-25.
LI Y L, LIU J H, HU J G, ZHENG J R, LI C Y. Resistance identification of waxy corn germplasm resources to southern corn rust. Guangdong Agricultural Sciences, 2011, 38(S1): 24-25. (in Chinese)
[28]
田耀加, 王秋燕, 吴蓓, 叶伟忠, 陈红弟. 鲜食玉米抗南方锈病种质资源鉴定筛选. 广东农业科学, 2021, 48(7): 111-117.
TIAN Y J, WANG Q Y, WU B, YE W Z, CHEN H D. Identification and selection of fresh corn germplasm resources with resistance to southern corn rust. Guangdong Agricultural Sciences, 2021, 48(7): 111-117. (in Chinese)
[29]
STOREY H H, HOWLAND A K. Resistance in maize to the Tropical American rust fungus, Puccinia polysora. Heredity, 1959, 13(1): 61-65.
[30]
ROBERT A L. Host races and ranges of the corn rusts. Phytopathology, 1962, 52: 1010-1012.
[31]
ULLSTRUP A J. Inheritance and linkage of a gene determining resistance in maize to an American race of Fuccinia polysora. Phytopathology, 1965, 55: 425-428.
[32]
STOREY H H, HOWLAND A K. Resistance in maize to a third East African race of Puccinia polysora underw. Annals of Applied Biology, 1967, 60(2): 297-303.
[33]
FUTRELL M C, HOOKER A L, GENE S E. Resistance in maize to corn rust, controlled by a single dominant gene. Crop Science, 1975, 15(4): 597-599.
[34]
CHÁVEZ-MEDINA J A, LEYVA-LÓPEZ N E, PATAKY J K. Resistance to Puccinia polysora in maize accessions. Plant Disease, 2007, 91(11): 1489-1495.
[35]
DOLEZAL W, TIWARI K, KEMERAIT R, KICHLER J, SAPP P, PATAKY J. An unusual occurrence of southern rust, caused by Rpp9-virulent Puccinia polysora, on corn in southwestern Georgia. Plant Disease, 2009, 93(6): 676.
[36]
CHEN C X, WANG Z L, YANG D E, YE C J, ZHAO Y B, JIN D M, WENG M L, WANG B. Molecular tagging and genetic mapping of the disease resistance gene, RppQ, to southern corn rust. Theoretical Applied Genetics, 2004, 108(5): 945-950.
[37]
ZHOU C J, CHEN C X, CAO P X, WU S W, SUN J W, JIN D M, WANG B. Characterization and fine mapping of RppQ, a resistance gene to southern corn rust in maize. Molecular Genetics and Genomics, 2007, 278(6): 723-728.
[38]
ZHAO P F, ZHANG G B, WU X J, LI N, SHI D Y, ZHANG D F, JI C F, XU M L, WANG S C. Fine mapping of RppP25, a southern rust resistance gene in maize. Journal of Integrative Plant Biology, 2013, 55(5): 462-472.
[39]
ZHANG Y, XU L, ZHANG D F, DAI J R, WANG S C. Mapping of southern corn rust-resistant genes in the W2D inbred line of maize (Zea mays L.). Molecular Breeding, 2010, 25(3): 433-439.
[40]
姚国旗, 单娟, 曹冰, 崔良国, 都森烈, 韩志景, 刘铁山, 李翠兰, 汪黎明. 玉米自交系CML470抗南方锈病基因的定位. 植物遗传资源学报, 2013, 14(3): 518-522.

doi: 10.13430/j.cnki.jpgr.2013.03.022
YAO G Q, SHAN J, CAO B, CUI L G, DU S L, HAN Z J, LIU T S, LI C L, WANG L M. Mapping the maize southern rust resistance gene of inbred line CML470. Journal of Plant Genetic Resources, 2013, 14(3): 518-522. (in Chinese)
[41]
WU X J, LI N, ZHAO P F, HE Y, WANG S C. Geographic and genetic identification of RppS, a novel locus conferring broad resistance to southern corn rust disease in China. Euphytica, 2015, 205(1): 17-23.
[42]
CHEN G S, ZHANG B, DING J Q, WANG H Z, DENG C, WANG J L, YANG Q H, PI Q Y, ZHANG R Y, ZHAI H Y, DONG J F, HUANG J S, HOU J B, WU J H, QUE J M, ZHANG F, LI W Q, MIN H X, TABOR G, LI B L, LIU X G, ZHAO J R, YAN J B, LAI Z B. Cloning southern corn rust resistant gene RppK and its cognate gene AvrRppK from Puccinia polysora. Nature Communications, 2022, 13(1): 4392.
[43]
张小利. 玉米对大斑病和南方锈病抗病性研究[D]. 北京: 中国农业科学院, 2013.
ZHANG X L. Study on the resistance of maize to northern corn leaf blight and southern corn rust[D]. Beijing: Chinese Academy of Agricultural Sciences, 2013. (in Chinese)
[44]
江凯. 玉米对南方锈病的抗病性研究[D]. 秦皇岛: 河北科技师范学院, 2013.
JIANG K. Characterization of maize resistance to Puccinia polysora[D]. Qinhuangdao: Hebei Normal University of Science and Technology, 2013. (in Chinese)
[45]
王兵伟, 覃嘉明, 时成俏, 郑加兴, 覃永嫒, 黄安霞. 一个高抗玉米南方锈病基因的QTL定位及遗传分析. 中国农业科学, 2019, 52(12): 2033-2041. doi: 10.3864/j.issn.0578-1752.2019.12.002.
WANG B W, QIN J M, SHI C Q, ZHENG J X, QIN Y A, HUANG A X. QTL Mapping and genetic analysis of a gene with high resistance to southern corn rust. Scientia Agricultura Sinica, 2019, 52(12): 2033-2041. doi: 10.3864/j.issn.0578-1752.2019.12.002. (in Chinese)
[46]
WANG H Z, HOU J B, YE P, HU L, HUANG J S, DAI Z K, ZHANG B, DAI S, QUE J M, MIN H X, CHEN G S, WANG Y B, JIANG M, LIANG Y, LI L, ZHANG X C, LAI Z B. A teosinte-derived allele of a MYB transcription repressor confers multiple disease resistance in maize. Molecular Plant, 2021, 14(11): 1846-1863.

doi: 10.1016/j.molp.2021.07.008 pmid: 34271176
[47]
WANG S, ZHANG R Y, SHI Z, ZHAO Y X, SU A G, WANG Y D, XING J F, GE J R, LI C H, WANG X Q, WANG J D, SUN X, LIU Q, CHEN Y N, ZHANG Y X, WANG S S, SONG W, ZHAO J R. Identification and fine mapping of RppM, a southern corn rust resistance gene in maize. Frontiers in Plant Science, 2020, 11: 1057.
[48]
WANG S, WANG X Q, ZHANG R Y, LIU Q, SUN X, WANG J D, WANG Y D, XING J F, LIU Y, ZHAO Y X, SHI Z, SU A G, LI C H, XIAO S L, JIAO Y Y, LI Z Y, WANG R H, SONG W, ZHAO J R. RppM, encoding a typical CC-NBS-LRR protein, confers resistance to southern corn rust in maize. Frontiers in Plant Science, 2022, 13: 951318.
[49]
HOLLAND J B, UHR D V, JEFFERS D, GOODMAN M M. Inheritance of resistance to southern corn rust in tropical-by-corn-belt maize populations. Theoretical and Applied Genetics, 1998, 96(2): 232-241.
[50]
JINES M P, BALINT-KURTI P, ROBERTSON-HOYT L A, MOLNAR T, HOLLAND J B, GOODMAN M M. Mapping resistance to Southern rust in a tropical by temperate maize recombinant inbred topcross population. Theoretical and Applied Genetics, 2007, 114(4): 659-667.

pmid: 17177063
[51]
WANLAYAPORN K, AUTHRAPUN J, VANAVICHIT A, TRAGOONRUNG S. QTL mapping for partial resistance to southern corn rust using RILs of tropical sweet corn. American Journal of Plant Sciences, 2013, 4(4): 878-889.
[52]
DENG C, LI H M, LI Z M, TIAN Z Q, CHEN J F, CHEN G S, ZHANG X C, DING J Q, CHANG Y X. New QTL for resistance to Puccinia polysora underw in maize. Journal of Applied Genetics, 2019, 60(2): 147-150.
[53]
陈文娟, 路璐, 李万昌, 张小杰, 孙素丽, 朱振东, 王晓鸣, 段灿星. 玉米抗南方锈病基因的QTL定位. 植物遗传资源学报, 2019, 20(3): 521-529.

doi: 10.13430/j.cnki.jpgr.20180831001
CHEN W J, LU L, LI W C, ZHANG X J, SUN S L, ZHU Z D, WANG X M, DUAN C X. QTL mapping for resistance to southern corn rust in maize. Journal of Plant Genetic Resources, 2019, 20(3): 521-529. (in Chinese)
[54]
MU X H, DAI Z Z, GUO Z Y, ZHANG H, YANG J P, GAN X K, LI J K, LIU Z H, TANG J H, GOU M Y. Systematic dissection of disease resistance to southern corn rust by bulked-segregant and transcriptome analysis. The Crop Journal, 2022, 10(2): 426-435.
[55]
艾堂顺, 田志强, 李会敏, 邓策, 丁俊强, 张学林, 刘海富, 朱伟岭, 李志敏. 玉米南方锈病抗病QTL鉴定和效应分析. 河南农业大学学报, 2018, 52(4): 514-518.
AI T S, TIAN Z Q, LI H M, DENG C, DING J Q, ZHANG X L, LIU H F, ZHU W L, LI Z M. Mapping and effectiveness analysis for resistance genes of southern corn rust in maize. Journal of Henan Agricultural University, 2018, 52(4): 514-518. (in Chinese)
[56]
DENG C, LV M, LI X Y, ZHAO X D, LI H M, LI Z M, TIAN Z Q, LEONARD A, JAQUETH J, LI B L, HAO J J, DING J Q. Identification and fine mapping of qSCR4.01, a novel major QTL for resistance to Puccinia polysora in maize. Plant Disease, 2020, 104(7): 1944-1948.
[57]
LU L, XU Z N, SUN S L, DU Q, ZHU Z D, WENG J F, DUAN C X. Discovery and fine mapping of qSCR6.01, a novel major QTL conferring southern rust resistance in maize. Plant Disease, 2020, 104(7): 1918-1924.
[58]
LV M, DENG C, LI X Y, ZHAO X D, LI H M, LI Z M, TIAN Z Q, LEONARD A, JAQUETH J, LI B L, HAO J J, CHANG Y X, DING J Q. Identification and fine-mapping of RppCML496, a major QTL for resistance to Puccinia polysora in maize. The Plant Genome, 2021, 14(1): e20062.
[59]
DENG C, LEONARD A, CAHILL J, LV M, LI Y R, THATCHER S, LI X Y, ZHAO X D, DU W J, LI Z, LI H M, LLACA V, FENGLER K, MARSHALL L, HARRIS C, TABOR G, LI Z M, TIAN Z Q, YANG Q H, CHEN Y H, TANG J H, WANG X T, HAO J J, YAN J B, LAI Z B, FEI X H, SONG W B, LAI J S, ZHANG X C, SHU G P, WANG Y B, CHANG Y X, ZHU W L, XIONG W, SUN J, LI B L, DING J Q. The RppC-AvrRppC NLR-effector interaction mediates the resistance to southern corn rust in maize. Molecular Plant, 2022, 15(5): 904-912.
[60]
DE SOUZA CAMACHO L R, COAN M M D, SCAPIM C A, BARTH PINTO R J, TESSMANN D J, CONTRERAS-SOTO R I. A genome‐wide association study for partial resistance to southern corn rust in tropical maize. Plant Breeding, 2019, 138(6): 770-780.
[61]
SUN G C, MURAL R V, TURKUS J D, SCHNABLE J C. Quantitative resistance loci to southern rust mapped in a temperate maize diversity panel. Phytopathology, 2022, 112(3): 579-587.
[62]
LI J L, CHENG D H, GUO S W, CHEN C, WANG Y W, ZHONG Y, QI X L, LIU Z K, WANG D, WANG Y D, LIU W X, LIU C X, CHEN S J. Genome-wide association and genomic prediction for resistance to southern corn rust in DH and testcross populations. Frontiers in Plant Science, 2023, 14: 1109116.
[63]
WANG S X, CHEN Z, TIAN L, DING Y Z, ZHANG J, ZHOU J L, LIU P, CHEN Y H, WU L J. Comparative proteomics combined with analyses of transgenic plants reveal ZmREM1.3 mediates maize resistance to southern corn rust. Plant Biotechnology Journal, 2019, 17(11): 2153-2168.

doi: 10.1111/pbi.13129 pmid: 30972847
[64]
AIME M C, MCTAGGART A R, MONDO S J, DUPLESSIS S. Phylogenetics and phylogenomics of rust fungi. Advances in Genetics, 2017, 100: 267-307.

doi: S0065-2660(17)30039-1 pmid: 29153402
[65]
TOBIAS P A, SCHWESSINGER B, DENG C H, WU C, DONG C M, SPERSCHNEIDER J, JONES A, LOU Z Y, ZHANG P, SANDHU K, SMITH G R, TIBBITS J, CHAGNÉ D, PARK R F. Austropuccinia psidii, causing myrtle rust, has a gigabase-sized genome shaped by transposable elements. Genes Genomes Genetics, 2021, 11(3): jkaa015.
[66]
SUN Q Y, LIU J, ZHANG K Y, HUANG C, LI L F, DONG J Y, LUO Y, MA Z H. De novo transcriptome assembly, polymorphic SSR markers development and population genetics analyses for southern corn rust (Puccinia polysora). Scientific Reports, 2021, 11(1): 18029.
[67]
LIANG J M, LI Y J, DODDS P N, FIGUEROA M, SPERSCHNEIDER J, HAN S L, TSUI C K M, ZHANG K Y, LI L F, MA Z H, CAI L. Haplotype-phased and chromosome-level genome assembly of Puccinia polysora, a giga-scale fungal pathogen causing southern corn rust. Molecular Ecology Resources, 2023, 23(3): 601-620.
[68]
叶金才. 育成我国首例对玉米南方锈病免疫系齐319. 中国农业科学, 2000, 33(4): 110. doi: 10.3864/j.issn.0578-1752.2000-33-4-112.
YE J C. Breeding the first immune line Qi 319 to maize southern rust in China. Scientia Agricultura Sinica, 2000, 33(4): 110. doi: 10.3864/j.issn.0578-1752.2000-33-4-112. (in Chinese)
[69]
甄广田, 罗玉鑫, 张振平. 玉米种质沈137抗病性及其利用潜力分析. 作物杂志, 2011(4): 112-114.
ZHEN G T, LUO Y X, ZHANG Z P. Analysis of potential utilization and disease-resistance of maize germplasm “Shenl37”. Crops, 2011(4): 112-114. (in Chinese)
[70]
许启凤. 优质, 高产玉米新品种农大108的选育与推广. 中国农业大学学报, 2003, 8(1): 25-26.
XU Q F. Breeding and popularization of a new maize variety nongda 108 with good quality and high yield. Journal of China Agricultural University, 2003, 8(1): 25-26. (in Chinese)
[71]
李发民, 毛建昌, 李向拓. 玉米自交系K22的选育及配合力分析. 甘肃农业大学学报, 2004, 39(3): 312-315.
LI F M, MAO J C, LI X T. The breeding of maize inbred line K22 and the analysis on the combine ability. Journal of Gansu Agricultural University, 2004, 39(3): 312-315. (in Chinese)
[72]
张志方, 张素娟, 张守林, 王良发, 章慧玉. 高抗南方锈病玉米自交系浚M9的选育与应用. 玉米科学, 2023, 31(1): 9-15.
ZHANG Z F, ZHANG S J, ZHANG S L, WANG L F, ZHANG H Y. Breeding and utilization of maize inbred line Xun M9 with high resistance to southern maize rust. Journal of Maize Sciences, 2023, 31(1): 9-15. (in Chinese)
[73]
赵久然, 王元东, 宋伟, 张如养, 李春辉, 刘新香. 玉米骨干自交系京2416的选育与应用. 植物遗传资源学报, 2020, 21(5): 1051-1057.

doi: 10.13430/j.cnki.jpgr.20200221001
ZHAO J R, WANG Y D, SONG W, ZHANG R Y, LI C H, LIU X X. Breeding and application of maize founder inbred line Jing2416. Journal of Plant Genetic Resources, 2020, 21(5): 1051-1057. (in Chinese)
[74]
蒋雅娟, 贺岩, 张登峰, 徐丽, 苏胜宝, 戴景瑞, 王守才. 玉米抗南方型锈病基因共分离分子标记的研究. 作物学报, 2007, 33(5): 849-852.
JIANG Y J, HE Y, ZHANG D F, XU L, SU S B, DAI J R, WANG S C. Co-segregation molecular marker for southern corn rust resistance trait. Acta Agronomica Sinica, 2007, 33(5): 849-852. (in Chinese)
[75]
赵峰. 分子标记在玉米抗病基因聚合及其遗传传递分析中的应用[D]. 青岛: 青岛农业大学, 2008.
ZHAO F. Application of molecular markers in maize disease resistance gene polymerization and genetic transmission analysis[D]. Qingdao: Qingdao Agricultural University, 2008. (in Chinese)
[76]
李少博, 宋伟, 王凤格, 赵久然, 余辉, 蔚荣海. 分子标记辅助玉米自交系京24抗南方锈病的改良. 分子植物育种, 2012, 10(4): 440-445.
LI S B, SONG W, WANG F G, ZHAO J R, YU H, WEI R H. Study on the improvement of maize inbred line Jing24 to resist corn southern rust with molecular marker-assisted selection. Molecular Plant Breeding, 2012, 10(4): 440-445. (in Chinese)
[77]
张斌. 分子标记辅助选择玉米兼抗粗缩病和南方锈病的育种材料[D]. 济南: 山东大学, 2012.
ZHANG B. Pyramiding resistance to maize rough dwarf disease and southern corn rust by marker-assisted selection[D]. Jinan: Shandong University, 2012. (in Chinese)
[78]
谭华, 邹成林, 郑德波, 韦新兴, 黄爱花, 蒋维萍, 韦慧, 黄开健. 分子标记辅助选择抗南方玉米锈病材料. 广东农业科学, 2016, 43(7): 6-10.
TAN H, ZOU C L, ZHENG D B, WEI X X, HUANG A H, JIANG W P, WEI H, HUANG K J. Selection of materials with resistance to southern corn rust (SCR) by marker-assistant selection (MAS) in maize (Zea mays L.). Guangdong Agricultural Sciences, 2016, 43(7): 6-10. (in Chinese)
[79]
ZHANG N, QI X T, LI X F, LI G Y, LI G K, HU J G. Introgression of the RppQ gene from field corn improves southern rust resistance in sweet corn. Molecular Breeding, 2022, 42(9): 53.
[1] FAN Hong, YIN Wen, HU FaLong, FAN ZhiLong, ZHAO Cai, YU AiZhong, HE Wei, SUN YaLi, WANG Feng, CHAI Qiang. Compensation Potential of Dense Planting on Nitrogen Reduction in Maize Yield in Oasis Irrigation Area [J]. Scientia Agricultura Sinica, 2024, 57(9): 1709-1721.
[2] HUANG LiQiang, JIANG Ru, ZHU BoZhi, PENG Huan, XU Chong, SONG JiaXiong, CHEN Min, LI YongQing, HUANG WenKun, PENG DeLiang. Identification and Evaluation of Major Potato Cultivars Resistance to Globodera rostochiensis and Detection of Their H1 Resistance Gene Marker [J]. Scientia Agricultura Sinica, 2024, 57(8): 1506-1516.
[3] WANG ChengZe, ZHANG Yan, FU Wei, JIA JingZhe, DONG JinGao, SHEN Shen, HAO ZhiMin. Bioinformatics and Expression Pattern Analysis of Maize ACO Gene Family [J]. Scientia Agricultura Sinica, 2024, 57(7): 1308-1318.
[4] GAO ChenXi, HAO LuYang, HU Yue, LI YongXiang, ZHANG DengFeng, LI ChunHui, SONG YanChun, SHI YunSu, WANG TianYu, LI Yu, LIU XuYang. Analysis of Transposable Element Associated Epigenetic Regulation under Drought in Maize [J]. Scientia Agricultura Sinica, 2024, 57(6): 1034-1048.
[5] ZHAO KaiNan, DING Hao, LIU AKang, JIANG ZongHao, CHEN GuangZhou, FENG Bo, WANG ZongShuai, LI HuaWei, SI JiSheng, ZHANG Bin, BI XiangJun, LI Yong, LI ShengDong, WANG FaHong. Nitrogen Fertilizer Reduction and Postponing for Improving Plant Photosynthetic Physiological Characteristics to Increase Wheat- Maize and Annual Yield and Economic Return [J]. Scientia Agricultura Sinica, 2024, 57(5): 868-884.
[6] WANG Yu, ZHANG YuPeng, ZHU GuanYa, LIAO HangXi, HOU WenFeng, GAO Qiang, WANG Yin. Effects of Localized Nitrogen Supply on Plant Growth and Water and Nitrogen Use Efficiencies of Maize Seedling Under Drought Stress [J]. Scientia Agricultura Sinica, 2024, 57(5): 919-934.
[7] GAO ShangJie, LIU XingRen, LI YingChun, LIU XiaoWan. Effects of Biochar and Straw Return on Greenhouse Gas Emissions and Global Warming Potential in the Farmland [J]. Scientia Agricultura Sinica, 2024, 57(5): 935-949.
[8] LI QianChuan, XU ShiWei, ZHANG YongEn, ZHUANG JiaYu, LI DengHua, LIU BaoHua, ZHU ZhiXun, LIU Hao. Stacking Ensemble Learning Modeling and Forecasting of Maize Yield Based on Meteorological Factors [J]. Scientia Agricultura Sinica, 2024, 57(4): 679-697.
[9] CAO WenZhuo, YU ZhenWen, ZHANG YongLi, ZHANG Zhen, SHI Yu, WANG YongJun. The Difference of Grain Starch Accumulation Dynamics and Yield Formation of Spring Maize Under Different Nitrogen Application Rates in Black Soil [J]. Scientia Agricultura Sinica, 2024, 57(22): 4431-4443.
[10] DONG KuiJun, ZHANG YiTao, LIU HanWen, ZHANG JiZong, WANG WeiJun, WEN YanChen, LEI QiuLiang, WEN HongDa. Effects of Nitrogen Reduction Application of Summer Maize- Soybean Intercropping on Agronomic Traits and Economic Benefits as well as Its Yield of Subsequent Wheat [J]. Scientia Agricultura Sinica, 2024, 57(22): 4495-4506.
[11] HAN XuDong, YANG ChuanQi, ZHANG Qing, LI YaWei, YANG XiaXia, HE JiaTian, XUE JiQuan, ZHANG XingHua, XU ShuTu, LIU JianChao. QTL Mapping and Candidate Gene Screening for Nitrogen Use Efficiency in Maize [J]. Scientia Agricultura Sinica, 2024, 57(21): 4175-4191.
[12] GUO Ya, REN Hao, WANG HongZhang, ZHANG JiWang, ZHAO Bin, REN BaiZhao, LIU Peng. High Temperature and Drought Combined Stress Inhibited Photosystem Ⅱ Performance and Decreased Grain Yield of Summer Maize [J]. Scientia Agricultura Sinica, 2024, 57(21): 4205-4220.
[13] TIAN LongBing, SHEN ZhaoYin, ZHAO XiaoTian, ZHANG Fang, HOU WenFeng, GAO Qiang, WANG Yin. Interactive Effects of Planting Density and Nitrogen Application Rate on Plant Grain Yield and Water Use Efficiency of Two Maize Cultivars [J]. Scientia Agricultura Sinica, 2024, 57(21): 4221-4237.
[14] XIA Yang, HAN GuangJie, LI ChuanMing, LIU Qin, ZHANG Nan, HUANG LiXin, LU YuRong, XU Bin, XU Jian. Survival Adaptability and Damage Potential of Spodoptera frugiperda in the Soybean-Maize Strip Intercropping [J]. Scientia Agricultura Sinica, 2024, 57(20): 4035-4044.
[15] QI Xin, WANG Yang, HUANG YuFang, YE YouLiang, GUO YuLong, ZHAO YaNan. Nitrogen Nutrition Diagnosis Method Based on Mobile Phone Image of Summer Maize Canopy [J]. Scientia Agricultura Sinica, 2024, 57(20): 4094-4106.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!