Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (6): 1080-1090.doi: 10.3864/j.issn.0578-1752.2024.06.005

• PLANT PROTECTION • Previous Articles     Next Articles

Autophagy-Related Gene FpAtg3 Involves in Growth and Pathogenicity of Fusarium pseudograminearum

DONG ZaiFang(), DING TengTeng, SHAN YiXuan, LI HongLian, CHEN LinLin(), XING XiaoPing()   

  1. College of Plant Protection, Henan Agricultural University/National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450002
  • Received:2023-10-25 Accepted:2023-12-08 Online:2024-03-25 Published:2024-03-25
  • Contact: CHEN LinLin, XING XiaoPing

Abstract:

【Background】 Fusarium crown rot (FCR), caused by Fusarium pseudograminearum, is one of the newly-occurred destructive diseases in the main wheat-growing region of China. Autophagy is an evolutionarily conserved cellular process that regulates the growth, development and infection of different phytopathogenic fungi. However, the role of autophagy in F. pseudograminearum is still unknown.【Objective】 To clarify the role of the autophagy gene FpAtg3 in the growth and pathogenicity of F. pseudograminearum, understand the mechanisms of the fungal infection, and to provide a theoretical basis for FCR prevention.【Method】 The known Atg3 proteins of different fungi were downloaded from NCBI, and the MEGA 5.05 was used to construct the phylogenetic tree of Atg3 proteins. The Split-PCR approach was used to generate FpAtg3 gene-replacement constructs, and then the FpAtg3 deletion mutants (ΔFpAtg3) were constructed by polyethylene glycol (PEG)-mediated protoplast fungal transformation, and obtained by hygromycin resistance screening and PCR detection. The sequence of FpAtg3 and its native promoter was amplified and fused in pKNTG vector. The plasmid of pKNTG-FpAtg3 was then introduced into ΔFpAtg3 protoplasts for the complementation assay. The hyphal growth and colony morphology of the wild type, ΔFpAtg3 and the complementary (FpAtg3-C) strains were assayed on PDA, CM and MM plates. The hyphal blocks were cultured on PDA plates for hyphal morphology and hyphal fusion test; hyphal blocks were introduced into liquid CMC medium to assess conidiation and conidia morphology; conidia were cultured on Petri dishes to explore conidial anastomosis tube (CAT)-mediated fusion. The hyphal blocks were inoculated on wheat coleoptiles and barley leaves to explore pathogenicity, and the pot-culture experiment was performed for FCR assay. Congo red, sodium dodecyl sulphate (SDS) and H2O2 reagents were added to PDA plates to determine the F. pseudograminearum responses to cell wall, cell membrane and oxidative stresses, respectively.【Result】 Atg3 homologous proteins from different fungi were highly conserved and consistent with the direction of species evolution. The FpAtg3 had a close relationship with Atg3 of Fusarium graminearum and Fusarium oxysporum. The ΔFpAtg3 and FpAtg3-C strains were obtained. The phenotypic measurements showed that compared to wild type and FpAtg3-C strains, ΔFpAtg3 exhibited significantly reduced colony growth rates and aerial hypha, curved hypha, reduced conidiation, shorter in length and fewer in septa; ΔFpAtg3 also showed significantly reduced hyphal fusion rate and CAT-mediated fusion rate. The pathogenicity of ΔFpAtg3 on wheat coleoptiles and barley leaves was significantly reduced comparing to that of the wild type and FpAtg3-C strains. The reduced pathogenicity of ΔFpAtg3 was further examined on FCR. Furthermore, ΔFpAtg3 displayed more sensitive to cell wall, cell membrane and oxidative stress than that of the wild type and FpAtg3-C strains.【Conclusion】 Autophagy-related gene FpAtg3 plays important roles in growth, conidiation, hyphal fusion, pathogenicity and response to abiotic stresses of F. pseudograminearum.

Key words: Fusarium crown rot (FCR), Fusarium pseudograminearum, Atg3, hyphal fusion, pathogenicity

Table 1

Primers used in this study"

引物Primer 序列Sequence (5′-3′)
FpAtg3-F1 TGATAAGAAAGAGCAAGCT
FpAtg3-R1 TTGACCTCCACTAGCTCCAGCCGATGGCTTCGGGATTGATAA
FpAtg3-F2 ATAGAGTAGATGCCGACCGCGGGTTCACTGCATGGCTTATC
FpAtg3-R2 GCCTGGTTCCTGATCTAGAT
FpAtg3-PF CTTCCAAAGACCTGACTAC
FpAtg3-PR GGCCCCTTCAACGTTCTAG
FpAtg3nj-F GCCAAATCACACCCGAAGAG
FpAtg3nj-R GAATCGGCGCCAGAATCTC
HYG/F GTCGACAGAAGATGATATTG
HYG/R GAACCCGCGGTCGGCATCTACTCTAT
YG/F GATGTAGGAGGGCGTGGATATGTCCT
HY/R GTATTGACCGATTCCTTGCGGTCCGAA
H850F TTCCTCCCTTTATTTCAGATTCAA
H852R ATGTTGGCGACCTCGTATTGG
H855R GCTGATCTGACCAGTTGC
H856F GTCGATGCGACGCAATCGT
PKNTG-F CTATAGGGCGAATTGGGTACCGACCTACCCATGTTTACTTG
PKNTG-R GCAGGCATGCAAGCTTATCGATGGAGCTTTTGCTGCTCTTG
GFP-R GATGCCCTTCAGCTCGATGCGGTTCA

Fig. 1

Phylogenetic tree of Atg3 proteins"

Fig. 2

FpAtg3 gene knockout and complementation"

Fig. 3

Hyphal growth assays of F. pseudograminearum"

Fig. 4

Hyphal and conidial morphology"

Table 2

Conidiation, septa per conidium, hyphal fusion rate and CAT-mediated fusion rate of different F. pseudograminearum strains"

菌株
Strain
孢子浓度
Conidia concentration
(×106/m<BOLD>L</BOLD>)
孢子长度
Conidia length
(μm)
隔膜数
Septa per conidium
菌丝融合率
Hyphal fusion rate
(%)
孢子融合芽管率
CAT-mediated fusion rate (%)
WT 2.25±0.23 38.84±1.53 3.97±0.80 42.0±7.3 36.1±3.7
ΔFpAtg3 1.03±0.27** 23.72±2.03** 2.86±0.55** 22.2±5.4** 17.8±3.1**
FpAtg3-C 2.18±0.15 38.58±1.27 3.82±0.72 39.8±4.6 35.8±3.9

Fig. 5

Pathogenicity determination"

Fig. 6

Pot-culture experiments"

Fig. 7

Abiotic stress response assays of F. pseudograminearum"

[1]
BRAGARD C, BAPTISTA P, CHATZIVASSILIOU E, DI SERIO F, GONTHIER P, MIRET J A, JUSTESEN A F, MACLEOD A, MAGNUSSON C S, MILONAS P, et al. Pest categorisation of Fusarium pseudograminearum. EFSA Journal, 2022, 20(6): e07399.
[2]
KAZAN K, GARDINER D M. Fusarium crown rot caused by Fusarium pseudograminearum in cereal crops: Recent progress and future prospects. Molecular Plant Pathology, 2018, 19(7): 1547-1562.

doi: 10.1111/mpp.2018.19.issue-7
[3]
LI H L, YUAN H X, FU B, XING X P, SUN B J, TANG W H. First report of Fusarium pseudograminearum causing crown rot of wheat in Henan, China. Plant Disease, 2012, 96(7): 1065.
[4]
ZHOU H F, HE X L, WANG S, MA Q Z, SUN B J, DING S L, CHEN L L, ZHANG M, LI H L. Diversity of the Fusarium pathogens associated with crown rot in the Huanghuai wheat-growing region of China. Environmental Microbiology, 2019, 21(8): 2740-2754.

doi: 10.1111/emi.2019.21.issue-8
[5]
李怡文, 李桂香, 黄中乔, 苗建强, 刘西莉. 假禾谷镰孢引起的小麦茎基腐病发生危害与防控研究进展. 农药学学报, 2022, 24(5): 949-961.
LI Y W, LI G X, HUANG Z Q, MIAO J Q, LIU X L. Research progress on the occurrence, damage and prevention of Fusarium crown rot caused by Fusarium pseudograminearum. Chinese Journal of Pesticide Science, 2022, 24(5): 949-961. (in Chinese)
[6]
俞慧友. 30个!中国科协发布2022年科技领域重大问题难题. 科技日报, (2022-06-28) [2023-10-25].
YU H Y. China Association for Science and Technology released 30 major problems in the field of science and technology in 2022. Science and Technology Daily, (2022-06-28) [2023-10-25]. (in Chinese)
[7]
FENG Y C, HE D, YAO Z Y, KLIONSKY D J. The machinery of macroautophagy. Cell Research, 2014, 24(1): 24-41.

doi: 10.1038/cr.2013.168 pmid: 24366339
[8]
KLIONSKY D J, BAEHRECKE E H, BRUMELL J H, CHU C T, CODOGNO P, CUERVO A M, DEBNATH J, DERETIC V, ELAZAR Z, ESKELINEN E L, et al. A comprehensive glossary of autophagy- related molecules and processes (2nd edition). Autophagy, 2011, 7(11): 1273-1294.

doi: 10.4161/auto.7.11.17661
[9]
ASIF N, LIN F C, LI L, ZHU X M, NAWAZ S. Regulation of autophagy machinery in Magnaporthe oryzae. International Journal of Molecular Sciences, 2022, 23(15): 8366.

doi: 10.3390/ijms23158366
[10]
ZHU X M, LI L, WU M, LIANG S, SHI H B, LIU X H, LIN F C. Current opinions on autophagy in pathogenicity of fungi. Virulence, 2019, 10(1): 481-489.

doi: 10.1080/21505594.2018.1551011
[11]
CEBOLLERO E, VAN DER VAART A, ZHAO M, RIETER E, KLIONSKY D J, HELMS J B, REGGIORI F. Phosphatidylinositol- 3-phosphate clearance plays a key role in autophagosome completion. Current Biology, 2012, 22(17): 1545-1553.

doi: 10.1016/j.cub.2012.06.029
[12]
XIE Z, KLIONSKY D J. Autophagosome formation: Core machinery and adaptations. Nature Cell Biology, 2007, 9(10): 1102-1109.

doi: 10.1038/ncb1007-1102 pmid: 17909521
[13]
VOIGT O, POGGELER S. Self-eating to grow and kill: Autophagy in filamentous ascomycetes. Applied Microbiology and Biotechnology, 2013, 97(21): 9277-9290.

pmid: 24077722
[14]
LIU X H, LU J P, LIN F C. Autophagy during conidiation, conidial germination and turgor generation in Magnaporthe grisea. Autophagy, 2007, 3(5): 472-473.

doi: 10.4161/auto.4339
[15]
LIU X H, GAO H M, XU F, LU J P, DEVENISH R J, LIN F C. Autophagy vitalizes the pathogenicity of pathogenic fungi. Autophagy, 2012, 8(10): 1415-1425.

doi: 10.4161/auto.21274
[16]
DONG B, LIU X H, LU J P, ZHANG F S, GAO H M, WANG H K, LIN F C. MgAtg9 trafficking in Magnaporthe oryzae. Autophagy, 2009, 5(7): 946-953.

doi: 10.4161/auto.5.7.9161
[17]
KERSHAW M J, TALBOT N J. Genome-wide functional analysis reveals that infection-associated fungal autophagy is necessary for rice blast disease. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(37): 15967-15972.
[18]
VENEAULT-FOURREY C, BAROOAH M, EGAN M, WAKLEY G, TALBOT N J. Autophagic fungal cell death is necessary for infection by the rice blast fungus. Science, 2006, 312(5773): 580-583.

doi: 10.1126/science.1124550
[19]
ZHU X M, LI L, CAI Y Y, WU X Y, SHI H B, LIANG S, QU Y M, NAQVI N I, DEL POETA M, DONG B, LIN F C, LIU X H. A VASt-domain protein regulates autophagy, membrane tension, and sterol homeostasis in rice blast fungus. Autophagy, 2021, 17(10): 2939-2961.

doi: 10.1080/15548627.2020.1848129
[20]
LV W Y, WANG C Y, YANG N, QUE Y W, TALBOT N J, WANG Z Y. Genome-wide functional analysis reveals that autophagy is necessary for growth, sporulation, deoxynivalenol production and virulence in Fusarium graminearum. Scientific Reports, 2017, 7(1): 11062.

doi: 10.1038/s41598-017-11640-z
[21]
陈琳琳, 耿雪晶, 马宇明, 王利民, 施艳, 李洪连. 假禾谷镰孢菌细胞自噬相关基因的鉴定与表达分析. 植物病理学报, 2018, 48(3): 357-364.
CHEN L L, GENG X J, MA Y M, WANG L M, SHI Y, LI H L. Identification and expression analysis of autophagy-related gene in Fusarium pseudograminearum. Acta Phytopathologica Sinica, 2018, 48(3): 357-364. (in Chinese)
[22]
CHEN L L, SHAN Y X, DONG Z F, ZHANG Y K, PENG M Y, YUAN H X, SHI Y, LI H L, XING X P. A potential hyphal fusion protein complex with an important role in development and virulence interacts with autophagy related proteins in Fusarium pseudograminearum. Journal of Integrative Agriculture, doi: 10.1016/j.jia.2023.09.005.
[23]
FANG D M, XIE H Z, HU T, SHAN H, LI M. Binding features and functions of ATG3. Frontiers in Cell and Developmental Biology, 2021, 9: 685625.

doi: 10.3389/fcell.2021.685625
[24]
LIU K, ZHAO Q, LIU P L, CAO J N, GONG J Q, WANG C Q, WANG W X, LI X Y, SUN H Y, ZHANG C, et al. ATG3-dependent autophagy mediates mitochondrial homeostasis in pluripotency acquirement and maintenance. Autophagy, 2016, 12(11): 2000-2008.

pmid: 27575019
[25]
赵静雅, 夏荟清, 彭梦雅, 凡卓, 殷悦, 徐赛博, 张楠, 陈文波, 陈琳琳. 假禾谷镰孢转录因子FpAPSES的鉴定与功能分析. 中国农业科学, 2021, 54(16): 3428-3439. doi: 10.3864/j.issn.0578-1752.2021.16.006.
ZHAO J Y, XIA H Q, PENG M Y, FAN Z, YIN Y, XU S B, ZHANG N, CHEN W B, CHEN L L. Identification and functional analysis of transcription factors FpAPSES in Fusarium pseudograminearum. Scientia Agricultura Sinica, 2021, 54(16): 3428-3439. doi: 10.3864/j.issn.0578-1752.2021.16.006. (in Chinese)
[26]
WANG L M, ZHANG Y F, DU Z L, KANG R J, CHEN L L, XING X P, YUAN H X, DING S L, LI H L. FpPDE 1 function of Fusarium pseudograminearum on pathogenesis in wheat. Journal of Integrative Agriculture, 2017, 16(11): 2504-2512.

doi: 10.1016/S2095-3119(17)61689-7
[27]
VANGALIS V, PAPAIOANNOU I A, MARKAKIS E A, KNOP M, TYPAS M A. The NADPH oxidase A of Verticillium dahliae is essential for pathogenicity, normal development, and stress tolerance, and it interacts with Yap1 to regulate redox homeostasis. Journal of Fungi, 2021, 7(9): 740.

doi: 10.3390/jof7090740
[28]
LV W Y, XU Z, TALBOT N J, WANG Z Y. The sorting nexin FgAtg20 is involved in the Cvt pathway, non-selective macroautophagy, pexophagy and pathogenesis in Fusarium graminearum. Cellular Microbiology, 2020, 22(8): e13208.
[29]
WANG Y J, LIU X, XU Y J, GU Y Y, ZHANG X Y, ZHANG M X, WEN W, LEE Y W, SHI J R, MOHAMED S R, GODA A A, WU H J, GAO X W, GU Q. The autophagy-related proteins FvAtg4 and FvAtg8 are involved in virulence and fumonisin biosynthesis in Fusarium verticillioides. Virulence, 2022, 13(1): 764-780.

doi: 10.1080/21505594.2022.2066611
[30]
AOKI T, O’DONNELL K. Morphological and molecular characterization of Fusarium pseudograminearum sp. nov., formerly recognized as the group 1 population of F. graminearum. Mycologia, 1999, 91: 597.

doi: 10.1080/00275514.1999.12061058
[31]
CLARK-COTTON M R, JACOBS K C, LEW D J. Chemotropism and cell-cell fusion in fungi. Microbiology and Molecular Biology Reviews, 2022, 86(1): e0016521.

doi: 10.1128/MMBR.00165-21
[32]
FLEIßNER A, HERZOG S. Signal exchange and integration during self-fusion in filamentous fungi. Seminars in Cell & Developmental Biology, 2016, 57: 76-83.
[33]
CORRAL-RAMOS C, ROCA M G, DI PIETRO A, RONCERO M I, RUIZ-ROLDAN C. Autophagy contributes to regulation of nuclear dynamics during vegetative growth and hyphal fusion in Fusarium oxysporum. Autophagy, 2015, 11(1): 131-144.

doi: 10.4161/15548627.2014.994413
[34]
NUTA G C, GILAD Y, GOLDBERG N, MERIL S, BAHLSEN M, CARVALHO S, KOZER N, BARR H, FRIDMANN S Y, HERCIK K, BREHOVA P, NENCKA R, BIALIK S, EISENSTEIN M, KIMCHI A. Identifying a selective inhibitor of autophagy that targets ATG12- ATG3 protein-protein interaction. Autophagy, 2023, 19(8): 2372-2385.

doi: 10.1080/15548627.2023.2178159
[35]
ZHENG Y M, QIU Y, GRACE C R R, LIU X, KLIONSKY D J, SCHULMAN B A. A switch element in the autophagy E2 Atg3 mediates allosteric regulation across the lipidation cascade. Nature Communications, 2019, 10(1): 3600.

doi: 10.1038/s41467-019-11435-y pmid: 31399562
[36]
MA K, FU W, TANG M, ZHANG C H, HOU T Y, LI R, LU X P, WANG Y N, ZHOU J Y, LI X, ZHANG L Y, WANG L N, ZHAO Y, ZHU W G. PTK2-mediated degradation of ATG3 impedes cancer cells susceptible to DNA damage treatment. Autophagy, 2017, 13(3): 579-591.

doi: 10.1080/15548627.2016.1272742 pmid: 28103122
[37]
YIN Z Y, CHEN C, YANG J, FENG W Z, LIU X Y, ZUO R F, WANG J Z, YANG L N, ZHONG K L, GAO C Y, ZHANG H F, ZHENG X B, WANG P, ZHANG Z G. Histone acetyltransferase MoHat1 acetylates autophagy-related proteins MoAtg3 and MoAtg9 to orchestrate functional appressorium formation and pathogenicity in Magnaporthe oryzae. Autophagy, 2019, 15(7): 1234-1257.

doi: 10.1080/15548627.2019.1580104
[1] GAO XiaoXiao, TU LiQin, YANG Liu, LIU YaNan, GAO DanNa, SUN Feng, LI Shuo, ZHANG SongBai, JI YingHua. Construction of an Infectious Clone of Tobacco Mild Green Mosaic Virus Isolate Infecting Pepper from Jiangsu Based on Genomic Clone [J]. Scientia Agricultura Sinica, 2023, 56(8): 1494-1502.
[2] GONG AnDong, LEI YinYu, WU NanNan, LIU JingRong, SONG MengGe, ZHANG YiMei, YANG Guang, YANG Peng. The Effect of 3-Oxyacyl ACP Reductase Gene FgOAR1 on the Growth, Development and Pathogenicity of Fusarium graminearum [J]. Scientia Agricultura Sinica, 2023, 56(24): 4854-4865.
[3] LI HuiXin, SONG WenPing, HAN ZongXi, LIU ShengWang. Isolation and Pathogenicity of Fowl Adenovirus Serotype 8a Strain [J]. Scientia Agricultura Sinica, 2023, 56(16): 3226-3236.
[4] HUANG JiaQuan,LI Li,WU FengNian,ZHENG Zheng,DENG XiaoLing. Proliferation of Two Types Prophage of ‘Candidatus Liberibacter asiaticus’ in Diaphorina citri and their Pathogenicity [J]. Scientia Agricultura Sinica, 2022, 55(4): 719-728.
[5] YANG ShiMan, XU ChengZhi, XU BangFeng, WU YunPu, JIA YunHui, QIAO ChuanLing, CHEN HuaLan. Amino Acid of 225 in the HA Protein Affects the Pathogenicities of H1N1 Subtype Swine Influenza Viruses [J]. Scientia Agricultura Sinica, 2022, 55(4): 816-824.
[6] ZHANG JinLong,ZHAO ZhiBo,LIU Wei,HUANG LiLi. The Function of Key T3SS Effectors in Pseudomonas syringae pv. actinidiae [J]. Scientia Agricultura Sinica, 2022, 55(3): 503-513.
[7] LI ZhengGang,TANG YaFei,SHE XiaoMan,YU Lin,LAN GuoBing,HE ZiFu. Molecular Characteristics and Pathogenicity Analysis of Youcai Mosaic Virus Guangdong Isolate Infecting Radish [J]. Scientia Agricultura Sinica, 2022, 55(14): 2752-2761.
[8] ZHANG ChengQi,LIAO LuLu,QI YongXia,DING KeJian,CHEN Li. Functional Analysis of the Nucleoporin Gene FgNup42 in Fusarium graminearium [J]. Scientia Agricultura Sinica, 2021, 54(9): 1894-1903.
[9] CAO YuHan,LI ZiTeng,ZHANG JingYi,ZHANG JingNa,HU TongLe,WANG ShuTong,WANG YaNan,CAO KeQiang. Analysis of dsRNA Carried by Alternaria alternata f. sp. mali in China and Identification of a dsRNA Virus [J]. Scientia Agricultura Sinica, 2021, 54(22): 4787-4799.
[10] ZHANG Li,TANG YaFei,LI ZhengGang,YU Lin,LAN GuoBing,SHE XiaoMan,HE ZiFu. Molecular Characteristic of Squash Leaf Curl China Virus (SLCCNV) Infecting Cucurbitaceae Crops in Guangdong Province [J]. Scientia Agricultura Sinica, 2021, 54(19): 4097-4109.
[11] ZHAO JingYa,XIA HuiQing,PENG MengYa,FAN Zhuo,YIN Yue,XU SaiBo,ZHANG Nan,CHEN WenBo,CHEN LinLin. Identification and Functional Analysis of Transcription Factors FpAPSES in Fusarium pseudograminearum [J]. Scientia Agricultura Sinica, 2021, 54(16): 3428-3439.
[12] ZHENG XinShi,SHANG PengXiang,LI JingYuan,DING XinLun,WU ZuJian,ZHANG Jie. Effects of Proteins Encoded by “C4 ORFs” of Cotton Leaf Curl Multan Virus on Viral Pathogenicity [J]. Scientia Agricultura Sinica, 2021, 54(10): 2095-2104.
[13] JiaYing CHANG,ShuSen LIU,Jie SHI,Ning GUO,HaiJian ZHANG,HongXia MA,ChunFeng YANG. Pathogenicity and Genetic Diversity of Bipolaria maydis in Sanya, Hainan and Huang-Huai-Hai Region [J]. Scientia Agricultura Sinica, 2020, 53(6): 1154-1165.
[14] LI ZhengGang,NONG Yuan,TANG YaFei,SHE XiaoMan,YU Lin,LAN GuoBing,DENG MingGuang,HE ZiFu. Molecular Characteristic and Pathogenicity Analyses of Cucumber green mottle mosaic virus (CGMMV) Infecting Bottle Gourd in Lianzhou, Guangdong [J]. Scientia Agricultura Sinica, 2020, 53(5): 955-964.
[15] LI YueYue,ZHOU WenPeng,LU SiQian,CHEN DeRong,DAI JianHong,GUO QiaoYou,LIU Yong,LI Fan,TAN GuanLin. Occurrence and Biological Characteristics of Tomato mottle mosaic virus on Solanaceae Crops in China [J]. Scientia Agricultura Sinica, 2020, 53(3): 539-550.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!