Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (9): 1807-1819.doi: 10.3864/j.issn.0578-1752.2024.09.014

• ANIMAL SCIENCE·VETERINARY SCIENCE • Previous Articles     Next Articles

Cloning and Identification of Differentially Expressed lncRNAs in Follicles of Meishan Pigs and Duroc Pigs with Their Correlation Analysis with miRNAs

ZHANG HuaPeng1(), ZHANG QingZe1, HE Fan1, QI MengFan1, FU BinBin1, LI QingChun1, LI MengXun1, MA LiPeng1, LIU Yi1, HUANG Tao1,2()   

  1. 1 College of Animal Science and Technology, Shihezi University, Shihezi 832000, Xinjiang
    2 Xinjiang Pig Seed Industry Engineering Technology Research Center, Changji 831100, Xinjiang
  • Received:2023-11-06 Accepted:2024-01-11 Online:2024-05-01 Published:2024-05-09
  • Contact: HUANG Tao

Abstract:

【Objective】The objective of this study was to clone and identify the differentially expressed lncRNA-ALDBSSCT0000005583 in M2 follicles on the fourth day of follicular stage in Meishan pigs and Duroc pigs, and to analyze the correlation between the expression of miRNAs in porcine granulosa cells, so as to provide a theoretical basis for exploring the role of lncRNAs in the development of follicles in sows by regulating miRNAs. 【Method】Based on the differentially expressed lncRNA- ALDBSSCT0000005583 screened in Meishan and Duroc M2 follicles in our early research, the full-length sequence of ALDBSSCT0000005583 was verified by RT-qPCR and cloned by RACE; the coding ability of this lncRNA was predicted by the coding potential assessment tool of CAPT and CPC, which was further identified by the primary expression test; the coding ability of this lncRNA was identified by the primary expression test; the subcellular coding ability of NA-ALDBSSCT0000005583 was identified by the nucleoplasmic separation experiment and tested to identify its coding ability; the subcellular localization of lncRNA-ALDBSSCT0000005583 by nucleoplasmic isolation assay and its expression level in various tissues were detected by RT-qPCR; miRBase website was used to locate the miRNA database of pigs, and the combination of RNAhybrid and miRanda online software was used to predicte the relationship with the lncRNA-ALDBSSCT0000005583. The inter-species conserved miRNAs that interacted with lncRNA-ALDBSSCT0000005583 were predicted by TargetScan and miRanda, the target genes that interacted with lncRNA-ALDBSSCT0000005583 were predicted by TargetScan and miRanda, and their target genes were subjected to GO enrichment and KEGG signaling pathway analyses; the effects of target genes on miRNA expression were verified by overexpression as well as interference with lncRNA. 【Result】The expression level of lncRNA-ALDBSSCT0000005583 in M2 follicles of Duroc pigs was significantly higher than that in Meishan pigs, and the size of lncRNA 5′RACE and 3′RACE fragments was 569 bp and 546 bp, respectively, and the sequencing analysis showed that the size of lncRNA-ALDBSSCT0000005583 was 588 bp. Bioinformatics predicted that the encoding potential was low, and the results of prokaryotic expression assay further proved that it did not code for proteins. Tissue expression profiling showed that lncRNA-ALDBSSCT0000005583 was expressed in the adrenal gland, spleen, liver and ovaries, and low in the hypothalamus and heart, while the subcellular localization results showed that the lncRNA was mainly present in the cytoplasm. After bioinformatics analysis, a total of 9 conserved miRNAs were screened for potential interaction with lncRNA-ALDBSSCT0000005583, including two miRNAs related to ovarian development: miR-193a-5p and miR-361-3p. KEGG and GO enrichment analysis showed that the target genes of miR-193a-5p and miR-361-3p were related to phylogenetic processes and biological processes such as cell-to-cell signaling. It was also significantly involved in oxytocin, Ras, NF-κB gonadotropin- releasing hormone secretion and other pathways. Subsequently, lncRNA-ALDBSSCT0000005583 was overexpressed in granulosa cells, and the expressions of miR-193a-5p and miR-361-3p were significantly down-regulated by RT-qPCR (P<0.05), but there was no significant effect after interference with lncRNA-ALDBSSCT0000005583. 【Conclusion】 lncRNA-ALDBSSCT0000005583 was a lncRNA that did not have the ability to code for proteins. There was a significant difference in the expression level between the medium follicles of Meishan and Duroc pigs, and the expression level was higher in the adrenal glands, spleen, liver and ovaries, which is mainly found in the cytoplasm of granulosa cells, and might be involved in the development of porcine ovarian granulosa cells by interacting with miR-193a-5p and miR-361-3p.

Key words: lncRNA-ALDBSSCT0000005583, pig, follicle, granulosa cells, miR-193a-5p, miR-361-3p

Table 1

Primer sequences for RT-qPCR and vector construction"

基因名称 Gene name 引物序列Primer sequence(5′-3′) 用途 Usage
lncRNA-ALDBSSCT0000005583 DL-F:ACGTGTACAGGGCCTGACTCG RT-qPCR
DL-R:TTCTCGCATCCACGTACCTG
pcDNA3.1-lncRNA-5583 F:GG G AATTCGTAGTGACGCAGGCGCGAGACTG 载体构建
Vector construction
R:GGG CTCGAGCCAAATTTGAAACTGTTTTATTAAA
GAPDH F:AACATCATCCCTGCTTCTACCG RT-qPCR
R:GGTCAGATCCACAACCG
U6 F: CGCTTCGGCAGCACATATACTA RT-qPCR
R: ATGGAACGCTTCACGAATTTGC
miR-193a-5p F: AACAAGTGGGTCTTTGCGGGC RT-qPCR
miR-361-3p F:AACAAGCCCCCAGGTGTGATTCTG RT-qPCR
miRNAs通用引物
Universal primers for miRNAs
R:AGTGCAGGGTCCGAGGTATT RT-qPCR
5′ RACE特异性引物
5′ RACE-specific primers
GSP:GATTACGCCAAGCTTCCCACTTGTCATTCCGATGTCAGAGGGG RACE克隆
Rapid-amplification of cDNA ends clone
3′ RACE特异性引物
3′ RACE-specific primers
GSP:GATTACGCCAAGCTTGCGGCTATCCAAGACCATTGAGGGTCC RACE克隆
Rapid-amplification of cDNA ends clone
通用引物(UPM)
Universal primers
TAATACGACTCACTATAGGGCAAGCAGTGGTATCAACGCAGAGT RACE克隆
Rapid-amplification of cDNA ends clone
siRNA-lncRNA sense(5′-3′) CAGAUCUCCUGUAAGAUGUTT lncRNA干扰序列
lncRNA interference sequence
siRNA-lncRNA antisense(5′-3′) ACAUCUUACAGGAGAUCUGTT

Fig. 1

Expression of lncRNA-ALDBSSCT0000005583 in M2 follicles in Meishan pigs and Duroc pigs A: Next-generation sequencing results ALDBSSCT0000005583 expression level in M2 follicles; B: RT-qPCR to verify the expression level of ALDBSSCT0000005583"

Fig. 2

Splicing sequence characteristics of lncRNA-ALDBSSCT0000005583 A: 3' RACE representative images and Sanger DNA sequencing; B: 5' RACE representative images and Sanger DNA sequencing; C:lncRNA- ALDBSSCT0000005583 full-length RNA sequence"

Table 2

The CPAT website predicted the results of the coding potential"

基因名称
Gene name
编码/非编码
Encoding/Non-coding
编码潜能
Coding potential
lncRNA-ALDBSSCT0000005583 非编码Non-coding 0.0122981
HG19 编码 Encoding 0.9998311
HOTAIR 非编码Non-coding 0.1257913

Table 3

The CPC website predicted the results of the coding potential"

基因名称
Gene name
编码/非编码
Encoding/Non-coding
编码潜能
Coding potential
lncRNA-ALDBSSCT0000005583 非编码Non-coding 0.01716
HG19 编码Encoding 0.99987
HOTAIR 非编码Non-coding 0.18488

Fig. 3

Construction of prokaryotic expression vector and analysis of SDS-PAGE electrophoresis A: lncRNA-full-length amplification and ligation to the pET-28a(+) vector Sanger DNA sequencing ALDBSSCT0000005583; B: pET-28a-YY1 double digestion results and Sanger DNA sequencing; C: SDS-PAGE electrophoresis analysis"

Fig. 4

Identification of granulosa cells"

Fig. 5

lncRNA-ALDBSSCT0000005583 subcellular localization"

Fig. 6

Expression of lncRNA-ALDBSSCT0000005583 in different tissues of Duroc pigs"

Fig. 7

RNAhybrid and miRanda predict miRNA targeting lncRNA-ALDBSSCT0000005583"

Fig. 8

lncRNA-miRNA-mRNA network construction"

Table 4

GO-enrichment entries for miRNAs target genes that interacted with lncRNA-ALDBSSCT0000005583"

GO条目 GO term 基因数目 Gene count 富集倍数 Fold enrichment PP value
系统进程System process 13 1.90 0.018140
细胞酰胺代谢过程Cellular amide metabolic process 11 1.91 0.027469
有机氮化合物分解代谢过程Organonitrogen compound catabolic process 11 1.86 0.033325
细胞-细胞信号转导Cell-cell signaling 11 1.74 0.048981
神经系统过程Nervous system process 8 2.15 0.032080
循环系统过程Circulatory system process 7 3.62 0.003088
细胞因子产生Cytokine production 7 2.17 0.041634
硫化合物代谢过程Sulfur compound metabolic process 6 4.46 0.002150
血液循环Blood circulation 6 3.25 0.010149
系统过程调节Regulation of system process 6 2.84 0.018724

Table 5

Signaling pathways of miRNAs target genes interacting with lncRNA-ALDBSSCT0000005583"

信号通路条目 Pathway term 基因数目 Gene count 富集倍数 Fold enrichment PP value
多巴胺能突触Dopaminergic synapse 6 3.77 0.00510
Ras信号通路Ras signaling pathway 8 2.76 0.00841
钙信号通路Calcium signaling pathway 8 2.68 0.00993
酪氨酸代谢Tyrosine metabolism 3 6.63 0.01022
嘌呤代谢Purine metabolism 5 3.17 0.02076
肥厚型心肌病Hypertrophic cardiomyopathy 4 3.63 0.02423
催产素信号通路Oxytocin signaling pathway 5 2.76 0.03482
心肌细胞中的肾上腺素能信号转导Adrenergic signaling in cardiomyocytes 5 2.74 0.03569
NF-κB信号通路NF-kappa B signaling pathway 4 3.06 0.04188
促性腺激素释放激素分泌GnRH secretion 3 3.83 0.04330

Fig. 9

Efficiency of RT-qPCR in detecting overexpressed/interfering lncRNA-ALDBSSCT0000005583 and its effect on miRNAs A. Overexpression lncRNA-ALDBSSCT0000005583 efficiency detection; B. siRNA- ALDBSSCT0000005583 efficiency assay; C. Effect of overexpression of lncRNA-ALDBSSCT0000005583 on miR-193a-5p; D. Effect of overexpression of lncRNA-ALDBSSCT0000005583 on miR-193a-5p; E. Effect of interfering lncRNA-ALDBSSCT0000005583 on miR-361-3p; F. Effect of interfering lncRNA-ALDBSSCT0000005583 on miR-1361-3p"

[1]
GOLICZ A A, BHALLA P L, SINGH M B. lncRNAs in plant and animal sexual reproduction. Trends in Plant Science, 2018, 23(3): 195-205.

doi: S1360-1385(17)30285-6 pmid: 29395831
[2]
KHALIL A M, GUTTMAN M, HUARTE M, GARBER M, RAJ A, RIVEA MORALES D, THOMAS K, PRESSER A, BERNSTEIN B E, VAN OUDENAARDEN A, REGEV A, LANDER E S, RINN J L. Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(28): 11667-11672.
[3]
LEE J T. Epigenetic regulation by long noncoding RNAs. Science, 2012, 338(6113): 1435-1439.

doi: 10.1126/science.1231776 pmid: 23239728
[4]
TSAI M C, MANOR O, WAN Y, MOSAMMAPARAST N, WANG J K, LAN F, SHI Y, SEGAL E, CHANG H Y. Long noncoding RNA as modular scaffold of histone modification complexes. Science, 2010, 329(5992): 689-693.

doi: 10.1126/science.1192002
[5]
RINN J L, CHANG H Y. Genome regulation by long noncoding RNAs. Annual Review of Biochemistry, 2012, 81: 145-166.

doi: 10.1146/annurev-biochem-051410-092902 pmid: 22663078
[6]
HU S S, WANG X L, SHAN G. Insertion of an Alu element in a lncRNA leads to primate-specific modulation of alternative splicing. Nature Structural & Molecular Biology, 2016, 23: 1011-1019.

doi: 10.1038/nsmb.3302
[7]
LIU S J, DANG H X, LIM D A, FENG F Y, MAHER C A. Long noncoding RNAs in cancer metastasis. Nature Reviews Cancer, 2021, 21(7): 446-460.

doi: 10.1038/s41568-021-00353-1 pmid: 33953369
[8]
YOUNG L D. Effects of Duroc, Meishan, Fengjing, and Minzhu boars on productivity of mates and growth of first-cross progeny. Journal of Animal Science, 1992, 70(7): 2020-2029.

pmid: 1644674
[9]
FOXCROFT G R, HUNTER M G. Basic physiology of follicular maturationin the pig. Journal of Reproduction and Fertility, 1985, (Suppl 33): 1-19.
[10]
LI M X, LIU Y, XIE S, MA L P, ZHAO Z C, GONG H B, SUN Y S, HUANG T. Transcriptome analysis reveals that long noncoding RNAs contribute to developmental differences between medium-sized ovarian follicles of Meishan and Duroc sows. Scientific Reports, 2021, 11: 22510.

doi: 10.1038/s41598-021-01817-y pmid: 34795345
[11]
HU H Y, JIA Q, XI J Z, ZHOU B, LI Z Q. Integrated analysis of lncRNA, miRNA and mRNA reveals novel insights into the fertility regulation of large white sows. BMC Genomics, 2020, 21(1): 636.

doi: 10.1186/s12864-020-07055-2 pmid: 32928107
[12]
LIU Y, LI M X, BO X W, LI T, MA L P, ZHAI T, HUANG T. Systematic analysis of long non-coding RNAs and mRNAs in the ovaries of duroc pigs during different follicular stages using RNA sequencing. International Journal of Molecular Sciences, 2018, 19(6): 1722.

doi: 10.3390/ijms19061722
[13]
WANG Y Z, LI N, ZHAO J, DAI C W. MiR-193a-5p serves as an inhibitor in ovarian cancer cells through RAB11A. Reproductive Toxicology, 2022, 110: 105-112.

doi: 10.1016/j.reprotox.2022.04.003 pmid: 35413430
[14]
YE R S, LI M, LI C Y, QI Q E, CHEN T, CHENG X, WANG S B, SHU G, WANG L N, ZHU X T, JIANG Q Y, XI Q Y, ZHANG Y L. MiR-361-3p regulates FSH by targeting FSHB in a porcine anterior pituitary cell model. Reproduction, 2017, 153(3): 341-349.

doi: 10.1530/REP-16-0373
[15]
LIU J Y, QI N N, XING W W, LI M X, QIAN Y H, LUO G, YU S L. The TGF-β/SMAD signaling pathway prevents follicular atresia by upregulating MORC2. International Journal of Molecular Sciences, 2022, 23(18): 10657.

doi: 10.3390/ijms231810657
[16]
ZHENG X R, ZHAO P J, YANG K J, NING C, WANG H F, ZHOU L, LIU J F. CNV analysis of Meishan pig by next-generation sequencing and effects of AHR gene CNV on pig reproductive traits. Journal of Animal Science and Biotechnology, 2020, 11: 42.

doi: 10.1186/s40104-020-00442-5
[17]
MILLER A T, PICTON H M, CRAIGON J, HUNTER M G. Follicle dynamics and aromatase activity in high-ovulating Meishan sows and in large-white hybrid contemporaries. Biology of Reproduction, 1998, 58(6): 1372-1378.

pmid: 9623595
[18]
MA L P, ZHAO Z C, LI T, LI D Q, WANG X Y, SONG C Y, QI Y Y, HUANG T. Identification of differentially expressed microRNAs in middle-size ovarian follicles of Meishan and Duroc sows. Revista Brasileira De Zootecnia, 2019, 48. doi:10.1590/rbz4820170326.
[19]
TÓTH I E, BANCZEROWSKI P, BOLDOGKŐI Z, TÓTH J S, SZABÓ A, HALÁSZ B, GERENDAI I. Cerebral neurons involved in the innervation of both the adrenal gland and the ovary: A double viral tracing study. Brain Research Bulletin, 2008, 77(5): 306-311.

doi: 10.1016/j.brainresbull.2008.08.022 pmid: 18817853
[20]
张磊, 王燕燕, 周占琴, 李广, 付明哲, 张锁良, 尹海科, 张胜刚, 任宝华. 卵巢摘除对山羊血清GH水平和组织中GHR基因表达的影响. 中国农业科学, 2014, 47(1): 199-208. doi: 10.3864/j.issn.0578-1752.2014.10.003.
ZHANG L, WANG Y Y, ZHOU Z Q, LI G, FU M Z, ZHANG S L, YIN H K, ZHANG S G, REN B H. Effects of ovariectomy on serum GH levels and expression of GHR in some tissues of female goats. Scientia Agricultura Sinica, 2014, 47(1): 199-208. doi: 10.3864/j.issn.0578-1752.2014.10.003. (in Chinese)
[21]
HAN T S, HUR K, CHO H S, BAN H S. Epigenetic associations between lncRNA/circRNA and miRNA in hepatocellular carcinoma. Cancers, 2020, 12(9): 2622.

doi: 10.3390/cancers12092622
[22]
WANG H, HUO X S, YANG X R, HE J, CHENG L J, WANG N, DENG X, JIN H J, WANG N, WANG C, ZHAO F Y, FANG J Y, YAO M, FAN J, QIN W X. STAT3-mediated upregulation of lncRNA HOXD-AS1 as a ceRNA facilitates liver cancer metastasis by regulating SOX4. Molecular Cancer, 2017, 16(1): 136.

doi: 10.1186/s12943-017-0680-1 pmid: 28810927
[23]
HUARTE M. The emerging role of lncRNAs in cancer. Nature Medicine, 2015, 21: 1253-1261.

doi: 10.1038/nm.3981 pmid: 26540387
[24]
WANG S, DIAO Y J, ZHU B B. MiR-193a-5p suppresses cell proliferation and induces cell apoptosis by regulating HOXA7 in human ovarian cancer. Neoplasma, 2020, 67(4): 825-833.

doi: 10.4149/neo_2020_190730N687 pmid: 32305054
[25]
杨尊敬, 杜先玲. 细胞周期蛋白依赖性激酶在miR-193a5p调控卵巢癌细胞增殖及上皮细胞间充质转变中的作用. 中国应用生理学杂志, 2020, 36(2): 176-180.
YANG Z J, DU X L. The role of cyclin-dependent kinases in miR-193a5p regulating ovarian cancer cell proliferation and epithelial mesenchymal transformation. Chinese Journal of Applied Physiology, 2020, 36(2): 176-180. (in Chinese)
[26]
YAO H P, CHEN R, YANG Y X, JIANG J. LncRNA BBOX1-AS1 aggravates the development of ovarian cancer by sequestering miR-361-3p to augment PODXL expression. Reproductive Sciences, 2021, 28(3): 736-744.

doi: 10.1007/s43032-020-00366-5 pmid: 33159291
[27]
WANG L P, REN C C, XU Y J, YANG L, CHEN Y N, ZHU Y H. The LINC 00922 aggravates ovarian cancer progression via sponging miR-361-3p. Journal of Ovarian Research, 2021, 14(1): 77.

doi: 10.1186/s13048-021-00828-7
[28]
BARTEL D P. MicroRNAs: Target recognition and regulatory functions. Cell, 2009, 136(2): 215-233.

doi: 10.1016/j.cell.2009.01.002 pmid: 19167326
[29]
陈慧芳, 黄绮亮, 胡智超, 潘晓婷, 吴志胜, 白银山. 外泌体microRNA在猪成熟和闭锁卵泡中的表达差异及功能分析. 中国农业科学, 2021, 54(21): 4664-4676. doi: 10.3864/j.issn.0578-1752.2021.21.015.
CHEN H F, HUANG Q L, HU Z C, PAN X T, WU Z S, BAI Y S. Expression differences and functional analysis of exosomes microRNA in porcine mature and atretic follicles. Scientia Agricultura Sinica, 2021, 54(21): 4664-4676. doi: 10.3864/j.issn.0578-1752.2021.21.015. (in Chinese)
[30]
ZHU H L, CHEN Y Q, ZHANG Z F. Downregulation of lncRNA ZFAS1 and upregulation of microRNA-129 repress endocrine disturbance, increase proliferation and inhibit apoptosis of ovarian granulosa cells in polycystic ovarian syndrome by downregulating HMGB1. Genomics, 2020, 112(5): 3597-3608.

doi: 10.1016/j.ygeno.2020.04.011
[31]
SANG X, ZHANG Y Z. Withdrawal: “long non-coding RNA NEAT1 drives the development of polycystic ovary syndrome via sponging multiple microRNAs” by Xia Sang and Yuzhen Zhang. Cell Biology International, 2022, 46(7): 1175.

doi: 10.1002/cbin.v46.7
[32]
WANG M M, WANG Y, YAO W, DU X, LI Q F. Lnc2300 is a cis-acting long noncoding RNA of CYP11A1 in ovarian granulosa cells. Journal of Cellular Physiology, 2022, 237(11): 4238-4250.

doi: 10.1002/jcp.30872 pmid: 36074900
[33]
YAO X L, GAO X X, BAO Y J, EL-SAMAHY M A, YANG J Y, WANG Z B, LI X D, ZHANG G M, ZHANG Y L, LIU W J, WANG F. lncRNA FDNCR promotes apoptosis of granulosa cells by targeting the miR-543-3p/DCN/TGF-β signaling pathway in Hu sheep. Molecular Therapy - Nucleic Acids, 2021, 24: 223-240.

doi: 10.1016/j.omtn.2021.02.030
[34]
HAN X H, PAN Y Y, FAN J F, WANG M, WANG L B, WANG J L, AFEDO S Y, ZHAO L, WANG Y Y, ZHAO T, ZHANG T X, ZHANG R, CUI Y, YU S J. LncRNA MEG3 regulates ASK1/JNK axis-mediated apoptosis and autophagy via sponging miR-23a in granulosa cells of yak tertiary follicles. Cellular Signalling, 2023, 107: 110680.

doi: 10.1016/j.cellsig.2023.110680
[35]
TANG Y L, ZHANG H, CHEN L L, ZHANG T M, XU N, HUANG Z N. Identification of hypoxia-related prognostic signature and competing endogenous RNA regulatory axes in hepatocellular carcinoma. International Journal of Molecular Sciences, 2022, 23(21): 13590.

doi: 10.3390/ijms232113590
[1] ZHAO ZhenJian, WANG Kai, CHEN Dong, SHEN Qi, YU Yang, CUI ShengDi, WANG JunGe, CHEN ZiYang, YU ShiXin, CHEN JiaMiao, WANG XiangFeng, TANG GuoQing. Integrated Aanalysis of Genome and DNA Methylation for Screening Key Genes Related to Pork Quality Traits [J]. Scientia Agricultura Sinica, 2024, 57(7): 1394-1406.
[2] LIU ZhuoLin, LIU HongYun. The Potential and Mechanisms of Apigenin to Relieve Heat Stress and Hypoxia in Dairy Cows Based on Network Pharmacology and Molecular Docking [J]. Scientia Agricultura Sinica, 2024, 57(5): 1010-1022.
[3] MENG ZhaoYi, WANG YunLu, YAO YiLong, XI GuangYin, NIU JiaQiang, SOLANGSIZHU, GUO Min, XU YeFen. lncRNA-MSTRG.7889.1 Competitively Binds to bta-miR-146a Targeting Smad4 to Regulate Apoptosis of Yak Granulosa Cells [J]. Scientia Agricultura Sinica, 2024, 57(4): 797-809.
[4] ZHOU YuanQing, DONG HongMin, ZHU ZhiPing, WANG Yue, LI NanXi. Review on Carbon Footprint Assessment of Pig Farming System [J]. Scientia Agricultura Sinica, 2024, 57(2): 379-389.
[5] HE JunMin, MAO JingYi, WEI Chen, REN YiFan, ZHANG GuoPing, TIAN KeChuan, LIU GuiFen. Analyzing the Molecular Mechanism of Hair Follicle Development in Subo Merino Based on miRNA Sequencing Data [J]. Scientia Agricultura Sinica, 2024, 57(19): 3917-3935.
[6] CAI RuiJie, CHU YiXin, SHI XinE, JIN JianJun, YANG GongShe. Dietary Addition of Cordyceps Militaris Can Alleviate Lipopolysaccharide- Induced Liver Damage and Skeletal Muscle Protein Degradation in Early Weaning Piglets [J]. Scientia Agricultura Sinica, 2024, 57(12): 2467-2482.
[7] LIU YanLing, QIU Ao, ZHANG ZiPeng, WANG Xue, DU HeHe, LUO WenXue, WANG GuiJiang, WEI Xia, SHI WenYing, DING XiangDong. The Efficiency of Haplotype-Based Genomic Selection Using Genotyping by Target Sequencing in Pigs [J]. Scientia Agricultura Sinica, 2024, 57(11): 2243-2253.
[8] JI GaiGe, CHEN ZhiWu, SHAN YanJu, LIU YiFan, TU YunJie, ZOU JianMin, ZHANG Ming, JU XiaoJun, SHU JingTing, ZHANG HaiTao, TANG YanFei, JIANG HuaLian. Study of Key Genes and Signaling Pathways Regulating Dry Feather Traits in Yellow-Feathered Broiler Chickens Based on Transcriptome Analysis [J]. Scientia Agricultura Sinica, 2024, 57(1): 204-215.
[9] CUI DengShuai, XIONG SanYa, ZHENG Hao, LI LongYun, YU NaiBiao, HUANG ZhiYong, XIAO ShiJun, GUO YuanMei. Comparing Methods for Correcting Days to 100 kg of Sows in Licha Black Pig and Its Intercross with Berkshire [J]. Scientia Agricultura Sinica, 2023, 56(6): 1177-1188.
[10] AN Yong, QIN ShiZhen, SHI ZhaoGuo, GONG LiYuan, ZHANG Shuai, JI Feng. Influences of Phosphorus Level in Diet of Parent Pigeons on Biochemical Index, Untargeted Metabolomics Profile of Serum, and Gene Expression of Phosphate Transporters in Squabs [J]. Scientia Agricultura Sinica, 2023, 56(23): 4772-4788.
[11] LIU Chang, CUI ZiXu, ZUO Zhou, YUN HongMei, NIU Jin, YANG Yang, GUO XiaoHong, LI BuGao, GAO PengFei, ZHAO Yan, CAO GuoQing. Effects of Dietary Fiber Level on Intestinal Barrier Function, Colonic Microbiota and Metabolites in Pigs [J]. Scientia Agricultura Sinica, 2023, 56(22): 4532-4551.
[12] FAN ZiYao, LI Kui, LI JiaYang, HUANG SanWen. The Conception of Eco-Circular Agriculture of "Rice-Potato-Pig" [J]. Scientia Agricultura Sinica, 2023, 56(20): 4067-4071.
[13] WANG Dong, CHEN WanZhao, LI HongBo, QIN Lei, XU QiQi, LIU ZePeng, XIA LiNing. Analysis of Drug Resistance and Epidemic Characteristics of optrA/lsa(E) in Enterococcus faecalis from Pig Farms in Aksu Area of Xinjiang [J]. Scientia Agricultura Sinica, 2023, 56(16): 3213-3225.
[14] WANG XiaoHong, XING MingJie, GU XianHong, HAO Yue. Screening of Anti-Apoptotic Protein GRP94 Interaction Proteins in Porcine Hepatic Stellate Cells by Immunoprecipitation Combined with LC-MS/MS [J]. Scientia Agricultura Sinica, 2023, 56(15): 3020-3031.
[15] GUO ZeYuan, DU ZhangSheng, ZHANG YaQi, CHEN ChunLu, MA XiaoYan, CHENG Ying, WANG Kai, LÜ LiHua. Effects of Smad7-Mediated TGF-β Signaling Pathway on Proliferation of Sheep Granulosa Cells [J]. Scientia Agricultura Sinica, 2023, 56(13): 2597-2608.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!