Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (1): 204-215.doi: 10.3864/j.issn.0578-1752.2024.01.014

• ANIMAL SCIENCE·VETERINARY SCIENCE • Previous Articles     Next Articles

Study of Key Genes and Signaling Pathways Regulating Dry Feather Traits in Yellow-Feathered Broiler Chickens Based on Transcriptome Analysis

JI GaiGe1(), CHEN ZhiWu2(), SHAN YanJu1, LIU YiFan1, TU YunJie1, ZOU JianMin1, ZHANG Ming1, JU XiaoJun1, SHU JingTing1(), ZHANG HaiTao3, TANG YanFei4, JIANG HuaLian4   

  1. 1 Key Laboratory of Poultry Genetics and Breeding of Jiangsu Province/Jiangsu Institute of Poultry Sciences, Yangzhou 225125, Jiangsu
    2 Guangxi Jinling Agriculture and Animal Husbandry Group Co., Ltd., Nanning 530000
    3 Jiangsu Lihua Animal Husbandry Stock Co., Ltd., Changzhou 213168, Jiangsu
    4 Guangxi Fufeng Farm Group Co., Ltd., Nanning 530024
  • Received:2023-05-09 Accepted:2023-10-31 Online:2024-01-01 Published:2024-01-10

Abstract:

【Objective】 The study aimed to identify important candidate genes and signaling pathways associated with dry feather traits by comparing the morphological and gene expression differences between the feather follicles of dry and undried feathers. 【Method】 Three samples of skin tissue were selected from each of the undried and dried feathers. The histological examinations were used to compare the morphological differences between the feather follicles of dried and undried feathers. RNA-seq technology was employed to compare the differentially expressed genes (DEGs) between the two groups of skin samples. The accuracy of transcriptome results was validated by using the fluorescent quantitative PCR technique (RT-qPCR). 【Result】 By histological H.E staining, it was confirmed that the feather follicles of the undried feathers were in the growth phase, while the feather follicles of the dried feathers were in the resting phase. The feather follicle skin samples at the growth stage were used as controls, 942 DEGs were identified in resting feather follicle samples (|fold-change|>2 and P<0.05), including 384 significantly down-regulated DEGs and 558 upregulated DEGs. Gene ontology (Go) analysis suggested that the DEGs were significantly enriched in cell division, cycle regulation, and other related biological processes. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway results showed that the DEGs were related to MAPK, TGF-β, p53, and cell cycle-related signaling pathways. Protein-protein interaction (PPI) network was constructed and six hub genes were obtained by CytoHubba analysis, including CDK1, MAD2L1, BUB1, CCNB2, PLK1, and BUB1B. Gene Set Enrichment Analysis (GSEA) results indicated that the signaling pathways related to the tight junction, insulin, MAPK, TGF-β, and cell cycle-related pathways were significantly associated with the growth cycle of chicken feather follicles. The expression patterns of 8 DEGs detected by RT-qPCR were consistent with the RNA-seq results. 【Conclusion】 In summary, the dry feather traits of chickens were related to the development of feather follicle cycles. Signaling pathways such as MAPK and TGF-β might play important roles in feather growth and development by regulating the expression of cell cycle-related genes. The study provided clues for understanding the molecular regulatory mechanisms for dry feather traits in yellow-feathered broiler chickens.

Key words: chicken, dry feather, feather follicle, RNA-seq, gene, signaling pathway

Table 1

The qPCR primers were used in this study"

基因 Gene symbol 序列号 Accession number 引物序列 Primer sequence (5′→3′) 产物长度 Product length (bp)
β-actin NM_205518.2 F: GCTGAACTCCATCTTGGTTCCC
R: TGCTTCTAGGGTCACTCGCA
150
BUB1 NM_001012870.1 F: GCTGAACTCCATCTTGGTTCCC
R: TGCTTCTAGGGTCACTCGCA
112
BIRC5 NM_001012319.1 F:CTGGATAAAAAGCGGACCAA
R: AACCTAAGGGCCCATGTTCT
246
CDK1 NM_205314.1 F:GGAACGCATGTCCAAAACTT
R: GCAGGCAGGCAAAGATAAAG
236
NEK2 NM_001031050.2 F:ATGTCTTCCTGGATGGCAAG
R: TCTGCCAACTCCTTCTGGTT
241
CDC6 XM_040691823.1 F:GTGTCCTCTCGGAGGTGTTT
R: AGGCACTCTGTCTGGTCCAC
214
ANXA1 NM_206906.1 F:AAAAACTCCACCTGGCAATG
R: CCACATAAAGCGACCAGGAT
193
BCL2 NM_205339.2 F: TGACACCTCGATCTCACAGG
R: CATGCAACACACTGGGATTC
247
EDA2R NM_001083360.1 F: ACCCTCATCAACCGCATCCA
R: GCCTTGCGGTAAAACCCTGG
89
FZD4 NM_204099.1 F:AATGTCACCAAGATGCCCAACC R:AGACCGAACAAAGGAAGAACTGGA 130

Fig. 1

Morphological changes of chicken back feathers at different developmental periods A: Undried feathers; B: Dried feathers"

Fig. 2

Histological H.E staining of chicken back feather follicles at different developmental stages A: Feather follicles of undried feathers; B: Feather follicles of dried feathers"

Table 2

Summary of sequencing reads statistics and mapping to the reference genome"

样品
Sample
原始序列
Raw reads
有效序列
Clean reads
Q30
(%)
GC
(%)
比对率
Mapped on reference
未比对率
Unmapped
唯一位置比对
Uniquely mapped
H1-1 40968048 38142462 92.33 48.605 36255024
(95.05%)
1887438
(4.95%)
35196169
(92.28%)
H1-2 46296028 43781388 93.07 49.900 41547151
(94.9%)
2234237
(5.1%)
40274977
(91.99%)
H1-3 48737026 45301826 92.01 48.995 42668140
(94.19%)
2633686
(5.81%)
41786822
(92.24%)
H2-1 46250350 43867410 93.33 49.985 41559772
(94.74%)
2307638
(5.26%)
40597907
(92.55%)
H2-2 43917200 40983494 92.28 49.945 38739383
(94.52%)
2244111
(5.48%)
37804671
(92.24%)
H2-3 42372910 39985456 93.17 49.750 38040749
(95.14%)
1944707
(4.86%)
36991013
(92.51%)

Fig. 3

Volcano plots of DEGs between feather follicles at different developmental periods (growth and rest stage) in chicken skin samples"

Fig. 4

The top 30 significantly enriched GO biological processes (A) and KEGG enrichment pathways (B) for differentially expressed genes"

Fig. 5

Differentially expressed gene protein-protein interaction network Red represents upregulated genes and green represents downregulated genes"

Table 3

Top 10 genes identified in the protein-protein interaction (PPI) network by CytoHubba plug in 4 algorithms"

基因
Gene
MCC 基因
Gene
Degree 基因
Gene
MNC 基因
Gene
EPC
CDK1 5.11E+19 CDK1 56 CDK1 55 APITD1 85.564
BUB1 5.11E+19 PLK1 46 PLK1 46 AURKA 85.564
PLK1 5.11E+19 CCNB2 44 CCNB2 43 CDK1 85.564
CCNB2 5.11E+19 CENPE 43 CENPE 43 TPX2 85.564
NDC80 5.11E+19 BUB1 41 BUB1 41 BIRC5 85.564
CENPE 5.11E+19 NDC80 41 NDC80 41 MAD2L1 85.564
BUB1B 5.11E+19 BUB1B 37 BUB1B 37 BUB1 85.564
MAD2L1 5.11E+19 MAD2L1 34 KIF11 34 CCNB2 85.564
CENPF 5.11E+19 KIF11 34 MAD2L1 33 PLK1 85.564
INCENP 5.11E+19 AURKA 32 AURKA 31 BUB1B 85.564

Fig. 6

GSEA enrichment of DNA replication (A) and cell cycle (B) pathways up-regulated in feather follicle skin tissue at the growth phase"

Fig. 7

GSEA enrichment of MAPK (A) and TGF-β (B) pathways up-regulated in feather follicle skin tissue at the resting phase"

Fig. 8

RT-qPCR validation of differentially expressed genes"

[1]
辛翔飞, 郑麦青, 文杰, 王济民. 2021年我国肉鸡产业形势分析、未来展望与对策建议. 中国畜牧杂志, 2022, 58(3): 222-226.
XIN X F, ZHENG M Q, WEN J, WANG J M. Situation analysis, future prospect and countermeasures of China’s broiler industry in 2021. Chinese Journal of Animal Science, 2022, 58(3): 222-226. (in Chinese)
[2]
张德祥, 黄军. 土鸡羽毛成熟度的选育效果分析//中国家禽科学研究进展——第十四次全国家禽科学学术讨论会论文集. 哈尔滨, 2009: 339-342.
ZHANG D X, HUANG J. Analysis of the effect of selection for feather maturity in indigenous chickens//Advance in Poultry Science in China-Proceedings of the 14th National Poultry Science Symposium. Harbin, 2009: 339-342. (in Chinese)
[3]
李培周. 鸡羽毛不同成熟度初级毛囊组织学观察及其与VEGF、VEGFR-2基因的相关性研究[D]. 湛江: 广东海洋大学, 2013.
LI P Z. Histological observation of the primary follicle in different maturity of feathers and associated with VEGF gene and VEGFR-2 gene in chicken[D]. Zhanjiang: Guangdong Ocean University, 2013. (in Chinese)
[4]
ALIBARDI L. Transmission electron microscopic and immuno- histochemical observations of resting follicles of feathers in chicken show massive cell degeneration. Anatomical Science International, 2018, 93(4): 548-558.

doi: 10.1007/s12565-018-0449-7
[5]
CHEN C C, PLIKUS M V, TANG P C, WIDELITZ R B, CHUONG C M. The modulatable stem cell niche: Tissue interactions during hair and feather follicle regeneration. Journal of Molecular Biology, 2016, 428(7): 1423-1440.

doi: 10.1016/j.jmb.2015.07.009
[6]
LIN C M, JIANG T X, WIDELITZ R B, CHUONG C M. Molecular signaling in feather morphogenesis. Current Opinion in Cell Biology, 2006, 18(6): 730-741.

doi: 10.1016/j.ceb.2006.10.009
[7]
CHU Q Q, CAI L Y, FU Y, CHEN X, YAN Z P, LIN X, ZHOU G X, HAN H, WIDELITZ R B, CHUONG C M, WU W, YUE Z C. Dkk2/Frzb in the dermal papillae regulates feather regeneration. Developmental Biology, 2014, 387(2): 167-178.

doi: 10.1016/j.ydbio.2014.01.010 pmid: 24463139
[8]
LIN X, GAO Q X, ZHU L Y, ZHOU G X, NI S W, HAN H, YUE Z C. Long non-coding RNAs regulate Wnt signaling during feather regeneration. Development, 2018, 145(21): dev162388.
[9]
NG C S, CHEN C K, FAN W L, WU P, WU S M, CHEN J J, LAI Y T, MAO C T, LU M Y J, CHEN D R, LIN Z S, YANG K J, SHA Y A, TU T C, CHEN C F, CHUONG C M, LI W H. Transcriptomic analyses of regenerating adult feathers in chicken. BMC Genomics, 2015, 16(1): 1-16.

doi: 10.1186/1471-2164-16-1
[10]
CHEN C F, FOLEY J, TANG P C, LI A, JIANG T X, WU P, WIDELITZ R B, CHUONG C M. Development, regeneration, and evolution of feathers. Annual Review of Animal Biosciences, 2015, 3: 169-195.

doi: 10.1146/animal.2015.3.issue-1
[11]
CHEN M J, XIE W Y, JIANG S G, WANG X Q, YAN H C, GAO C Q. Molecular signaling and nutritional regulation in the context of poultry feather growth and regeneration. Frontiers in Physiology, 2019, 10: 1609.

doi: 10.3389/fphys.2019.01609
[12]
GUO Q X, JIANG Y, WANG Z X, BI Y L, CHEN G H, BAI H, CHANG G B. Genome-wide analysis identifies candidate genes encoding feather color in ducks. Genes, 2022, 13(7): 1249.

doi: 10.3390/genes13071249
[13]
DOMYAN E T, SHAPIRO M D. Pigeonetics takes flight: evolution, development, and genetics of intraspecific variation. Developmental Biology, 2017, 427(2): 241-250.

doi: S0012-1606(16)30600-5 pmid: 27847323
[14]
JI G G, ZHANG M, LIU Y F, SHAN Y J, TU Y J, JU X J, ZOU J M, SHU J T, WU J F, XIE J F. A gene co-expression network analysis of the candidate genes and molecular pathways associated with feather follicle traits of chicken skin. Journal of Animal Breeding and Genetics, 2021, 138(1): 122-134.

doi: 10.1111/jbg.v138.1
[15]
TRAPNELL C, PACHTER L, SALZBERG S L. TopHat: Discovering splice junctions with RNA-Seq. Bioinformatics, 2009, 25(9): 1105-1111.

doi: 10.1093/bioinformatics/btp120 pmid: 19289445
[16]
FOISSAC S, SAMMETH M. ASTALAVISTA: Dynamic and flexible analysis of alternative splicing events in custom gene datasets. Nucleic Acids Research, 2007, 35(suppl_2): W297-W299.
[17]
YU G C, WANG L G, HAN Y Y, HE Q Y. clusterProfiler: An R package for comparing biological themes among gene clusters. Omics, 2012, 16(5): 284-287.

doi: 10.1089/omi.2011.0118 pmid: 22455463
[18]
CHIN C H, CHEN S H, WU H H, HO C W, KO M T, LIN C Y. cytoHubba: Identifying hub objects and sub-networks from complex interactome. BMC Systems Biology, 2014, 8(Suppl 4): S11.
[19]
LIN S J, WIDELIZ R B, YUE Z C, LI A, WU X S, JIANG T X, WU P, CHUONG C M. Feather regeneration as a model for organogenesis. Development, Growth & Differentiation, 2013, 55(1): 139-148.
[20]
WANG E C E, HIGGINS C A. Immune cell regulation of the hair cycle. Experimental Dermatology, 2020, 29(3): 322-333.

doi: 10.1111/exd.14070 pmid: 31903650
[21]
TAN S W, LI P Z, LI H, YU H, ZHANG Z F, ZENG Z, HUANG D C. Genetic effects of vascular endothelial growth factor and its receptor 2 on feather maturity in three chicken breeds. British Poultry Science, 2019, 60(2): 109-114.

doi: 10.1080/00071668.2018.1564244 pmid: 30602288
[22]
ZHANG H, ZHANG X, LI X, MENG W B, BAI Z T, RUI S Z, WANG Z F, ZHOU W C, JIN X D. Effect of CCNB1 silencing on cell cycle, senescence, and apoptosis through the p53 signaling pathway in pancreatic cancer. Journal of Cellular Physiology, 2018, 234(1): 619-631.

doi: 10.1002/jcp.v234.1
[23]
KOYUNCU D, SHARMA U, GOKA E T, LIPPMAN M E. Spindle assembly checkpoint gene BUB1B is essential in breast cancer cell survival. Breast Cancer Research and Treatment, 2021, 185(2): 331-341.

doi: 10.1007/s10549-020-05962-2
[24]
ILIAKI S, BEYAERT R, AFONINA I S. Polo-like kinase 1 (PLK1) signaling in cancer and beyond. Biochemical Pharmacology, 2021, 193: 114747.

doi: 10.1016/j.bcp.2021.114747
[25]
CHEN Q F, ZHANG M, PAN X, YUAN X Y, ZHOU L L, YAN L, ZENG L H, XU J F, YANG B, ZHANG L, HUANG J, LU W G, FUKAGAWA T, WANG F W, YAN H Y. Bub1 and CENP-U redundantly recruit Plk1 to stabilize kinetochore-microtubule attachments and ensure accurate chromosome segregation. Cell Reports, 2021, 36(12): 109740.

doi: 10.1016/j.celrep.2021.109740
[26]
HANEKE K, SCHOTT J, LINDNER D, HOLLENSEN A K, DAMGAARD C K, MONGIS C, KNOP M, PALM W, RUGGIERI A, STOECKLIN G. CDK1 couples proliferation with protein synthesis. The Journal of Cell Biology, 2020, 219(3): e201906147.
[27]
LIAO H W, JI F, YING S M. CDK1: Beyond cell cycle regulation. Aging, 2017, 9(12): 2465-2466.

doi: 10.18632/aging.v9i12
[28]
WU P, JIANG T X, LEI M X, CHEN C K, HSIEH LI S M, WIDELITZ R B, CHUONG C M. Cyclic growth of dermal papilla and regeneration of follicular mesenchymal components during feather cycling. Development, 2021, 148(18): dev198671.
[29]
MANCHADO E, GUILLAMOT M, MALUMBRES M. Killing cells by targeting mitosis. Cell Death and Differentiation, 2012, 19(3): 369-377.

doi: 10.1038/cdd.2011.197 pmid: 22223105
[30]
ZHOU H L, WANG L, HUANG J X, JIANG M H, ZHANG X Y, ZHANG L Y, WANG Y M, JIANG Z F, ZHANG Z J. High EGFR_1 inside-out activated inflammation-induced motility through SLC2A1- CCNB2-HMMR-KIF11-NUSAP1-PRC1-UBE2C. Journal of Cancer, 2015, 6(6): 519-524.

doi: 10.7150/jca.11404
[31]
MAO P, BAO G, WANG Y C, DU C W, YU X, GUO X Y, LI R C, WANG M D. PDZ-binding kinase-dependent transcriptional regulation of CCNB2 promotes tumorigenesis and radio-resistance in glioblastoma. Translational Oncology, 2020, 13(2): 287-294.

doi: 10.1016/j.tranon.2019.09.011
[32]
WU T, ZHANG X L, HUANG X H, YANG Y Q, HUA X X. Regulation of cyclin B2 expression and cell cycle G2/m transition by menin. The Journal of Biological Chemistry, 2010, 285(24): 18291-18300.

doi: 10.1074/jbc.M110.106575
[33]
陈兴勇, 谢珊珊, 周丽, 姜润深, 耿照玉. 皖西白鹅换羽前后基因表达谱差异分析. 畜牧兽医学报, 2013, 44(7): 1030-1036.
CHEN X Y, XIE S S, ZHOU L, JIANG R S, GENG Z Y. Identification of differentially expressed genes in skin of Wanxi-white goose during regeneration of downy feather. Chinese Journal of Animal and Veterinary Sciences, 2013, 44(7): 1030-1036. (in Chinese)
[34]
RISHIKAYSH P, DEV K, DIAZ D, QURESHI W M S, FILIP S, MOKRY J. Signaling involved in hair follicle morphogenesis and development. International Journal of Molecular Sciences, 2014, 15(1): 1647-1670.

doi: 10.3390/ijms15011647 pmid: 24451143
[35]
CALVO-SÁNCHEZ M I, FERNÁNDEZ-MARTOS S, CARRASCO E, MORENO-BUENO G, BERNABÉU C, QUINTANILLA M, ESPADA J. A role for the Tgf-β/Bmp co-receptor Endoglin in the molecular oscillator that regulates the hair follicle cycle. Journal of Molecular Cell Biology, 2019, 11(1): 39-52.

doi: 10.1093/jmcb/mjy051
[36]
ZHANG Y J, WU K J, WANG L L, WANG Z Y, HAN W J, CHEN D, WEI Y X, SU R, WANG R J, LIU Z H, ZHAO Y H, WANG Z X, ZHAN L L, ZHANG Y, LI J Q. Comparative study on seasonal hair follicle cycling by analysis of the transcriptomes from Cashmere and milk goats. Genomics, 2020, 112(1): 332-345.

doi: S0888-7543(18)30576-7 pmid: 30779940
[37]
屠云洁, 姬改革, 章明, 刘一帆, 巨晓军, 单艳菊, 邹剑敏, 李华, 陈智武, 束婧婷. 鸡Wnt3a的SNPs筛选及其与皮肤毛囊密度性状关联分析. 中国农业科学, 2022, 55(23): 4769-4780.

doi: 10.3864/j.issn.0578-1752.2022.23.016
TU Y J, JI G G, ZHANG M, LIU Y F, JU X J, SHAN Y J, ZOU J M, LI H, CHEN Z W, SHU J T. Screening of Wnt3a SNPs and its association analysis with skin feather follicle density traits in chicken. Scientia Agricultura Sinica, 2022, 55(23): 4769-4780. (in Chinese)
[38]
YUE Z C, JIANG T X, WIDELITZ R B, CHUONG C M. Wnt3a gradient converts radial to bilateral feather symmetry via topological arrangement of epithelia. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(4): 951-955.
[39]
SONG Y P, LIU C, ZHOU Y X, LIN G Y, XU C G, MSUTHWANA P, WANG S H, MA J Y, ZHUANG F M, FU X O, WANG Y D, LIU T Y, LIU Q Y, WANG J B, SUI Y J, SUN Y F. Regulation of feather follicle development and Msx2 gene SNP degradation in Hungarian white goose. BMC Genomics, 2022, 23(1): 821.

doi: 10.1186/s12864-022-09060-z pmid: 36510127
[40]
BAO P J, LUO J Y, LIU Y B, CHU M, REN Q M, GUO X, TANG B L, DING X Z, QIU Q, PAN H P, WANG K, YAN P. The seasonal development dynamics of the yak hair cycle transcriptome. BMC Genomics, 2020, 21(1): 355.

doi: 10.1186/s12864-020-6725-7 pmid: 32393236
[41]
FANG G J, JIA X Z, LI H, TAN S W, NIE Q H, YU H, YANG Y. Characterization of microRNA and mRNA expression profiles in skin tissue between early-feathering and late-feathering chickens. BMC Genomics, 2018, 19(1): 399.

doi: 10.1186/s12864-018-4773-z pmid: 29801437
[42]
CHEN X Y, GE K, WANG M, ZHANG C, GENG Z Y. Integrative analysis of the Pekin duck (Anas anas) microRNAome during feather follicle development. BMC Developmental Biology, 2017, 17(1): 12.

doi: 10.1186/s12861-017-0153-1 pmid: 28728543
[43]
AKILLI ÖZTÜRK Ö, PAKULA H, CHMIELOWIEC J, QI J J, STEIN S, LAN L X, SASAKI Y, RAJEWSKY K, BIRCHMEIER W. Gab1 and mapk signaling are essential in the hair cycle and hair follicle stem cell quiescence. Cell Reports, 2015, 13(3): 561-572.

doi: S2211-1247(15)01026-8 pmid: 26456821
[44]
SU R, GONG G, ZHANG L T, YAN X C, WANG F H, ZHANG L, QIAO X, LI X K, LI J Q. Screening the key genes of hair follicle growth cycle in Inner Mongolian Cashmere goat based on RNA sequencing. Archives Animal Breeding, 2020, 63(1): 155-164.

doi: 10.5194/aab-63-155-2020 pmid: 32490151
[45]
冯云奎, 王健, 马金亮, 张柳明, 李拥军. miR-31-5p对山羊毛囊干细胞增殖和凋亡的影响. 中国农业科学, 2021, 54(23): 5132-5143.

doi: 10.3864/j.issn.0578-1752.2021.23.017
FENG Y K, WANG J, MA J L, ZHANG L M, LI Y J. Effects of miR-31-5p on the proliferation and apoptosis of hair follicle stem cells in goat. Scientia Agricultura Sinica, 2021, 54(23): 5132-5143. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2021.23.017
[46]
LIU M M, GOLDMAN G, MACDOUGALL M, CHEN S. BMP signaling pathway in dentin development and diseases. Cells, 2022, 11(14): 2216.

doi: 10.3390/cells11142216
[1] ZHOU JingWei, YE BoWei, ZHANG PengFei, ZHANG YuQing, HAO Min, YIN YuRuo, YUAN Chan, LI ZhiKang, LI ShunDa, XIA XianChun, HE ZhongHu, ZHANG HongJun, LAN CaiXia. Identification and Evaluation of Stripe Rust Resistance in 153 Wheat Collections [J]. Scientia Agricultura Sinica, 2024, 57(1): 18-33.
[2] LIU ZhiYong, ZHANG HuaiZhi, BAI Bin, LI Jun, HUANG Lin, XU ZhiBin, CHEN YongXing, LIU Xu, CAO TingJie, LI MiaoMiao, LU Ping, WU QiuHong, DONG LingLi, HAN YuLin, YIN GuiHong, HU WeiGuo, WANG XiCheng, ZHAO Hong, YAN SuHong, YANG ZhaoSheng, CHANG ZhiJian, WANG Tao, YANG WuYun, LIU DengCai, LI HongJie, DU JiuYuan. Current Status and Strategies for Utilization of Stripe Rust Resistance Genes in Wheat Breeding Program of China [J]. Scientia Agricultura Sinica, 2024, 57(1): 34-51.
[3] BAI Bin, ZHANG HuaiZhi, DU JiuYuan, ZHANG XiaoYang, HE Rui, WU Ling, ZHANG Zhe, ZHANG YaoHui, CAO ShiQin, LIU ZhiYong. Current Situation and Strategy of Stripe Rust Resistance Genes Untilization in Winter Wheat Cultivars of Northwestern Oversummering Region for Puccinia striiformis f. sp. tritici in China [J]. Scientia Agricultura Sinica, 2024, 57(1): 4-17.
[4] LI ZiMeng, YUAN Chan, ZHANG YuQing, REN Yan, LIU PengPeng, YAN ShanShan, XI MengHan, MU PeiYuan, LAN CaiXia. Genetic Analysis of Adult Plant Resistance to Powdery Mildew in Common Wheat Arableu#1 [J]. Scientia Agricultura Sinica, 2024, 57(1): 52-64.
[5] XU ChongXin, JIN JiaFeng, SUN XiaoMing, SHEN Cheng, ZHANG Xiao, CHEN ChengYu, LIU XianJin, LIU Yuan. Rational Design and Innovative Application Strategy for the Insecticidal Protein Based on Bt Toxin [J]. Scientia Agricultura Sinica, 2024, 57(1): 96-125.
[6] JU XiaoJun, ZHANG Ming, SHAN YanJu, JI GaiGe, TU YunJie, LIU YiFan, ZOU JianMin, SHU JingTing. Chicken Quality Analysis and Screening of Key Flavor Substances and Genes [J]. Scientia Agricultura Sinica, 2023, 56(9): 1813-1826.
[7] LI Jun, SHAN LuYing, XIAO Fang, LI YunJing, GAO HongFei, ZHAI ShanShan, WU Gang, ZHANG XiuJie, WU YuHua. Development of A Set of Matrix Reference Materials in Different Mass Fractions of Genetically Modified Maize MON87427 [J]. Scientia Agricultura Sinica, 2023, 56(8): 1444-1455.
[8] WANG ZhaoHao, GUO XingRu, ZHANG LeHuan, HE YongRui, CHEN ShanChun, YAO LiXiao. Expression Pattern of csi-miR399 in Response to Xanthomonas citri subsp. citri Infection and Its Disease Resistance Analysis [J]. Scientia Agricultura Sinica, 2023, 56(8): 1484-1493.
[9] JIANG Dong, WANG Xu, LI RenJing, ZHAO XiaoDong, DAI XiangSheng, LIU ZhengWei. Population Genomic Structure of Pomelo Germplasm and Fruit Acidity Associated Genes Identification by Genotyping-by-Sequencing Technology [J]. Scientia Agricultura Sinica, 2023, 56(8): 1547-1560.
[10] WANG HuiLing, YAN AiLing, WANG XiaoYue, LIU ZhenHua, REN JianCheng, XU HaiYing, SUN Lei. Genome-Wide Association Studies for Grape Berry Weight Related Traits [J]. Scientia Agricultura Sinica, 2023, 56(8): 1561-1573.
[11] XIAO Tao, LI Hui, LUO Wei, YE Tao, YU Huan, CHEN YouBo, SHI YuShi, ZHAO DePeng, WU Yun. Screening of Candidate Genes for Green Shell Egg Shell Color Traits in Chishui Black Bone Chicken Based on Transcriptome Sequencing [J]. Scientia Agricultura Sinica, 2023, 56(8): 1594-1605.
[12] GU WenDong, LIU ChunJuan, LI Bang, LIU Chang, ZHOU YuFei. Effects of Exogenous Tryptophan on C/N Balance and Senescence Characteristics of Sorghum Seedlings Under Low Nitrogen Stress [J]. Scientia Agricultura Sinica, 2023, 56(7): 1295-1310.
[13] SHAO HongYang, MENG Xiang, ZHANG Tao, CHEN Min. Analysis of Cytochrome P450 Genes in Response to Quercetin and Function of CYP6ZB2 in Hyphantria cunea [J]. Scientia Agricultura Sinica, 2023, 56(7): 1322-1332.
[14] WEN YiBo, CHEN ShuTing, XU ZhengJin, SUN Jian, XU Quan. Combination of DEP1, Gn1a, and qSW5 Regulates the Panicle Architecture in Rice [J]. Scientia Agricultura Sinica, 2023, 56(7): 1218-1227.
[15] ZHU HongHui, LI YingZi, GAO YuanZhuo, LIN Hong, WANG ChengYang, YAN ZiYi, PENG HanPing, LI TianYe, XIONG Mao, LI YunFeng. Map-Based Cloning of the SHORT AND WIDEN GRAIN 1 Gene in Rice (Oryza sativa L.) [J]. Scientia Agricultura Sinica, 2023, 56(7): 1260-1274.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!