Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (9): 1794-1806.doi: 10.3864/j.issn.0578-1752.2024.09.013

• HORTICULTURE • Previous Articles     Next Articles

Stem Sap Flow and Water Consumption of Chestnut During Growth Season

GUO Yan(), ZHANG ShuHang, ZHANG XinFang, LI Ying, LIU JinYu, FAN LiYing, LIU ShiYuan, GAO Qian, WANG GuangPeng()   

  1. Changli Institute of Pomology, Hebei Academy of Agricultrue and Forestry Sciences, Changli 066600, Hebei
  • Received:2023-10-16 Accepted:2024-03-01 Online:2024-05-01 Published:2024-05-09
  • Contact: WANG GuangPeng

Abstract:

【Objective】This study analyzed the characteristics of transpiration water consumption of chestnut (Castanea mollissima Bl.), so as to provide a theoretical reference for the formulation of scientific and reasonable water management measures in chestnut orchards.【Method】The thermal diffusion probe method was used to continuously monitor the stem flow rate of Dabanhong chestnut continuously during the whole growing season from March 1, 2022 to March 1, 2023, and seven related environmental factors (solar radiation, air relative humidity, air temperature, wind speed, vapor pressure deficit, soil temperature, and soil relative humidity) were observed simultaneously to analyze the stem flow rules and water consumption characteristics of chestnut trees and their correlation with environmental factors. 【Result】The obvious stem flow of chestnut trunk started on May 3 and ended on October 26, which lasted for 176 days. The diurnal variation of stem flow rate of chestnut showed a single-peak curve in sunny days during the whole growing season. The daily start and peak time of stem flow rate in June, July and August were earlier than those in May, September and October, while the decline time was later than those in May, September and October, so that the peak duration of stem flow rate in June, July and August was longer than that in May, September and October. The daily average stem flow rate, daily average water consumption and monthly water consumption in the whole growing season of chestnut were ranked from high to low as August>July>June>September>May>October, the significance test showed that there was no significant difference between July and August, but it was significantly higher than other months. The nocturnal sap flow percentage was ranked from high to low as October>September>May>June>July>August, and the significance test showed that October, September and May were significantly higher than June, July and August. The stem sap flow rate of chestnut during the whole growing season was significantly positively correlated with solar radiation, water vapor pressure deficit, air temperature and wind speed, and significantly negatively correlated with air relative humidity. Six regression models of stem flow rate from May to October and seven environmental factors were established.【Conclusion】The obvious stem flow of chestnut began at the beginning of May and ended at the end of October. The key water demand period of chestnut was July to August. Regression models of chestnut sap flow rate and environmental factors, which could be used to estimate the water requirement of plants in different months and the whole growing season through environmental factors.

Key words: chestnut, sap flow rate, water consumption, environmental factors, feature

Table 1

Major parameters of sample trees"

样树
Sample tree
树高
Height
(m)
干径(距地面50 cm)
Trunk diameter
(50 cm from the ground) (cm)
冠幅
Crown width
(m×m)
1 3.18 12.73 3.82×4.05
2 3.21 13.15 3.85×3.90
3 3.23 11.99 3.81×3.95

Table 2

Phenology dates of Dabanhong chestnut in this study"

生长期
Growth period
新梢生长期
Twig growth stage
开花期
Flowering stage
幼果期
Young fruit stage
果实膨大期
Fruit enlargement stage
成熟期
Fruit maturity
stage
落叶休眠期
Deciduous dormancy period
日期(月-日)Date (M-D) 4-25—6-14 6-1—6-15 6-16—7-10 7-11—8-31 9-13—9-15 10-21—4-25

Table 3

Irrigation amount in different months"

月份 Month
5 6 7 8 9 10
降雨量 Rainfall (mm) 55.2 59 238 372.2 4.7 13.7
灌水次数 Irrigation frequency 2 2 1 1 2 1
灌水量 Irrigation rate (t) 4.68 4.47 2.18 1.96 3.75 1.93

Fig. 1

Dynamic changes of canopy formation of Dabanhong chestnut in spring"

Fig. 2

Change trend of leaf area index and shoot length during canopy formation of Dabanhong chestnut"

Fig. 3

Dynamic changes of sap flow rate of Dabanhong chestnut in growing season"

Table 4

Inter-monthly dynamic change of sap flow rate of Dabanhong chestnut trees"

时间(月-日) Month (M-D)
5-16 6-7 7-8 8-10 9-10 10-20
环境因子日均值
Environmental factor
daily mean
太阳辐射 SR (W·m-2) 299.71 246.17 279.67 268.21 181.88 137.29
水汽压亏缺 VPD (kPa) 1.66 1.28 2.45 1.99 1.24 1.07
空气温度 AT (℃) 17.28 21.45 28.27 24.28 21.94 12.86
空气相对湿度 ARH (%) 47.63 76.85 77.89 78.44 79.47 68.10
风速 WS (m·s-1) 0.47 0.14 0.15 0.13 0.25 0.47
土壤温度 ST (℃) 14.79 19.01 24.20 23.74 21.72 12.76
土壤湿度 SRH (%) 22.40 28.03 25.69 22.19 23.13 26.93
启动时间 Start-up time 7:00 6:00 6:00 6:00 7:00 8:00
到达峰值时间 Peak time 11:00 11:00 10:00 10:00 11:00 12:00
峰值 Peak value (cm·h-1) 11.69±0.66a 17.36±1.15b 20.77±1.28c 20.85±1.32c 16.07±0.94b 12.01±0.85a
迅速下降时间 Fall time 16:00 17:00 17:00 17:00 16:00 14:00
峰值持续时间 Duration of peak value (h) 5 6 7 7 5 2
平均液流速率 Mean sap flow rate (cm·h-1) 5.41±0.34b 7.55±0.49c 9.16±0.62d 9.46±0.49d 6.13±0.44b 3.48±0.23a

Fig. 4

Daily variation of sap flow rate in different growth stages of Dabanhong chestnut trees"

Fig. 5

Daily variation of main meteorological factors in different growth stags of Dabanhong chestnut trees"

Table 5

Breakdown of day and night time"

日期(月-日)
Date (M-D)
白昼
Day time
夜晚
Night time
5-16 6:00—18:00 19:00—5:00
6-7 6:00—18:00 19:00—5:00
7-8 6:00—18:00 19:00—5:00
8-10 6:00—18:00 19:00—5:00
9-10 7:00—17:00 18:00—6:00
10-20 7:00—16:00 17:00一6:00

Table 6

Day and night sap flow ratio"

日期
(月-日)
Date (M-D)
夜间主要气象因子均值与液流量
Nocturnal mean of main meteorological factors and sap flow
白天主要气象因子均值与液流量
Diurnal mean of main meteorological factors and sap flow
单日
液流量
Sap flow
(g·d-1)
夜间液流量占比
Nocturnal sap flow percentage (%)
白天液流量占比
Diurnal sap flow percentage
(%)
空气温度
T
(℃)
空气相对湿度
RH (%)
夜晚液流量
Sap flow
(g·d-1)
空气温度T
(℃)
空气相对湿度
RH (%)
白天液流量
Sap flow
(g·d-1)
5-16 10.55 66.05 1470.93±95.61c 22.98 32.04 14899.51±864.17b 16497.44±973.35b 8.99±0.51c 91.01±0.51b
6-7 17.48 92.20 1379.19±97.92bc 24.81 63.86 21640.91±1471.58c 23020.10±1588.39c 5.99±0.33b 94.01±0.33c
7-8 23.76 91.47 1235.41±84.01b 32.08 66.40 26654.66±1466.01d 24805.81±1265.10cd 4.43±0.23a 95.57±0.23d
8-10 19.66 91.17 1069.03±66.27a 28.20 67.68 27723.06±1413.88d 25917.29±1373.62d 3.71±0.24a 96.29±0.24d
9-10 18.59 91.84 1741.80±106.24d 25.91 64.85 16930.396±981.96b 18303.89±933.49b 9.33±0.59c 90.67±0.59b
10-20 9.46 84.19 1494.82±97.16c 17.62 45.58 9102.32±564.34a 10597.14±625.23a 14.11±0.83d 85.89±0.83a

Table 7

Water consumption of individual of Dabanhong chestnut in growing season"

项目
Item
月份 Month 合计
Total
5 6 7 8 9 10
月耗水量 Monthly water consumption (kg) 423.34±40.84b 612.23±58.06c 722.67±63.17d 725.39±64.65d 603.64±53.01c 314.39±18.60a 3401.66
日均耗水量
Daily average water consumption (kg)
14.60±4.60a 20.41±1.99b 23.31±1.81c 23.40±1.66c 20.12±1.54b 12.58±0.95a -
液流天数 Sap flow days (d) 29 30 31 31 30 25 176

Table 8

The Pearson correlations and direct path coefficients between sap flow rate of Dabanhong chestnut and various environmental factors in different months"

月份
Month
太阳辐射
SR
水汽压亏缺
VPD
空气温度
AT
空气相对湿度
ARH
风速
WS
土壤温度
ST
土壤湿度
SRH
5 0.740** 0.813** 0.758** -0.672** 0.650** -0.247** -0.112*
0.328 - 0.287 -0.169 0.144 -0.130 0.050
6 0.812** 0.888** 0.858** -0.860** 0.737** -0.227** -0.023
0.245 - 0.403 -0.239 0.088 -0.210 -0.143
7 0.761** 0.854** 0.880** -0.863** 0.677** -0.017 0.033
0.225 - 0.475 -0.298 0.079 0.098 -0.086
8 0.828** 0.835** 0.845** -0.815** 0.664** -0.372** -0.107
0.271 - 0.375 -0.321 0.055 -0.008 0.087
9 0.803** 0.892** 0.795** -0.810** 0.696** -0.154* -0.090
0.336 - 0.385 -0.312 0.016 -0.082 -0.019
10 0.736** 0.890** 0.685** -0.773** 0.663** -0.217** 0.064
0.262 - 0.376 -0.223 0.159 -0.105 0.078
直接通径系数绝对值均值
Direct path coefficient absolute mean
0.278 - 0.384 0.260 0.090 0.106 0.077

Table 9

Multiple regression model of stem flow rates of chestnut and environmental factors in different months"

月份 Month R2 回归方程 Regression equation
5 0.790 V=10.046+0.368AT+0.004SR-0.035ARH+1.351WS-0.701ST
6 0.867 V=52.791+0.464AT+0.003SR-0.062ARH+1.628WS-1.687ST-0.821SRH
7 0.820 V=-11.423+0.840AT+0.002SR-0.100ARH+1.681WS+0.929ST-0.584SRH
8 0.831 V=-5.314+0.706AT+0.004SR-0.105ARH
9 0.832 V=9.841+0.467AT+0.007SR-0.072ARH-0.481ST
10 0.754 V=8.644+0.221AT+0.003SR-0.036ARH+1.115WS-0.523ST
[1]
王广鹏. 北方板栗全产业链绿色轻简标准化生产技术. 北京: 中国农业出版社, 2021.
WANG G P. Green, Light And Standardized Production Technology of Chestnut in the Whole Industrial Chain of North China. Beijing: China Agriculture Press, 2021. (in Chinese)
[2]
郭燕, 张树航, 李颖, 张馨方, 王广鹏. 中国板栗238份品种(系)叶片形态、解剖结构及其抗旱性评价. 园艺学报, 2020, 47(6): 1033-1046.

doi: 10.16420/j.issn.0513-353x.2019-0771
GUO Y, ZHANG S H, LI Y, ZHANG X F, WANG G P. Studies on the leaf morphology, anatomical structure and drought resistance evaluation of 238 Chinese chestnut varieties (strains). Acta Horticulturae Sinica, 2020, 47(6): 1033-1046. (in Chinese)

doi: 10.16420/j.issn.0513-353x.2019-0771
[3]
ISMANOV M, HENRY C, ESPINOZA L, FRANCIS P. Modeling of soybean plant sap flow. Agricultural Sciences, 2022, 13(5): 658-673.

doi: 10.4236/as.2022.135043
[4]
张含含, 秦永旗, 王秀敏, 刘云洁, 马长明. 基于热扩散原理的树干液流测定误差性分析. 林业与生态科学, 2022, 37(1): 1-6, 20.

doi: 10.13320/j.cnki.hjfor.2022.0001
ZHANG H H, QIN Y Q, WANG X M, LIU Y J, MA C M. Error analysis of trunk sap flow measurement based on thermal technology. Forestry and Ecological Sciences, 2022, 37(1): 1-6, 20. (in Chinese)

doi: 10.13320/j.cnki.hjfor.2022.0001
[5]
GRANIER A, HUC R, BARIGAH S T. Transpiration of natural rain forest and its dependence on climatic factors. Agricultural and Forest Meteorology, 1996, 78(1/2): 19-29.

doi: 10.1016/0168-1923(95)02252-X
[6]
WIESER G, GRUBER A, OBERHUBER W. Sap flow characteristics and whole-tree water use of Pinus cembra across the treeline ecotone of the central Tyrolean Alps. European Journal of Forest Research, 2014, 133(2): 287-295.

doi: 10.1007/s10342-013-0760-8
[7]
王力, 王艳萍. 黄土塬区苹果树干液流特征. 农业机械学报, 2013, 44(10): 152-158.
WANG L, WANG Y P. Characteristics of stem sap flow of apple trees in loess tableland. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(10): 152-158. (in Chinese)
[8]
王升, 容莹, 闫妍, 黄玉清. 干热河谷地区芒果树干液流特征及其对环境因子的响应. 西南农业学报, 2021, 34(6): 1286-1295.
WANG S, RONG Y, YAN Y, HUANG Y Q. Characteristics of sap flow of mango trees and its response to environmental factors in the dry-hot river valley region. Southwest China Journal of Agricultural Sciences, 2021, 34(6): 1286-1295. (in Chinese)
[9]
夏桂敏, 孙媛媛, 王玮志, 吴奇, 迟道才. ‘寒富’苹果树茎流特征及其对环境因子的响应. 中国农业科学, 2019, 52(4): 701-714. doi: 10.3864/j.issn.0578-1752.2019.04.011.
XIA G M, SUN Y Y, WANG W Z, WU Q, CHI D C. The characteristics of sap flow of Hanfu apple trees and its response to environmental factors. Scientia Agricultura Sinica, 2019, 52(4): 701-714. doi: 10.3864/j.issn.0578-1752.2019.04.011. (in Chinese)
[10]
林平, 李吉跃, 马达. 北京山区油松林蒸腾耗水特性研究. 北京林业大学学报, 2006, 28(S1): 47-50.
LIN P, LI J Y, MA D. Study on transpiration water consumption characteristics of Pinus tabulaeformis forest in Beijing mountainous area. Journal of Beijing Forestry University, 2006, 28(S1): 47-50. (in Chinese)
[11]
林利. 板栗抗旱丰产关键栽培技术研究[D]. 北京: 北京林业大学, 2006.
LIN L. Studies on key cultivation technology of anti-drought and high-yielding of chestnut[D]. Beijing: Beijing Forestry University, 2006. (in Chinese)
[12]
陆欣. 土壤肥料学. 北京: 中国农业大学出版社, 2002.
LU X. Soil Fertilizer Science. Beijing: China Agricultural University Press, 2002. (in Chinese)
[13]
任启文, 忻富宁, 李联地, 尤海舟, 毕君. 冀北山地华北落叶松全生长季树干液流及蒸腾耗水特征. 中南林业科技大学学报, 2018, 38(5): 91-97.
REN Q W, XIN F N, LI L D, YOU H Z, BI J. Stem sap flow and water consumption of Larix principis-rupprechtii during growth season in northern mountain areas of Hebei province. Journal of Central South University of Forestry & Technology, 2018, 38(5): 91-97. (in Chinese)
[14]
QIANG Y Q, XU X Y, ZHANG J C. Study on the dynamics of stem sap flow in Minqin wind and sand control Haloxylon ammodendron forest, China. Sustainability, 2022, 15(1): 609.

doi: 10.3390/su15010609
[15]
聂立水, 李吉跃, 翟洪波. 油松、栓皮栎树干液流速率比较. 生态学报, 2005, 25(8): 1934-1940.
NIE L S, LI J Y, ZHAI H B. Study of the rate of stem sap flow in Pinus tabulaeformis and Quercus variabilis by using the TDP method. Acta Ecologica Sinica, 2005, 25(8): 1934-1940. (in Chinese)
[16]
王媛, 魏江生, 周梅, 赵鹏武, 刘兵兵. 大兴安岭南段白桦树干液流对土壤水分的响应. 水土保持研究, 2020, 27(4): 128-133.
WANG Y, WEI J S, ZHOU M, ZHAO P W, LIU B B. Response of sap flow of Betula platyphylla to soil moisture in southern greater Xing’an Mountains. Research of Soil and Water Conservation, 2020, 27(4): 128-133. (in Chinese)
[17]
赵付勇. 南疆滴灌核桃树茎流变化特征及需水规律的研究[D]. 乌鲁木齐: 新疆农业大学, 2016.
ZHAO F Y. Study on stew flow characteristics and water consumption of in walnut teeees of southern Xinjiang under drip irrigation[D]. Urumqi: Xinjiang Agricultural University, 2016. (in Chinese)
[18]
王卓, 郭月峰, 祁伟, 姚云峰, 仲宸, 刘璐, 王佳坤. 不同灌水梯度下沙棘液流特征与环境因子的关系. 干旱区研究, 2020, 37(4): 1018-1025.
WANG Z, GUO Y F, QI W, YAO Y F, ZHONG C, LIU L, WANG J K. Relationship between the characteristics of Hippophae rhamnoides fluid flow and environmental factors under different irrigation gradients. Arid Zone Research, 2020, 37(4): 1018-1025. (in Chinese)
[19]
张小由, 龚家栋. 利用热脉冲技术对梭梭液流的研究. 西北植物学报, 2004, 24(12): 2250-2254.
ZHANG X Y, GONG J D. Study on volume and velocity of stem sap flow of Haloxylon ammodendron by heat-pulse technique. Acta Botanica Boreali-occidentalia Sinica, 2004, 24(12): 2250-2254. (in Chinese)
[20]
朱永泰, 陈惠玲, 秦文华, 徐聪, 张扬, 朱高峰. 干旱绿洲区葡萄园蒸腾特征及其对环境因子的响应. 兰州大学学报(自然科学版), 2022, 58(5): 569-578, 587.
ZHU Y T, CHEN H L, QIN W H, XU C, ZHANG Y, ZHU G F. The characteristics and main influencing factors of vineyard transpiration in the arid oasis areas. Journal of Lanzhou University (Natural Sciences), 2022, 58(5): 569-578, 587. (in Chinese)
[21]
徐先英, 孙保平, 丁国栋, 郭树江, 柴成武. 干旱荒漠区典型固沙灌木液流动态变化及其对环境因子的响应. 生态学报, 2008, 28(3): 895-905.
XU X Y, SUN B P, DING G D, GUO S J, CHAI C W. Sap flow patterns of three main sand-fixing shrubs and their responses to environmental factors in desert areas. Acta Ecologica Sinica, 2008, 28(3): 895-905. (in Chinese)
[22]
南庆伟, 王全九, 苏李君. 极端干旱区滴灌条件下葡萄茎流变化规律研究. 干旱地区农业研究, 2012, 30(6): 60-67.
NAN Q W, WANG Q J, SU L J. Experiments on variation of grape sap flow under drip irrigation in extremely arid areas. Agricultural Research in the Arid Areas, 2012, 30(6): 60-67. (in Chinese)
[23]
FORD C R, GORANSON C E, MITCHELL R J, WILL R E, TESKEY R O. Diurnal and seasonal variability in the radial distribution of sap flow: Predicting total stem flow in Pinus taeda trees. Tree Physiology, 2004, 24(9): 951-960.

doi: 10.1093/treephys/24.9.951
[24]
刘静, 孙旭, 布和. 河套灌区节水措施与黄河下游农业可持续发展. 生态农业研究, 2000, 8(4): 64-66.
LIU J, SUN X, BU H. The water-saving measures in Hetao irrigated district and the sustainable agricultural development of the lower reaches of the Huanghe River. Chinese Journal of Eco-Agriculture, 2000, 8(4): 64-66. (in Chinese)
[25]
ZHAO X N, LI X M, HU W, LIU J Q, DI N, DUAN J, LI D D, LIU Y, GUO Y Z, WANG A Y, DENG T, XI B Y. Long-term variation of the sap flow to tree diameter relation in a temperate poplar forest. Journal of Hydrology, 2023, 618: 129189.

doi: 10.1016/j.jhydrol.2023.129189
[26]
ANTEZANA-VERA S A, MARENCO R A. Sap flow rates of Minquartia guianensis in central Amazonia during the prolonged dry season of 2015-2016. Journal of Forestry Research, 2021, 32(5): 2067-2076.

doi: 10.1007/s11676-020-01193-9
[27]
CHEN D Y, WANG Y K, LIU S Y, WEI X G, WANG X. Response of relative sap flow to meteorological factors under different soil moisture conditions in rainfed jujube (Ziziphus jujuba Mill.) plantations in semiarid Northwest China. Agricultural Water Management, 2014, 136: 23-33.

doi: 10.1016/j.agwat.2014.01.001
[28]
贾国栋, 陈立欣, 李瀚之, 刘自强, 余新晓. 北方土石山区典型树种耗水特征及环境影响因子. 生态学报, 2018, 38(10): 3441-3452.
JIA G D, CHEN L X, LI H Z, LIU Z Q, YU X X. The effect of environmental factors on plant water consumption characteristics in a northern rocky mountainous area. Acta Ecologica Sinica, 2018, 38(10): 3441-3452. (in Chinese)
[29]
李宏, 刘帮, 李长城, 孙明森, 刁凯, 韩莹莹, 程平, 张志刚, 王真真, 武钰, 苗乾乾. 不同生育期幼龄枣树茎流特征及其与环境因子的关系. 干旱地区农业研究, 2016, 34(5): 54-61.
LI H, LIU B, LI C C, SUN M S, DIAO K, HAN Y Y, CHENG P, ZHANG Z G, WANG Z Z, WU Y, MIAO Q Q. Characteristics of stem flow of young jujube tree at different reproductive periods and their relationship with environmental factors. Agricultural Research in the Arid Areas, 2016, 34(5): 54-61. (in Chinese)
[30]
耿兵. 山东丘陵区苹果园蒸腾耗水规律研究[D]. 泰安: 山东农业大学, 2013.
GENG B. Law of transpiration and water consumption in apple orchard in Shandong hilly area[D]. Tai’an: Shandong Agricultural University, 2013. (in Chinese)
[31]
曹文强, 韩海荣, 马钦彦, 康峰峰, 蔺琛. 山西太岳山辽东栎夏季树干液流通量研究. 林业科学, 2004, 40(2): 174-177.
CAO W Q, HAN H R, MA Q Y, KANG F F, LIN C. Sap flow flux of Quercus liaotungensisin summer in deciduous broad-leaf forest of Taiyue Mountain in Shanxi Province. Scientia Silvae Sinicae, 2004, 40(2): 174-177. (in Chinese)
[32]
孟平, 张劲松, 王鹤松, 高峻, 褚建民. 苹果树蒸腾规律及其与冠层微气象要素的关系. 生态学报, 2005, 25(5): 1075-1081.
MENG P, ZHANG J S, WANG H S, GAO J, CHU J M. Rule of apple trees transpiration and its relation to the micrometeorology on the canopy. Acta Ecologica Sinica, 2005, 25(5): 1075-1081. (in Chinese)
[33]
GRANIER A, CLAUSTRES J P. Water relations of a Norway spruce (Picea abies) tree growing in natural condition: Variation within the tree. Acta Oecol, 1989, 10(3): 295-310.
[34]
MOLINA A J, ARANDA X, LLORENS P, GALINDO A, BIEL C. Sap flow of a wild cherry tree plantation growing under Mediterranean conditions: assessing the role of environmental conditions on canopy conductance and the effect of branch pruning on water productivity. Agricultural Water Management, 2019, 218: 222-233.

doi: 10.1016/j.agwat.2019.03.019
[1] ZANG ShaoLong, LIU LinRu, GAO YueZhi, WU Ke, HE Li, DUAN JianZhao, SONG Xiao, FENG Wei. Classification and Identification of Nitrogen Efficiency of Wheat Varieties Based on UAV Multi-Temporal Images [J]. Scientia Agricultura Sinica, 2024, 57(9): 1687-1708.
[2] WANG XiaoBin, YAN Xiang, LI XiuYing, SUN ZhaoKai, TU Cheng. Assessment of Application Efficacy for Agro-Forestry Absorbent Polymers and Their Environmental Risks [J]. Scientia Agricultura Sinica, 2024, 57(6): 1117-1136.
[3] ZHOU ZhiHui, GU XiaoBo, CHENG ZhiKai, CHANG Tian, ZHAO TongTong, WANG YuMing, DU YaDan. Inversion of Chlorophyll Content of Film-Mulched Maize Based on Image Segmentation [J]. Scientia Agricultura Sinica, 2024, 57(6): 1066-1079.
[4] LI QianChuan, XU ShiWei, ZHANG YongEn, ZHUANG JiaYu, LI DengHua, LIU BaoHua, ZHU ZhiXun, LIU Hao. Stacking Ensemble Learning Modeling and Forecasting of Maize Yield Based on Meteorological Factors [J]. Scientia Agricultura Sinica, 2024, 57(4): 679-697.
[5] MEI GuangYuan, LI Rong, MEI Xin, CHEN RiQiang, FAN YiGuang, CHENG JinPeng, FENG ZiHeng, TAO Ting, ZHAO Qian, ZHAO PeiQin, YANG XiaoDong. A VSURF-CA Based Hyperspectral Disease Index Estimation Model of Wheat Stripe Rust [J]. Scientia Agricultura Sinica, 2024, 57(3): 484-499.
[6] SUN Yue, REN KeYu, ZOU HongQin, GAO HongJun, ZHANG ShuiQing, LI DeJin, LI BingJie, LIAO ChuQian, DUAN YingHua, XU MingGang. Effect of Long-Term Straw Returning on the Soil Organic Carbon Bound to Iron Oxides in Black Soil and Fluvo-Aquic Soil [J]. Scientia Agricultura Sinica, 2024, 57(19): 3823-3834.
[7] FAN Peng, YANG TianLe, ZHU ShaoLong, WANG ZhiJie, ZHANG MingYue, WEI HaiYan, LIU GuoDong. Preliminary Study on Appearance Quality Evaluation of Semi-Waxy Rice in Yangtze River Delta Region [J]. Scientia Agricultura Sinica, 2024, 57(16): 3105-3115.
[8] YUN BinYuan, XIE TieNa, LI Hong, YUE Xiang, LÜ MingYue, WANG JiaQi, JIA Biao. Nitrogen Nutrition Estimation of Maize Based on UAV Spectrum and Texture Information [J]. Scientia Agricultura Sinica, 2024, 57(16): 3154-3170.
[9] WEI YongKang, YANG TianCong, ZANG ShaoLong, HE Li, DUAN JianZhao, XIE YingXin, WANG ChenYang, FENG Wei. Monitoring Wheat Lodging Based on UAV Multi-Spectral Image Feature Fusion [J]. Scientia Agricultura Sinica, 2023, 56(9): 1670-1685.
[10] FAN ZhiLong, HU FaLong, YIN Wen, FAN Hong, ZHAO Cai, YU AiZhong, CHAI Qiang. Response of Water Use Characteristics of Spring Wheat to Co- Incorporation of Green Manure and Wheat Straw in Arid Irrigation Region [J]. Scientia Agricultura Sinica, 2023, 56(5): 838-849.
[11] GUO Yan, JING YuHang, WANG LaiGang, HUANG JingYi, HE Jia, FENG Wei, ZHENG GuoQing. UAV Multispectral Image-Based Nitrogen Content Prediction and the Transferability Analysis of the Models in Winter Wheat Plant [J]. Scientia Agricultura Sinica, 2023, 56(5): 850-865.
[12] WANG WeiKang, ZHANG JiaYi, WANG Hui, CAO Qiang, TIAN YongChao, ZHU Yan, CAO WeiXing, LIU XiaoJun. Non-Destructive Monitoring of Rice Growth Key Indicators Based on Fixed-Wing UAV Multispectral Images [J]. Scientia Agricultura Sinica, 2023, 56(21): 4175-4191.
[13] JIAO ZhiHui, CHEN GuiPing, FAN Hong, ZHANG JinDan, YIN Wen, LI HanTing, WANG QiMing, HU FaLong, CHAI Qiang. Water Use Characteristics of Increased Plant Density and Reduced Nitrogen Application Maize in Oasis Irrigated Area [J]. Scientia Agricultura Sinica, 2023, 56(16): 3088-3099.
[14] CAI WeiDi,ZHANG Yu,LIU HaiYan,ZHENG HengBiao,CHENG Tao,TIAN YongChao,ZHU Yan,CAO WeiXing,YAO Xia. Early Detection on Wheat Canopy Powdery Mildew with Hyperspectral Imaging [J]. Scientia Agricultura Sinica, 2022, 55(6): 1110-1126.
[15] GUO Yan, ZHANG ShuHang, LI Ying, ZHANG XinFang, WANG GuangPeng. Diversity Analysis of 36 Leaf Phenotypic Traits of Chinese Chestnut [J]. Scientia Agricultura Sinica, 2022, 55(5): 991-1009.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!